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Abstract— The jointly optimum receiver is obtained for multiuser com-
munications in a frequency non-selective Rayleigh fading channel with
N transmit antennas per user and Ng receive antennas. Based on a gen-
eral analysis of quadratic receivers in zero-mean complex Gaussian vec-
tors, asymptotically tight expressions (for high SNR) for the pairwise error
probabilities are derived. Subsequently, it is shown that Nr-dimensional
single-user signaling suffices to provide full diversity order N = Np Ng for
all the users. In other words, the presence of other users does not increase
the minimum dimension required beyond what is needed for the single-user
space-time channel.

For the special case of low-rank “CDMA” signaling with Nr = 1 and
provided the signatures of any two users are linearly independent, it is
shown that the error probability of a K-user system asymptotically ap-
proaches single-user like performance for every user. Remarkably there-
fore, an increase in the number of users, and hence an increase in the ag-
gregate spectral efficiency, does not require the users to transmit with more
power to achieve single-user like performance asymptotically. A signal de-
sign algorithm is proposed to illustrate this point and examples are given.
These results are then generalized to the multiple transmit antenna case. A
new (Nr + 1)-dimensional signaling strategy is proposed for the multiuser
channel that leverages existing single-user space-time signal designs while
ensuring full diversity order and single-user like performance asymptoti-
cally for every user.

Index Terms—Asymptotic efficiency, asymptotics, CDMA, error analysis,
fading channels, maximum likelihood receiver, multiuser communications,
space—time modulation.

|. INTRODUCTION

ULTIPLE antenna communication has received consider-
able attention in recent years due in large part to the in-
formation theoretic work in [1, 2], which showed that the use
of multiple transmit and receive antennas could achieve con-
siderable gains on the Rayleigh fading channel when the re-
ceiver has perfect side information about the channel state. Mo-
tivated by these promises, several researchers have recently pro-
posed multi-antenna coding and modulation schemes for coher-
ent single-user channels (cf. [3-7]) to show that diversity com-
munication systems, when designed intelligently, can yield sig-
nificant improvements over single antenna channels. The in-
formation theory of the single-user space—time channel easily
extends to the multiuser multi-antenna channel [1] and it can
be inferred that the gains in the capacity region are every bit as
dramatic for the multiuser channel as well.
In this paper, we present a theory of modulation and detection
for multiuser space—time communication. Each user can em-
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ploy N: transmit antennas and is detected by a base-station with
N receive antennas. We develop multiuser modulation schemes
that guarantee each user full order of diversity N = N; N;.

When only receive antenna diversity is employed, it is well
known that in the multiuser narrowband channel (in which all
users modulate an identical waveform) the jointly optimum de-
tector achieves the same order of diversity for every user as in a
single user channel [8]. This is illustrated in Figure 1, which
shows the bit error rate (BER) for one, five, and ten users,
each employing BPSK modulation, and that are detected with
N, = 2 receive antennas. The optimum multiuser detector
achieves the same diversity order for every user as is achiev-
able in a single user channel, but it incurs a penalty in terms
of signal-to-noise ratio (SNR), when compared to single-user
performance. In the example, for ten users the SNR gap to the
single user is close to 8 dB at a BER of 10~2.

For the special case of one transmit antenna per user we
present a method for modulation that spreads the symbol of each
user with a unit-norm spreading sequence of very low dimension
(D > 2) and wherein these spreading sequences are designed to
guarantee asymptotic (high SNR) single-user like performance
for every user. By an “asymptotic single-user like” performance
we mean that for high SNR the upper bound on the multiuser
BER converges to the upper bound on the single-user BER. In
particular, the lowest admissible (complex) signal space dimen-
sion D = 2 appears to be the most desirable (in terms of energy
vs spectral efficiency tradeoff), independently of the number of
users. The signaling scheme that uses the corresponding signa-
ture signals, which are “optimized” according to a signal design
criterion we develop in this paper, may be thought of as enlight-
ened or low-rank CDMA signaling in that the spread factor is
just two.

In the case of binary modulation, when the upper bound on
the single-user BER coincides with its lower bound, the op-
timum multiuser detector achieves exactly single-user perfor-
mance asymptotically, i.e., the asymptotic efficiency of all users
is unity. In other words, the signal design enables an increase
of aggregate spectral efficiency of the multiuser system due to
an increase in the numbers of users with no loss in energy ef-
ficiency for sufficiently high SNR, when compared to a single
user. Using these designs, we next extend the above example
and see that ten users can be detected with a BER that is within
2 dB of the single-user performance at a BER of 10~2; at SNRs
above 12 dB, the performance of the multiuser system is virtu-
ally indistinguishable from that of the single user (Fig. 4).

To obtain these results and their extensions to multiple trans-
mit antennas per user, we use the asymptotic analysis in [9],



where we develop a general theory for the analysis of quadratic
receivers in Rayleigh fading channels and apply it to single-
user coherent and noncoherent space-time receivers. Indepen-
dently from that work, [10] analyzes the optimum coherent re-
ceiver for the single-user space-time channel and also obtains
asymptotically tight pairwise error probabilities for the single-
user case. In this paper, we start-out with a general synchronous
multiuser modulation model and apply the methodology of [9]
to arrive at asymptotic tight expressions for pairwise error prob-
abilities of modulation schemes and channels not previously
considered and/or analyzed. For example, for the narrowband
multiuser channel and optimum detection, the new asymptotic
pairwise error probabilities generalize the corresponding result
in [8], in that more general modulation schemes and possibly
correlated diversity branches are included. Even the single-
user space-time case profits from our general expressions, be-
cause an asymptotically tight approximation of the pairwise er-
ror probability for correlated fading and non-full rank codes are
obtained (recall that [4, 6] consider the Chernoff bound in i.i.d.
fading, [9] only full-rank codes). For the multiuser channel, the
asymptotic pairwise error probabilities are subsequently used to
derive signal design criteria which in turn enable us to design
signal sets for both, single and multiple transmit antenna sys-
tems (per user), that guarantee asymptotic single-user like per-
formance for every user. As pointed out above, a remarkable
feature of these signal sets is that the minimum required signal
space dimension is independent of the number of users for suf-
ficiently high SNR.

Interestingly, in the multiple transmit antenna per user prob-
lem, if every user transmits symbols from a full diversity or-
der N = NN, single-user space-time constellation® in a mul-
tiuser channel, we show that each user achieves the same full
diversity order NV in spite of the presence of other users. Recall,
that to achieve full order of diversity in the single-user channel
D > N signal space dimensions are necessary [4, 6, 9], so that
D > Nj is also the condition required for every user in a mul-
tiuser channel to achieve the full diversity order N. However,
with an increase of the number of users, an increasing SNR
penalty is incurred, just like in the narrowband case with one
transmit antenna.

The modulation method we propose for N, > 1 lever-
ages existing single-user space—time constellations and allevi-
ates the SNR penalty asymptotically and requires at least (only)
N: + 1 dimensions. Before transmitting, the single-user space—
time symbols of each user are “spread” by a low-dimensional
“spreading matrix.” This can be thought of as a generalization of
the low-rank CDMA signaling method described above to multi-
ple antennas per user. In particular, we present a criterion to de-
sign each user’s low-dimensional spreading matrix that depends
only on the dimensionality of the chosen single-user space—time
constellation. Consequently, different spectral efficiencies can
be attained without changing or redesigning the spreading ma-
trices.

In all our examples we keep the number of dimensions as

LIn this paper, we take a perspective of modulation and detection and thus con-
sider the transmitted signal matrices, originating for example from the Alamouti
scheme [11], as space-time (super-) symbols originating from a constellation
rather than a codeword of a (block-) code.

close as possible to the minimum necessary, so that our mod-
ulation/detection perspective suffices, since such “short” signal
matrices are more amenable to a (super-) symbol interpretation.
Our results on performance analysis, however, are also valid for
large number of dimensions, as in systems where each user may
employ single-user (or other, yet to be designed) space-time
trellis codes [4, 6]. All results are derived for (jointly) optimum
detection, which can be efficiently implemented by closest point
search algorithms for (general) lattices [12]. In particular, the
generalized sphere decoder of [13] was used to obtain some of
the numerical results.

In Section I, we describe a general K user, Ny transmit,
Ny receive antenna symbol-synchronous system model. Based
on our general results on the asymptotic analysis of quadratic re-
ceivers in complex zero-mean Gaussian vectors [9], we analyze,
in Section 111, the optimum multiuser receiver and obtain asymp-
totically tight expressions for the pairwise error probabilities. In
Section IV we interpret these probabilities for the single transmit
(IV-A) and multiple transmit antennas (IV-B) cases in terms of
the minimum dimension needed to achieve full order of diversity
for all users. We also propose new optimized multiuser signal
design strategies that leverage single-user space-time designs in
order to deliver single-user like performance in the high SNR
regime. In Section IV-C, we investigate conditions to re-write
the system model to make it amenable to (generalized) sphere-
decoding. While most of the paper focuses on uplink commu-
nications (users to a central base-station), the system model and
the general analysis of the pairwise error probability can be eas-
ily adapted to downlink (base-station to users) communications
as well, and we do this in Section V. We conclude in Section VI.
Notation: Throughout the paper T denotes transpose and  com-
plex conjugate transpose. The multi-variate circularly symmet-
ric, complex Gaussian distribution with mean-vector m (and co-
variance matrix K) is denoted by CA/(m) (CN (m, K)). EJ[]
denotes the expected value of the expression in brackets. For
any matrix A we write its determinant as |A| and its trace as
tr (A). The product of the non-zero eigenvalues of a matrix A
is denoted by |A|nz. For any vector a, we write its £ norm as
Vata = ||a|. The logarithm to the base b is denoted by log;,
the natural logarithm by In. The Kronecker (or tensor) product
of two matrices is denoted by ®.

Il. MULTI-ANTENNA, MULTIUSER DISCRETE TIME
SYSTEM MODEL

We describe a system model for K users communicating si-
multaneously in a common D—-dimensional signal space.? Each
of the K users employs N; transmit antennas to send infor-
mation symbol-synchronously to an Ng receive antenna array
of the base-station (if perfect synchronization proves difficult
and/or there are multiple fading paths, [14] offers a way to con-
struct a robust basis). Since there are N; transmit antennas
and D dimensions, each user transmits one out of M possible
D x N, complex-valued signal matrices, drawn from the set

S = {skl,skz,...,sm} with Sgm € T2 The signal

2We suggest the term “space-dimension” communication rather than “space—
time” communications. The latter implies a basis of time-translates of a single
waveform (so that D corresponds to the length of the coherence interval in sym-
bol durations), which is restrictive as pointed out in [9].



matrices Sg,, may be thought of as space-time (block-) code-
words where each element of the matrix is drawn from a finite,
QAM-like constellation with Sy, being the kth user’s codebook,
or they may be thought of as super-symbols of some arbitrary
constellation S;,. Hence, the receiver is a decoder or a detector
in the two cases, respectively. We will refer to the matrices Sg,,,
as (super-) symbols or signals or codewords as is appropriate
and use the general term receiver when the terms detector or de-
coder are both applicable. To succinctly write the discrete-time
model for this system we need more definitions.

Let H; denote the ith hypothesis with 1 < i < MK,
Without loss of generality let 4 determine uniquely the K -tuple

(i1,12,...,iK) according to
K
i= Z(ik — 1M 41,
k=1

We let hypothesis H; denote that user k transmits the signal S,
for each k. Define the D x K N; matrix of signals correspond-
ing to hypothesis H; as F; = [S1i,,S2i,,- - - Skix ). Thus the
discrete-time model for the nth receive antenna can be written
as

Yn = szl/Qﬁn + Mn,s (1)
where y,, is the D-dimensional vector of observations, W =
diag{wl, W,y -y wK} ® In. with wy, being the kth user’s av-

erage transmitted symbol energy, hY = [hfn, hl.. ..., hL

is a K N,-dimensional vector of CA(0) distributed fading coef-
ficients with hy,, containing the N, fading coefficients from the
kth user’s transmit antennas to receive antenna n, and n,, is the
D-dimensional CN(0, 021 p) distributed additive noise vector.
To obtain the sufficient statistics for all N receive antennas, we
simply stack the y,, to obtain

Y1
= (IM ® F,~W1/2) h+n, @)
Y e

where hT = [ﬂ], ... ,ﬂ}h] contains the fading coefficients in
“receiver-antenna” order. For the analysis to come, it will be
more convenient to organize the fading coefficients user-wise in
the vector h™ = [h{, .. .,h}{] , Where h] = [h{l, .. .,h{%],
which also requires the introduction of Sy, = Ing ® Skm.
Fz' = [Sli1782i27" '78KiK]' and W = W ® IA&‘ With
these definitions the D N, sufficient statistics can be written as

y = FiW"=h +1. 3)

We denote the correlation matrix of the fading coefficients
as X = E[hhl]. 4, = E [hkh;fc] denotes the kth diagonal
N x N block of 3 and thus is the kth user’s fading correlation
matrix. The signals and fading processes are normalized so that
¥, = wy/o? represents the kth user’s average transmitted sym-
bol energy to noise variance ratio, which in single-user channels
is often denoted as Es /Ny (we set 02 = Ny in plots). We refer
to 7, as the signal-to-noise ratio (SNR) in the text, but caution

the reader that the often-used average received SNR of user &
equals %, /D.

Specifically, each user’s signals are normalized such that their
average energy is unity, i.e.,

E [tr (Slmskm)] —1VE, @

where the expected value is taken over m. The fading coeffi-
cients are normalized such that

T ot
© [n}s pmSkmhe] = N V k. (5)

For equi-probable symbols this condition can be written as

M
Z tr (Ekkslmskm) = MN,. (6)

m=1
In i.i.d. fading the stated conditions lead to X;;, = I.

I1l. OPTIMUM RECEIVER AND ANALYSIS

We consider coherent detection and assume that the fading
coefficients are perfectly known at the receiver. To estimate
the fading coefficients with sufficient accuracy in practice, the
channel coherence time must be long relative to the symbol-
duration 7. In this paper we focus on the ideal coherent case
and express the optimum receiver in terms of a quadratic form
in the observations and the fading coefficients. This formula-
tion allows us to make use of the general results of [9] for the
asymptotically tight analysis of the pairwise error probabilities.

A. Maximum Likelihood Receiver

The likelihood function of the sufficient statistics y given the
fading coefficients h and the true hypothesis H; (i.e. F;, is trans-

mitted) is
)
-

Defining the new (KX Ny + D) N,—dimensional sufficient statistic
z' =¢ '[ hT yT ] and the matrix

exp (—02 Hy — .7-',~W1/2h

7DNe 2D Ne.

o) -

1 1 1
W/zg:’[]:iw RN VYY) )
Qi = l ! ! ] ) (8)

—.7'-1'W1/2 Opng

the jointly optimum coherent receiver ® can be expressed as

®:i=arg min z'Qz=arg min 4§, 9)
1<i<MK 1<i<MK

where §; is defined implicitly. Note that the sufficient statistics z
are CN'(0, K, g, ) distributed, where
Kzz\Hi =K [ZZT]

om o]
oT2FWEE g 2FWEREWRF! 41

(10)



B. Bounds on Symbol and Bit Error Rate

Let £, (P) denote the event that the receiver ® detects user k
erroneously. Then Pr {Ek(é)‘Hi} is the symbol error proba-

bility of the kth user detected by receiver ® conditioned on the
hypothesis H;. It is the probability of the union of the corre-

sponding (M —1) M*¥~1 possible events of the form {6]- < 6,}.
Since the probability of the union is usually not computable,
consider the union upper bound, which is the sum of the pair-

wise error probabilities Pr {6j < 6i}.3 A lower bound is ob-
tained by considering the pairwise probability Pr {53 < (5z~},
where H- corresponds to one of the M — 1 hypotheses H;

that resul7t in an error only for user k£ when compared to H;.
The lower bound can be tightened by choosing H- such that

Pr {63 < 6Z~} is maximized.
The kth user’s symbol error rate (SER) Pr {Ek(cb)} for equi-
probable symbols is then bounded as

Pr{gk(cb)} - M‘KMZPr{Ek(<1>)|H,~} (11)
i=1
< MKA§ ZPr{6j<5,~}, (12)
=1 VjeA;(k)
MK
Pr{é‘k(@)} > MKi:ZIPr{67< 5} (13)

where A;(k) is the set of the (M — 1)M ¥~ indices of hy-
potheses in which the kth user’s symbol differs from its symbol
corresponding to the true hypothesis H;.

To obtain bounds on the average bit error rate (BER) Py, of the
kth user, we introduce the event H; — H; that hypothesis H; is
detected as H; (in the presence of all other hypotheses). Since
the events H; — H; are mutually exclusive, the average bit
error rate can be written as

MK
DY

i=1 VjieA; (k)

bij (k) oo

log, M {H’ - H; }’ (14)

where b;;(k) is the number of erroneously detected bits of
user k, when hypothesis H; is detected as H;. An upper
bound on Py is obtained by upper-bounding the probabili-

ties Pr {H,- — Hj} by Pr {6j < éi}. A lower bound on P
is obtained by lower bounding b;; (k) by one and using the fact
that the inner sum of probabilities is equal to Pr {Ek(d))‘Hi},

which in turn can be lower bounded by Pr {6; < 6,'}, asin (13).

C. Pairwise Error Probabilities

The pairwise error probabilities Pr < 6; < d; ¢ are crucial for
the bounds on the symbol as well as the bit error rate. They can

3Pr {(Sj < §;

ever, the term “pairwise error probability” is customarily used in the literature.

} is only an error probability in a binary hypothesis test. How-

be obtained via the calculation of residues (cf. [9, 10, 15-171]).
However, the residues depend on the eigenvalues of C;; =
K.,z 5, (Q; — Q;) and do not in general give any insight into the
dependencies on the system parameters of interest, such as the
signal and fading correlations. A remedy for this is offered by
the asymptotic (high SNR) analysis of the pairwise error prob-
abilities in [9], where we examined the asymptotic analysis of
quadratic receivers in Rayleigh fading channels and found for-
mulas for the asymptotic error-probabilities that require “only”
the evaluation of the asymptotic eigenvalues of C;;. The struc-
ture of these asymptotic eigenvalues follows the structure ob-
served in [9]: half of the non-zero eigenvalues are positive and
linear in o2, and the other half converge to minus unity.

We state next the pairwise error probabilities for finite SNR
in the following proposition, which can be easily obtained from,
for example, [9].

Proposition 1 (Expression for Pr {6]- < di})
L
Let {)\,}l . be the distinct non-zero eigenvalues of C;; =

L Ly,
K., (Q; — Q) with multiplicities { ’”}1—1' and let {A,}

be negative and {/\,}L

=Ly

positive, respectively. Then
1
Pr {6J < (52} =

L
- 1 -1
—ZRQS > Sk=~+ | -
( iz (%) Ak)

The residue of a function f(s) in a pole a of multiplicity m
can be calculated as

m—1

(m 1)1 I gem—1

Res (f(s), a) = [(s — a)mf(s)} .
For rational functions the limit is trivial, because the poles can-
cel with the (s — a)™ terms.

Note that the calculation of the residues is numerically un-
stable for high-multiplicities of eigenvalues, so that for these
cases one must use, for example, a saddle point integration tech-
nique [18].

In [9] we find the asymptotic eigenvalues of C;; to in turn

obtain the asymptotic expression for Pr4éd; < d;¢ for the

single-user case. Here, we consider the general multiuser setting
and moreover also find the finite-SNR eigenvalues analytically,
simplifying numerical calculations ( [10] presents them for the
single-user case). To this end, we introduce some assumptions
and notation. We assume that the users are ordered such that
users 1,2,. .., e;; suffer from an error, if the receiver would er-
roneously decide for hypothesis H; when hypothesis H; is true.
To avoid a complication in notation, we do not denote this user-
ordering with any special symbols, but assume it implicitly. An-
other notational convenience is to split up the transmitted signal
into two parts, the first containing the signals of the e;; users
that suffer from an error relative to H;, and the second part con-
taining the e;; = K — e;; signals corresponding to the correctly



detected users, i.e.,

where c signifies the common part in the two signals F; and F';.
The matrices F; and F5 are D x e;; Ny and F© is D x &;; Nr.
Similarly, we define 73, F73, and F* (whose sizes are multi-
plied by N, when compared to F;, F5, and F, respectively).
Furthermore, we define .. and W_. asthe e;; N x e;; N upper-
left block of 3 and W, respectively (recall N = N Ng). Xee
and ¥.. (W..) are the corresponding upper- and lower-right
blocks of X (W). With these definitions we state the eigen-
values of C;; in the following proposition.
Proposition 2 (Eigenvalues of C;;)
Let 75, = F; — F; aind let {pl}lzl be the non-zero
eigenvalues of My; = W/ W/F5 F5,. Then Cy; =
-

K.,z m, (Qj — Q;) has 27 non-zero eigenvalues {)\z} ’
can be calculated as

L 402
N4 = s [ 1F 41+ —
1, 147 202( F + p ),

where the negative sign corresponds to the ith and the positive
sign to the (I 4 7)th eigenvalue. Furthermore we have that

o forsmall o, the non-zero eigenvalues of C;; = K, 5, (Q; —
Q;) are arbitrarily close to the 7 non-zero eigenvalues of
oTIWE EeeWZf.’Fjiffji and minus unity with multiplicity 7.
o T = 1Ny, if the fading correlation matrix X has full rank K N
(as is assumed in this paper except in the section on the downlink
model), and we define r as the rank of F; — F;.

that
1

Proof: In contrast to our presentation in [19], we do not re-
quire the invertability of the fading covariance matrix X, thereby
simplifying the treatment of the downlink model considered
later. Note also, that [9, Appendix A] makes use of the classic
result of [20] (repeated in [21, Appendix B]), where the char-
acteristic function of a Hermitian quadratic form in linearly in-
dependent complex Gaussian random variables is derived. For
zero-mean and linearly dependent random variables, the charac-
teristic function of the quadratic form can be easily shown to be
the same as derived in [20, 21].

The calculation of the eigenvalues mainly involves basic, but
at times tedious, algebra with block-partitioned matrices, a sim-
ilarity transformation, and the application of a determinantal
equality. We block-partition the matrices Q;, Q;, and K, g,
as given in (8) and (10) in 3 x 3 blocks such that the diagonal
blocks have sizes e;; N x e;; N, €;; N x €;; N, and DN, x DN,
(recall N = N;N; and &;; = K — e;;). Then it is easy to
express (Q; — Q;) in terms of this partitioning and after some
tedious algebra one can obtain C;;. Making use of

y/ Vo £t
.'sz 22:)4; 2}.1' =
1 1 1 1
FWES WEF + FWESIWEFT +
FWES WEF! + FoWES WeFH,
to simplify the (3, 1)-block of C;;, we can write C;; as

Ci = o 2ABC + D, (16)

where
.
A = .= 1 , (17)
FWES,  + FWES,,
B = Wk (F;-7F), (18)
C = [}';.wifg FW —IDNR], (19)
Oci; N 0 0
D = 0 OéijN 0 . (20)

—(F;-F;)WE 0 0D,

Since the eigenvalues of C;; are the same as the eigenvalues

of éij = TC;;T~! for any invertible matrix T, we are free to
choose

T L 0 o
T = ey Leyn 0 , (21
| —FW2 —-FW” Ipn,
T L 0 0 -
= Y. L,y O , (22)
B [T_l] 31 -’FCWi/CZ IDNR

where [T-1], = F;W’ + F*W2S... Defining F3, =
F; — F;, we can calculate (AJz-j as given on top of the following
page.

Since the second (block-) column of (AJZ-J- is identical to zero
and we are only interested in the non-zero eigenvalues of Cj;,
we can expunge this column and the corresponding row and find
the eigenvalues of

2 Yo e e YAV
C.—|° S WEFFLIW2
]

1
e Y
—FiW2

~o B W FS
ODNR

The eigenvalues of C are easily found by applying a determi-
nantal equality [22, Section 0.8.5], i.e.,

€y = M| = |\ [ 2B Wi E W - (29)

AL, — 0 2E WEFH (AT FL Wk,

T
Let {pl} be the 7 non-zero eigenvalues of M;; =
=1

Eeewz/f}'jﬁfjiwifg (since the non-zero eigenvalues of any
matrix product XY equal those of YX, we may write

T
{pl }l ) in terms of several different matrix products [22, Theo-

27 ~
rem 1.3.20]). Then the 27 non-zero eigenvalues {/\z }z ’ of C;;
=1
(and thus C;;) are found as the solutions of a standard quadratic

equation and are given in the proposition. The asymptotic eigen-
values of C;; are easily found by inserting the series expansion

for /1 + %2 for small .
7
1=

27
tinct, so that the eigenvalues { \; are not necessarily dis-

1=1
tinct. Furthermore, if the fading covariance matrix X has full

Note that the eigenvalues { pl} are not necessarily dis-
1
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g Eeeweezfji .'sz-Wef

C,’j =
e ],‘,1/2

_f]z ee

rank KN (thus X.. has full rank e;; V), the rank of M;; is equal
to the rank of F3; = F; — Fj, which in turn equals Ny times
the rank of F5; = F5 — F;, because there exists a permutation
matrix P such that 75, P = Iy, ® F5,; and the latter matrix has
rank r Na, where r is the rank of F'; [23, Theorem 4.2.15]. W

It easily follows from the proposition that the eigenvalues
of C;; are the same as the eigenvalues of C;; and thus Pr {6,- <

éi} = Pr{éi < (Sj}, which can be exploited to simplify
numeric evaluations. Even for the single-user case the above
proposition allows us to slightly generalize the results of [9], in
which the asymptotic eigenvalues (and pairwise error probabil-
ity) were only obtained under the assumption of full rank F ;.
With the asymptotic eigenvalues of Proposition 2 and the
results of [9], one easily finds the asymptotic pairwise error-
probability given in the next proposition. For ease of notation,
we introduce |X|nz as the product of the non-zero eigenvalues
of X.
Proposition 3 (Asymptotic Pairwise Error Probability)
For coherent detection the pairwise error probability

Pr {6j < éi} of the optimum receiver ® approaches arbitrarily
closely
o2 M (27‘]\61—1)

Pra{(Sj < (51'} = - T TR
WEEWEFF,

NZ
as o goes to zero.

D. Asymptotic Single-User Like Performance

The asymptotic multiuser efficiency of the kth user is a well
known asymptotic measure of performance of a multiuser re-
ceiver [24]. It is the fraction of the energy required by a single-
user (without interference) to attain asymptotically the same er-
ror rate as the kth user in a multiuser channel. For its calcula-
tion, one usually requires the exact asymptotic error rate of the
kth user and the single user, which are often hard to obtain in
fading channels for M-ary modulation with A/ > 2. Partic-
ularly for space-time single-user constellations, exact expres-
sions for the symbol or bit error rate are often intractable and
only bounds on the error rate are available. On the other hand,
as we have seen above, the union bound on the kth user’s sym-
bol error rate is easily obtained, as is of course the union bound
on the single-user error rate. If these converge, the multiuser re-
ceiver achieves asymptotic single-user like performance, a for-
mal definition of which follows.

Definition 1 (Asymptotic Single-User Like Performance) Let

M M
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be the union bound on the symbol error rate of a single user
with average energy w and fading covariance X, employing
the same M -ary modulation as the kth user in a K -user channel.
The multiuser receiver ® achieves asymptotic single-user like
performance, if the union bound on Pr {Ek(tﬁ)} converges to

PP aso — Oforeach k, i.e., if
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where A;(k) is the set of the (M — 1)M¥~1 indices of hy-
potheses in which the kth user’s symbol differs from its symbol
corresponding to the true hypothesis H;.

When binary modulation is employed, asymptotic single-user
like performance corresponds to each user achieving an asymp-
totic efficiency of 1. For M > 2 it amounts to saying that
asymptotically the SER of the kth user in a K-user channel is
bounded by the same union bound as a single-user with the same
energy and fading covariance.

IV. INTERPRETATIONS AND SIGNAL DESIGNS FOR UPLINK

COMMUNICATIONS

The asymptotic result of the previous section encompasses
many special cases of interest, some of which we explore in this
section. For example, we specialize to Ny = 1 in Section IV-
A and gain some insights into this case, which help understand
the multiple transmit antenna case. In Section I\V-B we consider
multiple transmit antennas but specialize to K = 1 first, before
we discuss the general K-user, Ny-antenna problem. We focus
on giving specific results and interpretations for the asymptotic
pairwise error probabilities and assume that it is understood that
the corresponding optimum receiver can be obtained by apply-
ing the specifics to ® as defined above.

A. One Transmit-Antenna per User

We distinguish between linear versus general M -ary/block-
coded modulation. In linear modulation, each user modulates
its signature sequence by a symbol drawn from a fixed alphabet,
like a QAM or PSK constellation. In M-ary or block-coded
modulation the kth user’s mth signal vector may be a block-
code over a finite alphabet or a super-symbol drawn from an
arbitrary constellation.

A.1 Linear Modulation — Multiuser Detection and CDMA Sig-
nature Sequence Design

If we specialize F; = FB;, where B; isa K x K diagonal
matrix containing the users’ constellation symbols, the system
model of (1) corresponds to a synchronous code division mul-
tiple access (CDMA) model. Note that we do not make any



assumptions on the number of dimensions D, so that the im-
portant case of overloaded systems with D < K are included in
the analysis. Inthe multiuser/CDMA detection literature usually
only D > K is considered [24, 25].

For the corollary, we define F* to be made up from the
columns (signatures sequences) of the e;; users that suffer from
an error. B;, Bj are diagonal matrices that contain the informa-
tion symbols of these users.

Corollary 1: (Asymptotic Pairwise Error Probability for Co-

herent CDMA Detection)
Assuming ¥ = Ixp,* and that any subset of D columns of
F span the D-dimensional signal space, we have for e;; < D
that the pairwise error probability of the optimum detector &
approaches arbitrarily closely
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Consider the case D = 1 and note that as the number of users
increases, the aggregate spectral efficiency K log, M increases
linearly since all the users employ the same “signature signal”
which, without being wasteful of bandwidth, can be taken to be
the minimum bandwidth sinc pulse or a raised cosine pulse with
sufficient roll-off to ensure robustness to timing jitter and user
quasi-synchronism. The second bound of Corollary 1 implies
that there is no loss of diversity order compared to a single-user
channel for any of the users. As an aside, we note here that
for BPSK modulation this bound specializes to the one given
in [8]. Without any bandwidth expansion compared to a single-
user channel, multiple users can be accommodated with no loss
of diversity order. There would be, however, a loss of energy
efficiency in that each user would have to transmit at a somewhat
higher power to achieve the performance it would have in the
absence of other users, and this loss would increase with the
number of users (see Figure 1).

Consider the case D = 2 with aggregate spectral efficiency
of & log, M bits/dimension that also linearly increases with an
increase in the number of users albeit at half the rate of the
narrowband channel. In this case, it is easy to design two-
dimensional signature sequences that ensure that any two users
are assigned linearly independent signals so that the probability
of error events involving more than one user decays with a diver-
sity order of two. Consequently, each user not only achieves full
order of diversity but even the above-mentioned loss of asymp-
totic effective energy relative to single-user performance is elim-
inated. In summary, with a bandwidth expansion by a factor of
two relative to a single-user channel, an increasing number of

41n this and some of the following corollaries, the assumption of i.i.d. fading
is only made to enable a compact presentation of the results.

users can be accommodated and received with a reliability that
is asymptotically equivalent to “single-user like” performance
for every user, in the sense that the upper bound on the multiuser
BER converges to the single-user upper bound. We generalize
this interpretation to any D > 1 in the following corollary.

Corollary 2: (Asymptotic single-user like performance for
one transmit antenna) For D > 1 and F such that any subset of
D columns span the D-dimensional signal space, the optimum
receiver ® achieves asymptotic single-user like performance.

Proof: For e;; = 1 (only one user is detected erro-
neously) we see from Corollary 1 that the corresponding pair-
wise error probabilities are independent of any of the interfering
K —1 users’ quantities. In other words, the pairwise error proba-
bilities with e;; = 1 of the kth user in a K -user channel coincide
with the pairwise error probabilities of the single-user channel.
Moreover, the pairwise error probabilities with e;; > 1 decay at
least like o™ (have diversity order 2V;) and consequently can
be asymptotically neglected in the upper bound on the kth user’s
SER (11). Thus the requirements of Definition 1 are easily seen
to be fulfilled. [ ]

Note that for BPSK signaling (M = 2), D > K (and con-
sequently the signal correlation matrix FF has full rank K),
this result specializes to the well-known finding of [26] that the
asymptotic efficiency of optimally detected CDMA in Rayleigh
fading is unity (see also [24, pg. 206]). The much stronger result
of Corollary 2 however is that that one can achieve an asymp-
totic efficiency of one with only two spreading dimensions, in-
dependent of the number of users. We next address the signal
design question.

Signal Design To obtain spreading signals for D > 1 di-
mensions we suggest a signal design algorithm that minimizes
the maximum of a per-user asymptotic performance criterion
over all users. This criterion is derived from the upper bound
on the kth user’s asymptotic bit error rate, which in turn results

from (14) by upper-bounding Pr {H, — Hj} by Pr‘“‘{(ij < (Si}
for small o, i.e.,
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where c¢4(k) contains all the coefficients with diversity or-
der dN; in the upper bound on the kth user’s BER. The sig-
nal design algorithm must minimize max; <<k c2(k). While
the terms ¢q4(k) with d > 1 asymptotically do not influence the
BER, we conjecture that by minimizing ¢ = maxi<x<k c2(k),
the convergence of the upper-bound to the lower-bound is im-
proved, so that the BER of a system employing optimized sig-
nals is improved at finite 2. Note that asymptotically the BER
does not depend on the S|gnals (nor the dimensionality D) pro-
vided that at least any two signature sequences are linearly in-
dependent (and all signature sequences are normalized to have
energy one).

Evaluating c2 (k) is cumbersome (particularly for large num-
ber of users) and depends on the user’s symbol alphabet



(through M in (25)). In other words, if the user’s constellation
size (M) is increased to increase spectral efficiency, the design
criterion changes. This motivates the introduction of a simpli-
fied design criterion, which can be efficiently computed.

For binary modulation the criterion can be simplified by re-
alizing that (B5 — B;) W.. (B§ — B;)T = 4W._, independent
of (4, ), which reduces the complexity of evaluating c» (k). For
M -ary modulation, the signals designed for the binary case still
fulfill the criterion that any D-signals span the D-dimensional
signal space, so that these still perform well.

For D = 2 dimensions, we further propose to simplify the
algorithm by only considering error events that affect two users
(with BPSK) so that we minimize

K
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where pr; = f,Ifl and f;, is the kth column of F, i.e. the

kth user’s signature sequence. In our examples, we could not
tell a difference in performance between signature sequences
that were designed to minimize this simplified criterion com-
pared to signature sequences that minimize max;<x<x c2(k).
This is not too surprising, because for the e;; > 2 error events
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by Minkowski’s inequality [22, Theorem 7.8.8].  Since
‘wlflf;r + wkfkf];r‘ = wpw (1 — |pkl|2) and minimizing (27)
tends to maximize these terms, the simplified criterion gives es-
sentially the same results as the original one. Note that any two
columns of a signature sequence matrix F that is optimized with
respect to the simplified criterion will be linearly independent,
and thus single-user like performance is guaranteed asymptot-
ically, independent of the specific modulation scheme. Conse-
quently, the same spreading sequences can be used for various
constellations and thus spectral efficiencies.

The simplified criterion also gives some insight into the ques-
tion, as to what kind of signal sets are optimal: For equal-energy
users, cz (k) is equalized for all users. For small number of users,
this leads to the absolute values of the cross-correlations pg; be-
ing equalized. For example, the signature sequences designed
for K = 4 equal-energy users have identical absolute values
of cross-correlations of 0.58. For unequal-energies, the nu-
merical optimization returns signature sequences whose abso-
lute values of cross-correlations among the high-energy users
are higher than among the low-energy users. However, in our

numerical evaluations, the performance of signature sequences
designed for unequal energies and those designed for equal ener-
gies is indistinguishable from each other over the complete SNR
range, whether employed in equal or unequal energy situations.®
Henceforth, we consider equal-energy situations only.

For D > 2, minimizing ¢ = maxi<k<x c2(k) corresponds to
minimizing ¢, cf. (27), provided that at least any three columns
of F are linearly independent. However, minimizing (27) does
not automatically ensure that any three or even D columns of F
are linearly independent. Thus the performance of the result-
ing signal sets can be (slightly) improved, if one adds a cost
function to ¢o (k) that ensures that any D columns of F that in-
clude f;, span the signal space. The obvious choice for the cost

function is A ‘FWFT‘ NR, where e;; = D and the sum
is over all possible F< that include f,. A is a weighting factor,
that we chose in the order of 10~5. However, we will argue
using some examples below, that using more than D = 2 di-
mensions is not advantageous, when the total spectral efficiency
remains fixed. Thus we mainly concentrate on D = 2, which is
already sufficient to ensure asymptotic single-user like perfor-
mance, cf. Corollary 2.

For the numerical optimization involved we relied on the Mat-
lab Optimization Toolbox, whose algorithm for this minimax
problem is based on standard Sequential Quadratic Program-
ming (SQP). The optimization was repeated several times with
a different random initialization for each run to decrease the
chance of obtaining only a local minimum (in practice, the solu-
tions returned almost always identical minima). We state some
of the spreading matrices used in the examples in Appendix A.

Figure 2 shows the performance of multiuser systems em-
ploying optimized signature sequences in D = 2 dimensions
(in all plots plain line styles give simulation results and lines
with a triangle upper bounds). The equal-energy users (W = I)
transmit spreaded BPSK symbols from one transmit antenna to
one receive antenna in i.i.d. fading (3 = I). The design algo-
rithm yielded signal sets for which the users’ performances are
identical for finite SNR, so that we plot the upper bound and
simulated BER of one user only. We see that asymptotically
single-user performance is achieved. However, for increasing
number of users the asymptote is reached for increasing SNR
only.

Figure 3 shows the performance of the signature sequences
for K = 10 users of the previous plot in comparison with nar-
rowband communications (D = 1) and a single user in one di-
mension with a spectral efficiency of 5 bits/dimension (thus the
single user employs 32-QAM). As before we choose W = Ix
and X = I for one transmit and receive antenna. The advan-
tage of the CDMA system over narrowband signaling at a BER
of 10~2 is over 15 dB when compared to the K = 10 narrow-
band system and about 4 dB when compared to the K = 5 nar-
rowband system, which has the same spectral efficiency as the
K =10, D = 2 CDMA system. While for a BER 102 the gap
to the single user employing 32-QAM is about 1 dB, the sin-
gle user is asymptotically out-performed by roughly 6 dB. Note
that the single-user 32-QAM performance is what one would get
for orthogonal signaling among multiple users, leading also to a

5We considered up to K = 8 user with a energy disparity of up to 10 dB.



total spectral efficiency of 5 bits/dimension.

Figure 4 displays the performance of the same systems as
Figure 3 (in terms of K, D) but the receiver uses Ny = 2 re-
ceive antennas. Since for K > 4 the signal sets that the design
procedure returns do not have equal absolute values of cross-
correlations (although c» (k) is equalized among the users), the
CDMA signature sequences depend on the number of receive
antennas and are specifically designed for N; = 2. The per-
formance of all systems improves dramatically by the additional
antenna. However, relatively to one receive antenna, the single-
user employing 32-QAM modulation cannot profit as much and
is now out-performed by both, the narrowband K = 5 user sys-
tem and the K = 10 user CDMA system. Thus, high spectral
efficiencies seem to be more (energy-) efficiently reached by a
CDMA system than by orthogonal users employing large con-
stellations.

Figure 5 explores the effect of increasing D, the number
of dimensions, for a fixed number of users. As one might
expect, doubling the number of dimensions from D = 2 to
D = 4 for k = 10 users improves the performance for low
SNR considerably. However, the spectral efficiency drops from
5 bits/dimension to 2.5 bits/dimension. The same spectral ef-
ficiency is achieved by K = 5 users in D = 2 dimen-
sions. The number of users is of course not necessarily a de-
sign parameter. However, the desired spectral efficiency usu-
ally is, and for say 10 users using BPSK a spectral efficiency of
2.5 bits/dimension can be achieved either by all 10 users signal-
ing in a common 4-dimensional signal space or two sets of five
users signaling in two orthogonal 2-dimensional spaces. From
the figure, we see that the latter choice gives a performance that
is indistinguishable from the 10 user system in 4 dimensions.
Moreover, since the complexity of joint detection for 5 users is
by a factor of 25 = 32 lower than detecting K = 10 users, there
seems to be no point in increasing the number of dimensions be-
yond D = 2, the minimum to achieve single-user performance.
Note again that increasing D does not benefit SER performance
asymptotically, because D = 2 is sufficient to ensure single-user
like performance, cf. Corollary 2.

Figure 6 gives an example of asymptotic “single-user like”
performance. For the plot, each of the three users employs the
most energy efficient 8-QAM constellation. For comparison,
the BER of a single user also using 8-QAM is given in terms
of bounds and simulations. Note that the upper bound on the
D = 2, K = 3 multiuser system converges to the upper bound
on the single-user’s BER, as predicted by the analysis above.
Moreover, the simulated BERs are also close. On the other
hand, at a BER of 1072, the gap to narrowband signaling is
roughly 5 dB.

A.2 M-ary or Block Coded Modulation

In this section, we interpret the kth D x 1 column s;, of F; as
a super-symbol of user £ which can be thought of as belonging
to some dense lattice (or more generally to an arbitrary non-
lattice constellation), whose individual scalar elements may be
drawn from a regular QAM-like alphabet or may be arbitrary
complex numbers, not necessarily restricted to be part of a finite
alphabet. When the “codeword” interpretation is appropriate,
the receiver may be thought of as a decoder.

We rewrite the general expression of the asymptotic pairwise
error probability from Proposition 3.

Corollary 3: (Asymptotic Pairwise Error Probability for Co-
herent Decoding)
Assuming ¥ = Igpn, and that (F5 —F;) has rank r <
min (D, e), the pairwise error probability of the optimum de-
coder ® approaches arbitrarily closely

2rNg [ 2rMr—1
o ()

Pr“{5j<(5i} =
e )t (pe oy [
‘Wee (F5 —F5)' (F; ~F3)|

as o goes to zero.

Let us reconcile this result for the fictitious case where all
K users cooperate so that we have an equivalent single-user,
K-transmit, N, -receive antenna channel. In this case, the max-
imum diversity order for a given K could be achieved if »r =
K = e and the proposition corresponds to the well-known rank
criterion [4,6], for which of course we need D > K. By the use
of space—time codes such as the orthogonal designs of [5] or the
algebraic codes of [27] which satisfy this rank criterion, one can
achieve full diversity order (namely K Ng).

However, the multiuser rank criterion is very different from
the single-user criterion because while in the single-user channel
with K transmit antennas, signals transmitted over the different
transmit antennas can be dependent (i.e., a super-information
symbol is encoded into a D x N; matrix), the columns of this
matrix in the multiuser channel arise from the independent trans-
mission of vectors of length D each from the K different users.
This makes the problems of modulation and coding in some
sense more challenging for multiuser channels than they are for
single-user space—time communications, because at this point it
is not even clear that multiuser codes exist that guarantee a diver-
sity order of Nze;;, when e;; users’ are detected erroneously (for
this the difference of the code matrices (F; — F5) must have
full rank).

B. Multiple Transmit-Antennas per User

The classical single-user multiple transmit antenna space—
time coding analysis also profits from our general analysis: in
contrast to the earlier, Chernoff bound based approaches, our
analysis provides asymptotically tight expressions for the pair-
wise error probability and considers possibly correlated fading
(as does [9, 10]). Finally, for the multi-transmit antenna, mul-
tiuser space time channel, we propose a signal design algorithm
that ensures single-user like performance asymptotically.

B.1 One User
In this case one user transmits a D x Np signal ma-

trix {Sm with average energy w. X simplifies to the

N x N fadri%@lcorrelation matrix associated with all the anten-
nas. Recalling that we defined S,,, = Ing ® S, Proposition 3
easily simplifies to the following corollary.

Corollary 4: (Asymptotic Pairwise Error Probability for Sin-
gle User Reception)



Assuming that (S; — S;) has rank » < min(D, N;), the pair-
wise error probability of the optimum receiver ® approaches ar-
bitrarily closely
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as o goes to zero.

Note that in addition to revealing the rank and determinant
criterion of [4, 6] for i.i.d. fading, this formula is is also asymp-
totically tight and considers the more general case of corre-
lated fading (cf. [10]). As a consequence of the asymptotic
tightness, asymptotic lower bounds on symbol and bit error
rates can be obtained. For correlated fading and full-diversity
space—time codes, the fading correlation does not affect the

determinant criterion, because ‘E (§; — St (8; - 8i)

1= (S —S)T (S, - Si)‘NR Consequently, full-diversity
space-time codes that were optimized for i.i.d. are also asymp-
totically optimal for correlated fading. The analysis presented
here also strengthens our result in [9] by providing exact ex-
pressions for the asymptotic pairwise error probabilities in case
S; — S; is low rank.

B.2 Multiple Users

The observations we made for the various special cases al-
low us to finally draw some conclusions about Proposition 3 for
multiuser communication when each user employs Ny transmit
antennas. Interestingly, if every user employs a full-diversity
space-time code/constellation (requiring D > Ny) in the same
D dimensional signal space, the optimum receiver still achieves
asymptotically a diversity order of N = N;N;,% i.e., no loss in
diversity order occurs when compared to the single-user case,
without any bandwidth expansion (this was also realized inde-
pendently in [27] by using the weaker Chernoff analysis that
does not yield asymptotically tight bounds on pairwise error
rates). However, a loss in energy-efficiency occurs when more
users are added. This behavior mirrors exactly the N, = 1,
D = 1 narrowband case discussed above. We saw that we
could improve on this behavior by expanding the signal space
to D = 2 dimensions to design signals such that the optimum
receiver achieves single-user like performance asymptotically.
We propose to generalize this idea to the multiple transmit an-
tenna case by signaling according to

By, 0 -0

F=F| " B . (29
: .0
0 0 Bxki,

where F isa D x K Dy, fixed “signature” matrix and By;, are
Dgy x Ny single-user full-diversity symbol matrices. The lat-
ter can originate from, for example, the Alamouti scheme [11],

SRecall that F5; = [Sijy = Stirse-s Seijiny; — Seijicy; | and for
full-diversity space time codes Sy;, — S, has full rank N for k < e;;
so that .T;i is guaranteed to have at I%ast rank N.

orthogonal designs [5], or the algebraic codes of [28, 29], the
universal space—time codes [30], or any other single-user space—
time constellation that guarantees full transmit antenna diversity.
If the matrix F is suitably chosen, every user can achieve asymp-
totically single-user like performance. Since the necessary in-
crease in signal space dimensions D will turn out to be indepen-
dent of the number of users (as for N, = 1 above), the aggre-
gate spectral efficiency can be increased by adding users, with
no loss in energy-efficiency for sufficiently high SNR (increas-
ing with the number of users). For example, if each user em-
ploys N, transmit antennas and a single-user space—time code
with the minimum required dimensions N (cf. [4, 6, 9]), our
proposed modulation scheme requires just one more dimension
to achieve asymptotic single-user like performance. Denoting
the Dg, columns of F that correspond to user k as Fy, (so
that F = [F,F2,...,Fk]), we state our claim precisely in
the following Corollary.

Corollary 5: (Asymptotic single-user like performance for
Ny > 1) If every user employs a full-diversity constella-

tion {Bkm}le and {Fk}; is such that

« FIF, =1Ip, Vk,

« any compound matrix [F,,,, F,], m # n has rank greater than
orequal to 2Dgy — Ny + 1,

then the optimum receiver ® achieves asymptotic single-user
like performance.

Proof: To simplify notation, we introduce Fj = In, Q Fy,
and Bim = INh Q Brm.

Consider the asymptotic pairwise error probabilities with
e;; = 1 first. Similarly to the proof of Corollary 2, we see
that these probabilities are independent of interfering users (just
insert F5, = F (B1j, — Bui,) etc. into Proposition 3. Fur-
thermore, they coincide with the pairwise error probabilities of
a single user only transmitting B1;, (without spreading) because
for e;; = 1 we have

FilF5 = (INR ® (Byj, — Buy,)' FL)

(Il\fh ® Fr (Byj, — Buiy) )
= Im® ((Bm —By;,) FIF, (B, - Bul)) ;

where we applied some basic properties of the Kronecker prod-
uct. Obviously, the last expression coincides with the usual
single-user channel expression for FLFk =1

Now consider the pairwise error probabilities that correspond
to e;; > 2. By arank inequality ( [22, Section 0.4.5]), one can
easily show that for e;; = 2 the matrix

Blj1 - Blz’1 0

fji - [fhfz] 0 B2j2 - Bziz

(29)
has got rank greater than or equal to (N. + 1)N;. Thus the
diversity order of all pairwise error probabilities corresponding
to error events with e;; > 2 is at least (N + 1)V, and con-
sequently these probabilities can be asymptotically neglected in
the upper bound (11) when compared to the single-user pairwise
error probabilities whose diversity order is Ny N;. Consequently



the requirements of Definition 1 are easily seen to be fulfilled.
|

The key-point of the Corollary is that D = 2Dg, — Ny + 1
dimensions are sufficient to achieve asymptotic single-user like
performance, which is again independent of the number of users.
For example, when the single-user constellation requires only
the minimum dimensions Dy, = N, only one more dimen-
sion is required for the multiuser channel. In our signal de-
sigh we concentrate on D = 2Dg, — N; + 1, because by in-
creasing the number of dimensions the performance is—at least
asymptotically—not enhanced.

The design algorithm discussed in Section IV-A.1 can be
adapted to design an optimized signature matrix F. As be-
fore (25), we expand the kth user’s BER into terms correspond-
ing to the diversity order. Since the single-user space-time sym-
bols By, are assumed to be drawn from a full transmit diversity
achieving constellation, the minimum diversity order of any er-
ror event for any user is Ny Ng. We conjecture that by minimiz-
ing the maximum of the coefficients ca4+1(k) (1 < k < K),
corresponding to diversity order (N, + 1)N, the convergence
to the upper bound on the single-user’s error rate is improved.’
However, the computational complexity of this criterion is quite
high, since on the order of M ¥ terms have to be evaluated to ob-
tain the ey, 11 (k). Therefore, we suggest to generate the spread-

K

ing matrices {Fk}k ) by minimizing the simplified criterion

¢ = max (30)

K M
E:‘FkFL—kFUF{ ,
1<k<K 4=

I#k

under the constraint that each matrix F; has orthonormal
columns. Note that the criterion (30) is easily evaluated, because
it is independent of the specific single-user space—time constel-
lation. It also ensures in a “fair” way that all pairs [F;, F],
I # k, fulfill the rank criterion, which is necessary (and suffi-
cient) to achieve single-user like performance.

Since we want to constrain our signals to have orthonor-
mal columns, a numerical optimization in the usual Euclidian
space would have to incorporate these constraints. The op-
timization can be performed unconstrained in the Grassmann
manifold G(Dgy, D), the space of all Dg,-dimensional sub-
spaces of C”. A parameterization of G(Dsy, D) which employs
2Ds,D — D2, real parameters is explicitly detailed in [31] fol-
lowing, for example, [32]. However, with D? real parameters
we can over-parameterize G(Dsy, D) and obtain a somewhat
simpler parameterization (cf. [31,32]).8 The latter parameteriza-
tion is built by expressing any rectangular matrix U e ¢ P> Psv
as the product of a square D x D unitary matrix and a fixed rect-
angular D x Dgy matrix W (typically W is taken to be the first
Dgy columns of Ip). Any of the D x D unitary matrices can in
turn be expressed as the product of a real diagonal matrix ¢ and
“simple” unitary matrices V?4(¢,,,6,,) (complex Givens ro-
tation matrices, each parameterized by two angular parameters

7Note that if the matrices [Fm, Fr], m # n, fulfill the rank criterion and each
F, has orthonormal columns the terms ¢, (k) do not depend asymptotically
on the specific spreading matrices.

8 A parameterization in the usual Euclidian space would require 2D Dgy real
parameters. For the “minimal” choices Dsy = Nr and D = Dsy + 1 more
than for the over-parameterization of G(Dsuy, D).

and two indices). In formulas, we have

D—1 p+1

U=2 H H VP (g, 0pq) | W,

p=1¢=D

(1)

where we define the matrix products to be left-sided and the
second product decreases its index by minus unity for each mul-
tiplication. The k, ! element of VP4(¢,,, 0,,) is defined as

[qu]k,l (¢pq ) 6?pq) =

1 k=1,k#p,q
COS(¢pg) k=1,k=p,q
—sin(¢pq) exp(—jbpy) k=p,l=¢q
Sin(¢pq) eXp(jgpq) k=ql=p

0 else

Each user’s spreading matrix F, is parameterized in this way
and thus the following numerical optimization can be performed
without constraints. As before we used standard methods from
the Matlab Optimization Toolbox to perform the optimization.
We give spreading matrices for K = 6 users with Ny = 2 trans-
mit antennas each in Appendix A.

For our examples, we choose the constituent space—time sym-
bols B;, according to Alamouti’s scheme [11] for N, = 2
transmit antennas. We designed spreading matrices for up to
three equal-energy users in the minimum number of dimensions
(D = 3) that guarantee single-user like performance asymptoti-
cally. From Figure 7 we see that the simulated BER for a single-
user employing 4-PSK symbols in the Alamouti scheme is close
to its upper bound, to which the upper bounds on the multiuser
systems (K = 2, K = 3) converge. The K = 3 user system
in which each user employs 4-PSK symbols has a total spec-
tral efficiency of 4 bits/dimension (three users each transmitting
2 bits from each of 2 antennas in 3 dimensions). At a BER of
1073, the optimum detector can detect the three users within
1 dB of the single-user’s BER (while achieving twice the spec-
tral efficiency). If one would try to achieve a spectral efficiency
of 4 bits/dimension with orthogonal users, each user would have
to employ 16-QAM modulation. From the figure we see that at
a BER of 103 there is roughly a 3 dB gap between the K = 3
spread-matrix design and the orthogonal system. Obviously, this
comparison does not take into account any complexity or im-
plementational issues (the optimum multiuser detector does not
simplify for the Alamouti scheme, in contrast to the single-user
detector [11]). On the other hand, for larger systems with more
users and/or antennas, the gap between spread-matrix and or-
thogonal communications is expected to grow.

Figure 8 confirms this growing gap for (K =6, Ny =2, D =
3)and (K = &, N, =1, D = 2). Using QPSK (in conjunction
with the Alamouti scheme for N, = 2) a total spectral efficiency
of 8 bits/dimension is obtained with low-dimensional spreading.
To obtain the same spectral efficiency with orthogonal users,
each user would have to employ 256-QAM. Even for moderate
Ey /Ny, when the BER of the spread systems have not yet con-
verged to the corresponding single-user BER (of a single-user
employing QPSK), the performance gain of low-dimensional
spreading is substantial.



C. Sphere Decoding

The optimum multiuser receiver as given in (9) has a com-
plexity of MX, i.e., it is exponential in the number of users.
If the information symbols are drawn from a lattice (like in
PAM or QAM), the sphere-decoder [33] can be used to find the
maximume-likelihood solution efficiently (cf. the recent semi-
tutorial [12]). This holds if there are at least as many obser-
vations as unknown information symbols. If there are less ob-
servations than information symbols, the generalized sphere de-
coder [13] requires a complexity that is exponential in the dif-
ference of information symbols and observations.

We next show how the channel model (cf. (3)) can be adapted
so that the sphere decoder is applicable when low-dimensional
spreading and a suitable space-time code are used. To this end
the model must be written such thaty = Mb;+mn, where M isa
spreading/channel/code matrix, and b; a vector of independent
PAM/QAM information symbols. It is easily seen that this is
possible whenever

Bnhin = Hipug,, (32)
where ﬁ,m is an equivalent channel/code matrix of the kth user
and u;, is a vector of independent PAM/QAM symbols of the
kth user. Obviously, for N, = 1 and low-dimensional spreading
the condition is trivially met, and the sufficient statistics can be
written as

y = FWP"2Hb; + 1, (33)

K
where H is a K N; x K block-diagonal matrix with {hk}

. k=1

as diagonal elements.
For example, for Nz = 2 and the Alamouti scheme the equiv-
alent channel/code matrix to the kth user’s nth receive antenna is

jh2kn
jhlkn )

h2kn
_hlkn

jhlkn

. 34
=J h2kn ( )

~ | hign
Hkn N [ h2kn

The corresponding length-4 vector u;, contains the real and
imaginary parts of the two complex QAM data symbols trans-
mitted by user k. The model is unchanged to (33), if H
is defined to be a 2K N, x 4K block-diagonal matrix with

i K
the matrices {Hk}k

as diagonal elements, where H] =

[ﬁlp---a ﬁL\h] andb] = [uT ou ]

i17 ? iK
V. ADAPTIONS FOR DOWNLINK COMMUNICATIONS

The model for downlink communications can be written ex-
actly as in (3), with a change in structure of h, the vector of
fading coefficients. The observations y now depend on the re-
ceiving user k, as do the fading coefficients h: The channel from
the base-station to user k is the same for the signals of all users,
so that

h=h(k) = 1xx: ® h (35)

where 1,4, is a z x y matrix of all ones and hy, is the N =
NrNq-length vector whose (¢ + (n — 1)Np)th element is the
fading coefficient from the base-stations ¢th transmit antenna to
the kth user’s nth receive antenna (as correspondingly defined

before for the uplink). The fading correlation matrix is easily
seen to be

(k) = E[h(k)h(k)']
= 1lgxx ® X
= (1rx1 QIn)Zrr (lixrx @ In),

where we recall that ¥, = F [hkh;fc] is the correlation ma-

trix of the fading processes between the base-station’s transmit
antennas and the kth user’s receive antennas. By a property of
the Kronecker product ( [23, Theorem 4.2.15]) X (k) has maxi-
mum rank N, if X has full rank IV, which we assume in the
following. As a consequence of the rank deficiency of 3(k), we
can conclude immediately that for all error events the achiev-
able diversity order is less than or equal to V. Thus, single-user
like performance is not attainable in the downlink. We summa-
rize the pairwise error probability for the downlink model in the
following corollary, whose proof can be found in Appendix B.

Corollary 6 (Asymptotic Pairwise Error Probability for Downlink)

For coherent detection in downlink communications at user’s

k site, the pairwise error probability Pr {éj < (Si} of the opti-
mum receiver ® approaches arbitrarily closely
Pra{éj < 61} =
2N -1
2N
()
K K Ne
‘Ekk‘ Z Z ,/wlwq (Sljl — Slil)T (quq — Sqiq)
=1 ¢q=1

as o goes to zero and we assume that the sum of matrices in
the denominator has full rank N;z. When this assumption does
not hold and the rank of the sumis 1 < r < N, then the
pairwise error probability asymptotically declines like o2,
In the extreme case when the sum is zero (i.e. r = 0) the error
probability floors.

In the uplink we found that even for narrowband communi-
cations (D = N,) every user can achieve full order of diver-
sity N. From the above corollary we conclude that this result
does in general not hold for the downlink. Consider N = 1,
binary modulation, and equal-energy users. Then it is easy to
see that for many pairs of hypotheses (7, j) the sum in the de-
nominator is indeed zero, leading to an error floor. For example
for K = 2 users, if the base station transmits +1 for user one
and —1 for user two, neither of the users can distinguish this hy-
pothesis from the one corresponding to swapping the users’ bits.
This analytic result fits the intuition, that when all users experi-
ence the same random spreading (as opposed to different ran-
dom spreading in the uplink narrowband channel) the receiver
is not able to distinguish them.

For N, = 1, D = 2, and equal-energy users, we
design spreading sequences by minimizing the maximum
asymptotic upper bound on the users’ BER, i.e., minimize
max; <<k c1(k) as given in (25).° The assumption of equal-
energy user’s, as received by user k, corresponds to the case that

9Note that for desirable downlink spreading sequences c1 (k) (more gener-

ally ¢y, (k)) is the only non-zero term in the expansion (25) and in contrast to
the uplink does depend on the specific signals employed.



the base-station transmits the same power for all users. Clearly,
this is not desired in a practical system, where the base-station
typically adjusts the transmit powers according to the individual
path losses and possible quality-of-service constraints. Design-
ing spreading-sequences for the latter case is not an easy prob-
lem and beyond the scope of this paper. However, we try to
gain some insight into the idealized case of equal-energy users,
as to whether or not gains in energy-efficiency can be achieved
when a spreaded system is compared to a system of orthogonal
users with the same spectral-efficiency. Figure 9 shows simu-
lated BER’s for K = 1 user employing 16-QAM and QPSK
modulation, and K = 4 equal-energy users in D = 2 dimen-
sions, each employing QPSK modulation. From the figure, we
see that the multiuser system has a roughly 3 dB loss in energy-
efficiency when compared to the single-user performance with
the same spectral efficiency. The gap to single-user performance
QPSK performance is about 6 dB. Thus, in this example, at a
given SNR per bit, orthogonal users achieve a higher spectral
efficiency.

V1. CONCLUSIONS

The general analysis of [9] is applied to coherent multiuser
space-time reception with a focus on the uplink channel. Conse-
quently, asymptotically tight expressions for the pairwise error
probabilities are obtained that are subsequently used as signal
design criteria. We are able to arrive at several conclusions:

« Ifthe common signal space of all users has at least dimension-
ality two, all users can be detected with asymptotic single-user
like performance in a one transmit antenna per user CDMA sys-
tem. An algorithm to design “optimum” spreading sequences is
presented.

o For the “classical” single-user N; transmit and Ny receive
antenna space—time communications, we extend our previous
approach by providing asymptotically tight bounds when the
space—time symbols (or code matrices) do not fulfill the rank cri-
terion or the fading correlation matrix has not full rank (cf. [10]).
« For the multiuser space—time problem it is established that ev-
ery user achieves full order of diversity N = N; N, when com-
municating with D > N;-dimensional single-user space-time
codes in a common D-dimensional signal space. To achieve
asymptotically single-user like performance for multiple users,
at least N; + 1 dimensions are necessary, as opposed to Ny di-
mensions in the single-user channel.

« A modulation scheme is proposed that leverages single-user
space—time constellations and guarantees both, a full diversity
order, as well as an asymptotic (high SNR) single-user like
performance for every user. The new scheme requires low-
dimensional spreading matrices, which are obtained by numeri-
cal optimization of a simplified design criterion. A special fea-
ture of the simplified criterion, and thus of the resulting spread-
ing matrices, is that they are independent of the particular single-
user space—time constellations (of a given dimension), so that
different spectral efficiencies can be attained without changing
or redesigning the spreading matrices.
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APPENDIX A
SPREADING SEQUENCES AND MATRICES

e K=6,D=2,N=1,N;=1
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APPENDIX B

PAIRWISE ERROR PROBABILITY FOR DOWNLINK
. 1 1
To prove the corollary, we consider ‘Wefg Eeewe{gf;ﬁfji

insert .. = (1e,;x1 ® In) Bgr (Lixe;; ® In), and make use
of |AB|,; = |BA|yz ([22, Theorem 1.3.20]):

1/2 1/2 e 1‘ e
WEREW2FF;;

NZ
(Lo x1 © In) Six (Lixe,; ® In) WEF3 5 W2

’

NZ

Bk (ZJ (81, —Slil)T> <ZJ: (Sajo — Sqiq)T>

=1 q=1

where we inserted the definition for 7, to obtain the last equa-
tion. Since Si;, = Ing ® Sks, and by the mixed product prop-

Nz’

NZ

Sk (Lixes; ® In) W:’S}'j-ﬁf;iwzf (Ley;x1 ®1Iy) ‘NZ



erty of the Kronecker product [23, Lemma 4.2.10] we can con-
tinue

[20]

B i t))| 2y
= D (I ® [ DD (St —Su) (Ses, — Sas,)

=1 ¢g=1 %2

= 1Sl |30 Suj = Su)' (Sus, —Sui,)'| [23]

=1 gq=1 [24]

where we made use of |I, ® A| = |A|" and our assumptions  [25]
on the rank of X, (full rank ) and the sum of matrices (full

rank Nz, the index of the sum can be extended beyond e;;, be- 2]
cause all the extra terms are zero anyway).
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Fig. 1. In the multiuser narrowband channel, every user achieves full order
of diversity. However, for an increasing number of users an increasing SNR
penalty is incurred. The lines marked with a triangle correspond to an analytic
upper bound, the plain line styles to simulations (for K > 1).

Fig. 2. If the number of users K increases and D stays fixed at two, the asymp-
totic BER is reached for increasing SNR only.

Fig. 3. With only D = 2 dimensions the 10 user system can asymptotically
achieve single-user performance and out-perform the K = 10 narrowband sys-
tem by 15 dB at a BER of 10~ 2.

Fig. 4. For Ny = 2 receive antennas all systems improve when compared to
Figure 3, but the single-user employing 32-QAM modulation does not benefit
as much from the additional receive antenna as the other systems.

Fig. 5. Increasing the number of dimensions seems to gain nothing when com-
pared to a system with D = 2 and the same spectral efficiency.

Fig. 6. For increasing constellation size, the multiuser system can still asymp-
totically achieve single-user like performance.

Fig. 7. Each user employs the Alamouti scheme and asymptotically achieves
single-user like performance. The K = 3, 4-PSK system has the same spectral
efficiency as the K = 1, 16-QAM system, but the latter has a 3 dB worse energy
efficiency at BER 1073,

Fig. 8. For a spectral efficiency of 8 bits/dimension orthogonal users would
have to employ 256-QAM, leading to a dismal performance when compared to
low-dimensional spreading.

Fig. 9. For the downlink it seems to be more energy-efficient to increase spectral
efficiency by increasing the constellation size of each (orthogonal) user rather
than trying to communicate in a common signal space for several users.
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¢ =0~ - K=1, N.=2, Alamouti with 256-QAM
K=6, NT:Z, Alamouti with QPSK
........ K=1, N_=1, QPSK

¢ 00 K=1,N_=1, 256-QAM

[ | =—w— K=8, N_=1, QPSK
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NT:1, NR:Z antennas

K=4, D=2, 4-PSK, simulated BER

| = === K=1,D=1, 16-QAM, simulated BER

......... K=1, D=1, 4-PSK, simulated BER

3 6 9
E /N, (dB)
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