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Abstract. The use of ontologies lies at the very heart of the newly
emerging era of Semantic Web. They provide a shared conceptual-
ization of some domain that may be communicated between people
and application systems. A common problem with web ontologies is
that they tend to grow large in scale and complexity as a result of
ever increasing information requirements. The resulting ontologies
are too large to be used in their entirety by one application. Our
previous work, M aterialized Ontology View Eztractor (MOVE), has
addressed this problem by proposing a distributed architecture for
the extraction/optimization of a sub-ontology from a large scale base
ontology. The extraction process consists of a number of independent
optimization schemes that cover various aspects of the optimization
process. In this paper, we extend MOVE with a Semantic Complete-
ness Optimization Scheme (SCOS), which addresses the issue of the
semantic correctness of the resulting sub-ontology. Moreover, we utilize
distributed methods to implement SCOS in a cluster environment. Here,
a distributed memory architecture serves two purposes: (a). Facilitates
the utilization of a cluster environment typical in business organizations,
which is in line with our envisaged application of the proposed system
and (b). Enhances the performance of the computationally extensive
extraction process when dealing with massively sized realistic ontologies.

Keywords: Parallel & Distributed Systems, Semantic Web, Ontologies,
Sub-Ontology Extraction.

1 Introduction

The next generation of the internet is called the semantic web, and provides an
environment that allows more intelligent knowledge management and data min-
ing. The main focus is the increase in formal structures used on the internet. The
taxonomies - with added functionality, such as inferencing - for these structures
are called ontologies 2], and the success of the semantic web highly depends
on the success of these ontologies. The reason ontologies are becoming popular
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is largely due to what they promise: a shared and common understanding of a
domain that can be communicated between people and applications.

A major problem is that as an ontology grows bigger, user applications only
require particular aspects of the ontology as they do not benefit from the plethora
of semantic information that may be present in the ontology. However, using the
ontology means that all the drawbacks from this extra information are encoun-
tered; complexity and redundancy rise, while efficiency falls. This brings with
it a clear need to create a sub-ontology [3/4]. For instance, if a business (appli-
cation) only concerns itself with the efficiency of the workers, there is no need
to access the detailed product catalog. Extracting just the part that is needed
offers a smaller, more efficient, simpler solution/ontology.

A lot of research in similar areas has been done (e.g. in [5l6//78]). Previous
research by the authors pioneered in the specialized area of ontology extrac-
tion [9J10]. An extraction methodology, consisting of a number of optimization
schemes, was introduced to meet the extraction requirements, and guarantee a
high quality resulting sub-ontology. However, this extraction process often proves
to be computationally expensive, because ontologies in realistic settings turn out
to be very large. For instance, the Unified Medical Language Systems (UMLS)
base ontology has more than 800,000 concepts (nodes) and more than 9,000,000
relationships between those concepts).

This work was done as a part of a bigger project [11] involving materialized
sub-ontology extraction using distributed methods. Distribution not only makes
the process faster, but more importantly also facilitates our envisaged application
of the extraction process. Often, business organizations have a cluster-like setup
of inter-connected workstations as opposed to a single shared-memory, High-
Performance Computing (HPC) facility. One reason for this is that a 'Beowulf
Class Cluster’ setup is easily affordable than a centralized HPC facility. It is
this setup that we aim to leverage upon by implementing a distributed memory
architecture for the sub-ontology extraction process. In this paper, we look at the
issue of semantic completeness of an extracted sub-ontology implemented in a
distributed environment. As with all stages, even this stage will be referred to as
an optimization scheme, hence the name Semantic Completeness Optimization
Scheme (SCOS).

2 Previous Work: MOVE

Figure [l shows a schematic of the sequential extraction process called Mate-
rialized Ontology View Extraction (MOVE) [I1]. The process begins with the
import of the ontology externally represented using XML. The actual extraction
process/execution of optimization schemes is initiated by way of requirements
specification by a user or another application. In the sub-sections that follow,
each of the main components illustrated in Fig. 1 will be discussed briefly.

The ’ontology import layer’ (component 1) is responsible for handling
various ontology representation standards that the extraction process is supposed
to be compliant with. This is currently achieved in MOVE by transforming



510 M. Bhatt et al.
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Fig. 1. The Sequential Extraction Process

the external representation of the ontology and its meta-level to a internal one
that is specific to our implementation. It is necessary for user applications to
use our import layer so as to be able to utilize the extraction algorithms. The
representation layer maintains an object-oriented view of the ontology and its
meta level. This facilitates easy extensibility as new ontology elements (new
types) may easily be added in the ontology as well as its meta-level.

"Labeling’ (component 2) of the base ontology facilitates user manipulation
of the extraction process. The labeling may also be re-applied (i.e. modification
of the user specified labeling) by the intermediate steps involved in the extraction
process. This is the standard way different components of the extraction process
(different extraction algorithms) may communicate with each other. Therefore,
labeling is very crucial in the interaction between users & the extraction algo-
rithms and algorithms amongst themselves. It allows a user to provide subjective
information, pertaining to what must/must not be included in the target sub-
ontology, on which the extraction process is based on. Moreover, an algorithm
may work upon the labeling specified by the user, modify it in a certain way
while preserving the semantics of the specification and pass it on to another al-
gorithm within the extraction process. Currently, every ontological element may
have a labeling of selected - must be present in the sub-ontology, deselected
- must be excluded from the sub-ontology or void - the extraction algorithm is
free to decide the respective elements inclusion/exclusion in the sub-ontology.

The ’extraction process’ (component 3) involves application of various op-
timization schemes that handle various issues pertaining to it such as ensuring
consistency of initial requirements, well-formedness and deriving a sub-ontology
that is highly qualitative in a sense that it is optimum and is the best solution to
the users requirements. Note that the extraction process in not limited to opti-
mization schemes currently being used in our framework. Also, it is possible that
a particular scheme be completely left out of the it. Currently, the extraction
process consists of Requirements Consistency Optimization Scheme (RCOS1-
RCOS4), Semantic Completeness Optimization Scheme (SCOS1- SCOS3), Well
Formedness Optimization Scheme (WFOS1-WFOS5) and Total Simplicity Opti-
mization Scheme (T'SOS1 - TSOS3). RCOS checks for the consistency of the user
specified requirements for the target ontology and SCOS considers the complete-
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ness of the concepts, i.e. if one concept is defined in terms of an another concept,
the latter cannot be omitted from the sub-ontology without loss of semantic
meaning of the former concept. It might be possible that the user requirements
(labeling) is consistent. However, there might be statements that inevitably lead
to a solution that is not a valid ontology. WFOS contains the proper rules to
prevent this from happening. Applying TSOS to a existing solution will result
in the smallest possible solution that is still a valid ontology.

The result of the extraction process is not just simply a extracted sub-
ontology, but rather an extracted 'materialized ontology view’ (component 4)
[9]. In the extraction process, no new information should be introduced (e.g.
adding a new concept). However, it is possible that existing semantics are rep-
resented in a different way (i.e. a different view is established). Intuitively, the
definition states that - starting from a base ontology - elements may be left out
and/or combined, as long as the result is a valid ontology. In the process, no
new elements should be introduced (unless the new element is a combination of
a number of original elements, i.e. the compression of other elements). A ma-
terialized ontology view is required, as the resulting sub-ontology should be an
independent ontology, i.e. should be a valid ontology even if the base ontology
is taken away.

3 Semantic Completeness of a Sub-ontology

The idea of semantic completeness of an ontology can be interpreted in a number
of ways. However, for the purposes to sub-ontology extraction, it amounts to the
inclusion of the defining elements for the elements selected by the user by
way of requirements specification. A defining element is a concept, relationship
or attribute that is essential to the semantics of an another element of the ontol-
ogy. A concept selected to be present in the sub-ontology would be semantically
incomplete if its super-concept (the defining element in this case) is deselected
at the same time. This could be further generalized into a situation where a set
of elements are connected by a IS-A relationship unto any arbitrary depth. The
scenario can only get more complex in the presence of more complex relation-
ships such as multiple-inheritance, aggregation etc. The Semantic Completeness
Optimization Scheme (SCOS) exists to guard against such inconsistencies. Be-
low we present some notation consistent with [9], which is useful to define a
common vocabulary pertaining to the ontological workload.

— 6p(b): Denotes a binary relationship between concepts
— 0¢(II1(b)): First concept associated with ép(b)
— 0 (II2(b)): Second concept associated with o (b)
Jattr(t): Denotes a attribute-concept relationship
— 0 (IT1(t)): A concept with associated attribute, ie: the concept in a a4y (t)
— 04(I2(t)): An attribute with associated concept, ie:the attribute in a

5attr (t)

Before we proceed with illustrating the distribution scheme, it is necessary
that each of SCOS1-SCOS3 be defined, albeit informally for the purposes of
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this paper. A formal introduction to SCOS (and the entire extraction process)
along with a practical walk-through with intuitive examples can be found in [9].
SCOS1-SCOS3 are as follows: 1) SCOS1: If a concept is selected, all its super-
concepts, and the inheritance relationships between the concepts and its super-
concepts have to be selected. 2) SCOS2: If a concept is selected, all the aggregate
part-of concepts of this concept, together with the aggregation relationship have
to be selected as well. 3) SCOS3: If a concept is selected, all the attributes
it possesses with a minimum cardinality other than zero and their attribute
mappings should be selected as well.

4 SCOS: Proposed Distributed Implementation

SCOS1 and SCOS2 are conceptually similar with the difference that the former
deals with a collection of inheritance relationships while the latter with a col-
lection of aggregation relationships. This collection can be conceptualized as a
forest of sparsely connected undirected graphs with the concepts representing
the vertices and the relationships representing the edges of the graph. Such a
conceptualization (& representation) using a graph-theoretic approach is opti-
mal (& convenient) for purposes of distribution of SCOS. For example, consider
checking the semantic for the completeness of a (potentially huge) set of concepts
related by binary inheritance relationship, ie., SCOS1. If the set is to be parti-
tioned & distributed to different processors so that SCOS1 may be run on each
of the partitions in parallel, it is obviously desirable to allocate one connected
component to each of the processors.

4.1 Problems with Graph Based Representation

A major problem with representing the data partitioning problem (for SCOS)
in a graph-theoretic manner is that our underlying ontology representation is
not graph theoretic. During ontology import, we construct a object oriented
representation of the ontology as well as its meta-level. No structural informa-
tion regarding the connectivity of the ontological elements is present. Since a
ideal ontology would be massive in size and complex in structure, it would be
optimal from a performance view-point that the graph based representation be
constructed at the time of initial ontology import. Our object-oriented design
represents a trade-off decision we took given the fact that other optimization
schemes (such as RCOS) do not benefit from a graph based representation. So
a graph based representation encompassing all different types of ontological el-
ements would not be particularly useful.

4.2 Proposed Solution

Prior to data partitioning for SCOS, a graph based representation for elements
specific to SCOS (binary inheritance & aggregation relationships) is constructed.
We use the standard adjacency structure representation (comprised of adjacency
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lists) to construct the ontoGraph. This involves additional work in the form of
pre-processing of the SCOS workload to extract the concept set (ie. the vertices
of the graph). This is necessary so as to construct the adjacency structure repre-
sentation. Once the graph based representation is complete, we use a technique
similar to a depth first search algorithm on the graph to get the set of connected
components (called partitions hereafter) so as to schedule each of those for dis-
tribution to worker processors. Below, we discuss the three main steps, namely
Ontology pre-processing, ontoGraph construction and Partition formation, in-
volved in ontology pre-processing.

— Ontology pre-processing: The pre-processing phase basically involves
constructing the vertex set so as to be used by the ontoGraph construction
module. The input to this phase is the whole ontology. Processing begins by
extracting the list of binary (inheritance & aggregation for SCOS1 & SCOS2
respectively) relationships from the ontology and inserting the elements re-
lated by each of the relationships in the list to a set based container thereby
avoiding duplicates. Moreover, the unique vertices in the vertex set are keyed
from 0 to N - 1, where N is the cardinality of the vertex set.

— OntoGraph Construction: As mentioned before, we represent the onto-
Graph using the standard adjacency structure representation. The adjacency
structure consists of a vector of lists of graph nodes. Each node in turn con-
sists of other information such as an integral id of the ontology element is
represents, a link to the element is represents etc. This ancillary information
is necessary during the next phase, namely Partition Formation.

— Partition Formation: Partition formation in our case is equivalent to find-
ing the different connected components in the ontoGraph. We currently use
a technique similar to a depth first traversal (of the ontoGraph) to achieve
this. The input to this phase is the ontoGraph whereas the result consists of
a list of partitions. Here, one might get the impression that all the partitions
need to be formed before any of them are assigned to worker processors.
However in actuality, there is no reason to wait for the next partition to
be generated before the current one is scheduled for distribution to a free
processor as the partition sets are all going to be disjoint. As shall be illus-
trated later, we make use of asynchronous distribution primitives to assign
the most recently generated partition to a free processor without waiting for
the next one to be formed. This is advantageous as working out the semantic
completeness (for the assigned partition) and formation of the next partition
can proceed in parallel. The asynchronous nature of the primitives only adds
to this optimality.

4.3 SCOS Distribution

For implementing the Requirements Consistency Optimization Scheme [9[1T],
we utilized a modified version of the classic task-farm model. SCOS essentially
utilizes a similar distribution model with the exception that there is continued
two-way interaction between the master & worker processors. Moreover, unlike
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the RCOS distribution scheme, the worker processes do not need to post updates
(requests for missing data) as they have all the data elements that would ever be
needed to perform the most recently assigned task (ie: any of SCOS1-SCOS3).
Also, data partitioning by the master & processing by the workers happens
concurrently as the master dynamically creates partitions and assigns them to
worker processes in a round-robin manner.

We use three asynchronous data distribution/result collection primitives
namely gatherModifiedLabelingsFrom(...), recvPartition(...) and send-
ModifiedLabelings( ). recvPartition(...) is used by the worker processes to
receive the ontological workload that needs to be processed. Likewise, gather-
ModifiedLabelingsFrom(...) is used by the main processor to gather results from
the worker processors, which they send using the sendModified Labelings( ) primi-
tive . As explained in section Pl this result takes the form of the modified labeling
set. Note that it may be possible for the main processor to receive a ’semantic
incompleteness’ message and still get a modified labeling set. This is because fol-
lowing the rules for SCOS1-SCOS3, the worker processors attempt to make the
extracted view as semantically complete as possible even if a 100% completeness
is not possible.

Master processor execution consists of performing the necessary pre-
processing of the ontology as explained in section To re-iterate, it involves
ontology initialization, extraction of the unique vertex & edge set, building the
ontoGraph representation and perform the ontoGraph partitioning coupled with
asynchronous distribution to the worker processors. Once the distribution is
achieved, the only thing remains to be done for the master is collection and ap-
plication of results to its solution set or the extracted view. As mentioned previ-
ously, irrespective of the results (ie: semantic completeness/incompleteness), the
master always applies the labeling modifications worked out and serialized back

BEGIN Master BEGIN Worker

1. terminate = false; 1. terminate = false;

2. resultsCounterSCOS1 = 0; 2. while(terminate == false)

3. 0 = intialiseOntology(); {

4. V = preProcess(0); msg = getMessage();

5. G = buildOntoGraph(V); if (nsg == SCOS_EXIT)

6. P = partitionGraph(G); teminate = true;

7. partitioenCount = |P| ; else if(msg == SCOS1_PARTITION)
8. while(terminate == false) {

{ [6g(b)] = recvPartition(SCOS1_PARTITION)
msg = getMessage(); 0 = initLocalOntology ([ (b)) ;
src = getSender(); Result = SCOS1_Single(D);
if (msg == SCOS1_SEMANTIC_COMPLETENESS) }

resultsCounterSCOS1++; else if (msg == SCOS2_PARTITION)
else if(msg == SCOS1_SEMANTIC_INCOMPLETENESS)
resultsCounterSCOS1++; [0attp (£)] = recvPartition(SCOS2_PARTITION)
0 = initLocalOntology([d, ¢, (£)1);
modifiedLabelings = gatherModifiedLabelingsFrom(src); Result = SCOS2_Single(D);
applyModifications (modifiedLabelings); }
if (resultsCounterSCOS1 == partitionCount) sendMessage (Result) ;
terminate = true; sendModifiedLabelings();
T ¥
9. broadcastExitMessage (ALL_WORKERS) ; END

END

Fig. 2. Master & Worker Processors
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by the worker processes. Depending on the number of partitions scheduled to
the worker processors, the master can figure out when results for each of them
have been received and it is appropriate for the workers and itself to terminate.

Worker execution involves checking for a ’ezecution command’ from the main
processor. Possible commands are to receive the workload pertaining to SCOS1-
SCOS3 or actually execute SCOS1-SCOS3. Execution of any of the optimization
schemes is followed by the sending back of results (modified labeling) and an
indication of whether or not semantic completeness is possible for the most
recently received partition. Note that the worker only terminates upon receiving
an ’SCOS_EXIT’ message from the main processor.

4.4 Implementation

All implementation has been done using C++ on a Alphaserver SC supercom-
puter running Tru64 Unix 5.1. It has also been ported to a Linux Cluster envi-
ronment with minimal modifications. Our distribution management component
does not directly tackle issues pertaining to the cluster architecture, processor
initialization etc. Instead, the Messaging Passing Standard [12], which encapsu-
lates such architecture specific details and provides high level message-passing
primitives suitable for distributed systems, has been utilized. As such, porting to
other environments should not involve anything more than a recompilation on
the target platform. Also, note that although homogeneous computing elements
are being utilized currently, this is not a requirement for the implementation.
Any distributed architecture is good enough as long as it supports the MPI
message passing standard. It is up to the standard to handle the underlying
architectural details pertaining to the cluster setup.

5 Evaluation

This section analyzes the results obtained from the distribution of the SCOS pro-
cessing. Five different ontologies were used for testing the performance of SCOS.
Initialization of the ontology is a constant time operation. As such the time taken
to load each ontology, its meta-ontology and the associated user requirements
(labeling) has been excluded. The results shown only include the time that the
SCOS processing and distribution were active. The results have been split into
two graphs to make it easier to show the similarities and differences between the
five different sized ontologies. Fig. Bl- graph(a) shows that small ontologies (1-
2000 concepts) with a greater number of processors, doesn’t improve the overall
time. From 3000 concepts and above, using a greater number of processors does
speed up the time taken to complete the work. However, the larger ontologies in
graph(b), seem to flatten off as the number of processors increase. This is where
the added cost of communication for the extra processors out-weighs the amount
of work left to be distributed. From these graphs then, we can suggest that for
a certain ontology size, SCOS should employ a specific number of processors to
do the work to obtain the most efficient use of resources.
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Fig. 3. SCOS Performance Results

6 Conclusion and Future Work

SCOS currently consists of three sub-schemes SCOS1-SCOS3, which handle vari-
ous issues pertaining to semantic completeness. As mentioned previously, we have
defined semantic completeness to be the inclusion/exclusion of certain defining
elements for the ontological elements selected/deselected by the user or other
application. Obviously, this notion of semantic completeness could be expanded
and new rules could be specified by other researchers in the ontology domain.
However, the distributed architecture that we have proposed and implemented
is general enough to be used with other ontology based applications. The plugin
based design of the optimization schemes as well as the distribution primitives
facilitates seamless integration with other ontology applications.

The use of dynamic process management capability needs to be imple-
mented into the system. Until the development of RCOS [I1], the need for
such capability within the framework did not arise as RCOS merely consists
of partitioning the data to be processed based on the number of processors
available. However, in the case of SCOS, the number of partitions generated is a
property of the structure/connectivity of the OntoGraph. As such, a capability
to allocate an optimal number of processors based on the number of data
partitions will be necessary for optimized execution. Currently, we use a very
coarse-grained distribution scheme. It is possible to utilize more sophisticated
distribution schemes given the fact that there are no constraints as to the order
of execution of functionally independent optimization schemes. Also, more
fine-grained solution could consist of parallelization of individual sub-schemes
within a particular optimization scheme. However, these enhancements would
only be justified if optimal performance of the extraction process is a absolute
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necessity. As previously mentioned, our research and the resulting distributed
architecture is strongly driven by our envisaged application of the extraction
process in a distributed business environment.
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