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Continuous advancements in semiconductor technology enable the design of complex systems-on-

chips (SoCs) composed of tens or hundreds of IP cores. At the same time, the applications that need

to run on such platforms have become increasingly complex and have tight power and performance

requirements. Achieving a satisfactory design quality under these circumstances is only possible

when both computation and communication refinement are performed efficiently, in an automated

and synergistic manner. Consequently, formal and disciplined system-level design methodologies

are in great demand for future multiprocessor design. This article provides a broad overview of

some fundamental research issues and state-of-the-art solutions concerning both computation and

communication aspects of system-level design. The methodology we advocate consists of developing

abstract application and platform models, followed by application mapping onto the target platform,

and then optimizing the overall system via performance analysis. In addition, a communication

refinement step is critical for optimizing the communication infrastructure in this multiproces-

sor setup. Finally, simulation and prototyping can be used for accurate performance evaluation

purposes.

Categories and Subject Descriptors: B.3.3 [Memory Structures]: Performance Analysis and

Design Aids; C.4 [Computer Systems Organization]: Performance of Systems; C.5.4 [Com-
puter System Implementation]: VLSI Systems; B.7.1 [Integrated Circuits]: Types and Design

Styles—VLSI (very large scale integration)

General Terms: Design, Performance

Additional Key Words and Phrases: Embedded systems, energy optimization, performance analysis,

Markov chains, communication, traffic, systems-on-chip, networks-on-chip, prototype

1. INTRODUCTION

Unrelenting advancements in semiconductor technology enable the integration
of a myriad of intellectual property (IP) blocks on the same chip. General pur-
pose CPUs, DSPs, ASICs, I/O and networking devices, and shared embedded
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memory modules on a single chip are now not only possible but necessary to
maintain competitive advantage. Along with these technological advancements,
we are witnessing an explosive growth in demand for consumer electronics
functionality. These demands result in a push to design portable devices and
appliances with only a few months in time-to-market constraints.

Systems-on-chips (SoCs) implementing text, speech, and video processing
applications are becoming overwhelmingly complex, with digital and analog
parts coexisting on the same chip. This trend puts enormous pressure on tool
designers to integrate all these parts seamlessly in terms of system synthesis,
verification, simulation, and testing. Complementary techniques for system val-
idation, including formal methods and system-level design tools, are therefore
crucial in the design of complex embedded systems.

Speaking in general terms, a primary goal of system-level design is to min-
imize the development time and nonrecurrent engineering costs, subject to
constraints on performance and functionality of the system. To succeed, both
module reuse and system flexibility are key components. At the very heart
of the system-level approach is a set of models derived for both applications
and platforms, and techniques that can be used to optimize the system at
hand. This approach is known as the Y-Chart scheme [Lieverse et al. 2001]
(Figure 1).

Referring to Figure 1, the application models include the workload charac-
terization which is typically expressed in probabilistic terms. These application
models must be scalable and flexible enough for quick analysis. Furthermore,
it is also crucial to capture the key behavior of the application in the model in
order to have confidence in the predicted results. For instance, the application
considered herein (namely, MPEG-2 video) is characterized by soft real-time
constraints; this implies that occasionally missing deadlines is perfectly ac-
ceptable. In real-time systems where the behavior is characterized by hard
real-time constraints (e.g., automotive or safety-critical systems) a different set
of challenges is posed, both in modeling and analysis; these issues are covered
in a companion paper [Eles and Pop, this issue].

From an implementation perspective, the term platform is used for a family
of heterogeneous architectures that need to satisfy a set of architectural con-
straints imposed to allow reuse of hardware and software components [Ferrari
and Sangiovanni-Vincentelli 1999]. The platform description may come with
some low-level information from designers, depending on the targeted level of
accuracy for this type of evaluation. For instance, a platform model can abstract
away the cache or other memory effects in order to keep the complexity of the
model under control. This is very much the case in Section 2.1, where we focus
primarily on the possible interactions between different parts of the applica-
tion, buffer occupancy, etc. At the same time, the platform model can emphasize
communication (as opposed to computation) aspects where communication vol-
ume, packet rates, buffer size, etc., represent the information of interest. We
make such a distinction, for instance, in Section 3.1, where we try to capture
the impact of topology on the overall behavior of the network. Ultimately, from
the platform perspective the models we build need to enable accurate analysis
in a relative sense, but also need to be simple and flexible enough to allow quick
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modifications. For instance, to facilitate a systematic design space exploration
the platform models should support a wide range of programmable IPs, includ-
ing fixed processor cores, configurable processors, and reconfigurable fabrics
[Mishra et al. 2006].

Returning to Figure 1, once the appropriate models for the application and
platform become available, the application is mapped onto the target architec-
ture and performance analysis is used to determine whether or not the chosen
application-architecture combination satisfies the imposed design constraints.
Several formalisms (e.g., queueing networks, Petri nets, process algebra, etc.)
can be used to carry out this analysis step. In this survey, we discuss a Marko-
vian approach based on stochastic automata networks (SANs) to determine in a
systematic manner the possible power-performance tradeoffs in an MPEG-2 ap-
plication. We also compare the results of the SAN analysis with those obtained
when self-similarity is taken into account. These effects are quite important,
particularly when the buffer size is critical; this is precisely the case, for in-
stance, for portable devices. If the design constraints are not met, then the
mapping process is reiterated with a different set of parameters until the de-
sired result is obtained. From this perspective, the performance analysis needs
to be tractable to allow for cutting down time in the design cycle. This enables
fast design space exploration and finding good quality solutions within a short
and predictable time budget.

Once the results obtained at this level of abstraction are satisfactory, we need
to consider the communication refinement step. This has become increasingly
important in recent years due to the richness of on-chip computational devices
which places tremendous demands on the communication resources as well.
While traditional bus-based or point-to-point (P2P) connections are the default
choices, new communication architectures have been recently proposed for SoC
design to provide truly scalable communication capabilities. From this per-
spective, the network-on-chip (NoC) architecture, where regularity is enforced,
has the large advantage of providing more predictability and better scalability
(both in performance and power consumption) compared to “classical” commu-
nication schemes. In this article, we discuss several issues related to commu-
nication infrastructure design and optimization, as well as the effects of the
communication paradigm on overall network behavior. Interestingly enough,
the application mapping process in the NoC setup mirrors the mapping pro-
cess in the processor-bound context, although this time the set of constraints
is completely different. Again, performance analysis is at the very heart of the
overall optimization process.

Referring to the methodology in Figure 1, we note that simulation and often
prototyping are used for performance evaluation purposes. While the design
automation community is very familiar with simulation (e.g., Spice, Cadence,
Matlab, etc.) as an effective means for design space exploration, simulation
(and prototyping) cannot offer guarantees about the design at hand. For ex-
ample, simulating an architecture which executes a single application can give
the designer a good idea of what to expect in terms of system response and
device utilization. However, it is difficult in most simulation frameworks to
identify what the worst-case system response (runtime) is for that particular
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Fig. 1. The Y-Chart scheme. Design loops taking paths marked A take little design effort compared

to loops marked B and therefore can be iterated many more times.

architecture. Further, both simulation and prototyping can be very expensive
to achieve and using them in an optimization loop is practically impossible due
to the excessive run and design times. Consequently, it is critical to integrate
performance analysis into the early stages of system design. Designers may
be less familiar with various analysis formalisms, but being primarily based
on stochastic models, such tools compute the metrics of interest in times which
are orders of magnitude faster than simulation (typically, they range from a
few seconds to tens of minutes, depending on the type and complexity of the
model used). As such, reiterating at the end of the performance analysis step
(loop A in Figure 1) is much more desirable than doing it after simulation or
prototyping.

In the remainder of this article, we address application and platform model-
ing, application to architecture mapping and performance analysis in Section 2.
This is the logical sequence of steps in any rigorous system-level design method-
ology. Next, we address some issues regarding the communication refinement
and performance evaluation steps and present their impact on overall system
performance in Sections 3 and 4, respectively. Indeed, while selecting a platform
for a target application involves extensive analysis, as on-chip multiprocessor
systems gain widespread use, we need to focus more on the communication ca-
pabilities of possible HW platforms. Finally, we summarize our main ideas in
Section 5.

2. MODELING, MAPPING, AND PERFORMANCE ANALYSIS

The growing interest in designing multiprocessor systems on the same chip
brings concurrency and communication to the forefront of the design process.
To begin with, the system description can be initially given in an informal man-
ner, as outlined in Figure 2 [Gotz et al. 1993]. This informal specification needs
to be later translated into a formal description (e.g., finite state machines, pro-
cess algebra, etc.) which is precise in meaning and amenable to performance
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Fig. 2. A semantic model is created from an informal description of an application by obtaining

stochastic rates which characterize the application. The model can then be analyzed to obtain

different metrics which are not easy to obtain using simulation techniques alone.

analysis. Usually, such a representation is based on states and transitions
among states which are caused by various actions in the system. The formal
model should represent an abstraction of the system behavior which is suffi-
ciently accurate yet tractable for analysis and verification purposes [Hillstone
1996]. The idea is to build a model at the highest level of abstraction, free of
any architectural constraints, which captures the entire parallelism available
at application-level. This model needs to capture the essential properties of the
application (such that its performance can be accurately evaluated) assuming
infinite physical (i.e., computation- and communication-bound) resources.

Once this functional modeling part is completed, a formally defined seman-
tics is used to obtain a quantitative model that captures the dynamic properties
of the system. This new semantic model typically exposes the flow and control
data between system components, so it can be used to extract performance
metrics that can guide the system optimization process in a meaningful way.
Translating the functional model into a quantitative one may involve obtaining
worst-case conditions or stochastic rates for application behavior based on the
expected input workload. Estimating such parameters inherently introduces
uncertainty and modeling errors when compared to real behavior. Therefore,
knowing which behaviors should be included in the model and how to estimate
these behaviors is critical to maintaining an accurate performance model.

Concurrent systems can be modeled in a variety of ways each providing
different tradeoffs in terms of specification flexibility and convenience for per-
formance evaluation. For example, queueing theory [Trivedi 1982] provides a
compact notation at the expense of limited expressiveness of the language. The
customers representing jobs in the system flow through the network of service
centers (i.e., queues) connected together in a network. The parameters of inter-
est are the arrival processes to the queues, the service rates, the capacity of the

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



Computation and Communication Refinement for Multiprocessor SoC Design • 569

buffers, and the queueing discipline (e.g., first-come-first-serve). Compared to
queueing networks, Petri nets [Peterson 1981] can represent a larger class of
systems, although they face a state explosion problem even for relatively simple
systems.

Unlike queueing networks or Petri nets, process algebras such as the
calculus of communicating systems (CCS) [Milner 1989] and the algebra of
communicating systems [Bergstra and Klop 1985] characterize the system by
its active components and the communication between them in a compositional
manner. Compositional approaches model a system as a collection of smaller,
more manageable components. Therefore, compositionality is a crucial strategy
for tackling complex applications in a systematic way. At the same time, in
order to simplify the performance analysis, most performance models assume
that each action in the system is characterized by an exponential distribution
determining its duration. In other words, when enabled, an activity with rate
r will delay for a period determined by the distribution 1 − e−rt. This is a very
important assumption, as it allows the use of powerful results from Markov
chain theory for the performance analysis of concurrent systems. Other
choices for the distribution may lead to semiMarkov or more general models,
but the mathematical results available in such cases are significantly more
complicated.

Another formalism that has been proposed to model a set of communicat-
ing processes for streaming applications is data flow process networks, such as
Kahn process network (KPN) [Lieverse et al. 2001; Kahn et al. 1974; Lee and
Parks 1995] and synchronous data flow (SDF) [Lee and Messerschmitt 1987;
Sriram and Bhattacharyya 2001; Geilen et al. 2005]. In the KPN model of com-
putation, the processes communicate asynchronously using P2P connections
over unbounded FIFOs. On the other hand, SDFs model the processes with
fixed data generation and consumption rates. SDFs can nicely evaluate worst-
case situations of complex systems; this is analogous to identifying the critical
path in a processor design. Care should be exercised, however, since worst-case
times could be one or two orders of magnitude larger than the actual values. As
pointed out in Kim and Shin [1996], while scheduling tasks based on worst-case
execution times can guarantee meeting their timing requirements, it may lead
to severe underutilization of CPUs. For this reason, SDFs should be used in a
design optimization loop only if the worst-case behavior of an application is of
primary importance.

Our approach towards performance analysis is based on stochastic automata
networks (SANs). SANs are powerful Markovian models suitable for modeling
communicating processes which appear naturally in highly concurrent applica-
tions [Plateau et al. 1991; Stewart et al. 1995]. Later, we show how the applica-
tion and platform models can be used together in the mapping step (Figure 1)
to analyze different power-performance tradeoffs.

2.1 Stochastic Analysis

SANs model applications and architectures at process-level, where the pro-
cesses communicate and interact such that they define what the underlying
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Fig. 3. The implementation of an MPEG-2 decoder using (a) a two-processor and (b) a three-

processor platform.

system should do without a precise idea of how it is going to be implemented.
The objective of SAN analysis is the computation of the stationary probability
distribution to a target system described as stochastic automata that operate
more or less independently. The interaction between the automata is captured
by using both synchronizing and functional transitions. A synchronizing tran-
sition in one automaton is a transition which forces a transition to occur in
one or more other automata simultaneously. Synchronizing events affect the
global system by altering the state of at least one automaton. Functional tran-
sitions, on the other hand, are nonzero transition rates for one automaton when
another automaton is in a particular state. As opposed to constant-rate, or non-
functional, transitions, the functional rates in one automaton are affected by
the state of another automaton, and so these transitions can model interactions
effectively. Functional transitions affect the global system only by changing the
rate of state changes of a single automaton. For more details on SANs, the
reader is referred to Plateau and Fourneau [1991] and Stewart [1994].

2.1.1 Application and Platform Modeling. To make the discussion more
concrete, we consider an MPEG-2 decoder application (Figure 3) which con-
sists of a baseline unit, a motion compensation (MC) unit, a recovery unit, and
the associated buffers. In turn, the baseline unit consists of a VLD (variable
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Fig. 4. MPEG-2 application. The application models are void of any architectural details (Figure

taken from Nandi and Marculescu [2001]).

length decoder), an IQ/ IZZ (inverse quantization/inverse zigzag) module, IDCT
(inverse discrete cosine transform) modules, and the buffer.

Suppose now that we want to explore different possible implementations of
this application running on a multiprocessor system with two or three CPUs,
as shown in Figure 3. Using the SAN analysis, we need to determine the sys-
tem steady-state regime by calculating the state probabilities associated with
the main modules, the buffers’ occupancy, average power consumption, etc. To
this end, the first step is to create a semantic model for the target applica-
tion using the SAN formalism, as shown in Figure 2. These models should be
void of any architectural details of the target implementation platform. The
application is modeled as a process graph with concurrently active processes
which communicate and interact with each other. This process graph translates
into a network of automata, while the communication between processes trans-
lates to synchronizing transitions. Figure 4, for instance, illustrates a simple
producer-consumer SAN model for the VLD and IDCT blocks in an MPEG-2 de-
coder. It is very important to note that, under the assumption of exponentially
distributed sojourn times, this network of automata is characterized by an iden-
tical Markov chain [Stewart 1994]. This is a very important property, since it
enables the use of powerful results from Markov chain theory for performance
analysis of concurrent systems.

Working in parallel with designing the application models, the system-level
designer can build models that represent abstract behavioral descriptions of
the architectural building blocks. These blocks typically consist of several com-
putational resources such as programmable cores or dedicated hardware units,
communication resources such as high-performance shared buses, and memory
resources such as RAMs memory modules and FIFO buffers. The details of the
application are omitted from the architectural models [Nandi and Marculescu
2001]. As such, the SAN model provides the highest level of abstraction and
is not confined to any particular hardware-software combination. This design
philosophy enjoys the benefits of what is called the separation of concerns be-
tween application and architecture [Ferrari and Sangiovanni-Vincentelli 1999].
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Fig. 5. Example mapping of MPEG-2 application onto a single CPU architecture. New wait states

and synchronization signals have been added due to the limitations of HW resources (Figure taken

from Nandi and Marculescu [2001]).

This separation enables reuse of both application and architecture models and
facilitates an exploratory design process in which application models are sub-
sequently mapped onto architectural models [Yang et al. 2004].

2.1.2 Application Mapping for Multiprocessor Platforms. Having the
system-level application and platform models available enables the designer to
map the application onto a family of architectures (platform) and evaluate the
system performance. This evaluation indicates whether the choice of the plat-
form and set of design parameters satisfies the required level of design quality,
which could be measured in terms of performance figures, power consumption,
fault-tolerance, etc., as shown in Figure 2. Furthermore, if necessary, the map-
ping process can be reiterated with a different set of parameters and/or target
architectures (using design loops marked with A in Figure 1) until convergence
to the desired design quality.

One way to do the mapping is to add synchronization transitions between
the application and architecture models and modify the transition rates of the
application based on the actual capabilities of the architectural components.
Mapping our simple VLD-IDCT/IQ processes in Figure 4 onto a platform with
a single CPU is illustrated in Figure 5. Because these processes1 now have
to share the same CPU, some of the local transitions become synchronizing
transitions (e.g., the local transitions with rates 1/Tproduce or 1/Tconsume become
synchronized). Moreover, some new states (e.g., wait CPU) have been intro-
duced to model the new synchronization relationship [Nandi and Marculescu
2001]. This mapping method has the advantage of retaining flexibility, as the

1For simplicity, the second consumer process for the Motion Compensation (MC) unit was not

explicitly represented in this figure.
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architecture and application models still remain separate from each other. This
allows the designer to painlessly replace current models with a new application
or architectural model in the future.

Once the models are built and the mapping is complete, the application-
architecture model is finally analyzed for different input parameters (this is the
“Performance analysis” step in Figure 1). While model evaluation is a challeng-
ing problem, analytical performance evaluation presents additional challenges.
To this end, the SAN formalism can be used to build an analytical framework
where lengthy profiling simulations for predicting power and performance fig-
ures can be avoided. In essence, the SAN analysis involves solving the equation
π Q = 0, where π is the steady-state probability distribution that needs to be
found via analysis, and Q is the global generator matrix which includes all local
and synchronizing transition rates for each automaton executing concurrently.
Together with this equation, a key constraint is that the probabilities for being
in every possible state must add up to 1. This is expressed as the normaliza-
tion equation πe = 1, where e is a column vector such that eT = (1, 1, . . . , 1).
Determining steady-state probabilities we can ascertain, for example, how uti-
lized a communication buffer or CPU is for a particular application-architecture
combination and input trace characteristics [Nandi and Marculescu 2001].

SAN analysis is particularly valuable for multimedia systems where many
simulation runs are typically required to gather relevant statistics for average-
case behavior. Considering that 5 minutes of compressed MPEG-2 video needs
roughly a few Gbits of input vectors to simulate, the impact of having an anal-
ysis tool to quickly provide performance estimates becomes evident. Another
major advantage of SANs over other formalisms, such as Petri nets, is that the
state space explosion problem associated with Markov models is partially mit-
igated by the fact that the global generator matrix Q is not stored, nor even
generated [Plateau and Fourneau 1991; Stewart 1994]. Instead, the state tran-
sition information is represented by a number of smaller matrices (one for each
automaton belonging to the system) which are combined using tensor algebra.
By using vector matrix multiplications, all relevant information is determined
without explicitly forming the global matrix.

In summary, this kind of stochastic analysis allows media systems designers
to explore architectures more rapidly and to estimate the impact of different
design choices more robustly. Ultimately, this enables systems designers to
optimally trade off performance metrics and multimedia quality.

2.2 Rate Analysis

While SAN analysis is essentially an average-case approach, rate analysis pro-
vides bounds for worst-case conditions [Maxiaguine et al. 2004]. For example,
depicted in Figure 6 is the same multimedia application where the input stream
enters a processing element (PE), gets processed by the PE, and is then trans-
mitted to another PE over a communication channel for further processing. A
feasible mapping of this multimedia application onto architecture should en-
sure that each buffer between the PEs does not overflow and that the play-out
buffer, which is read by the real-time client, does not underflow at any point
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Fig. 6. Illustration of the rate analysis problem using the MPEG-2 decoder. The input stream near

the bottom of the figure is difficult to predict, and so a rate analysis mechanism is needed (Figure

taken from Maxiaguine et al. [2004]).

in time. The bursty nature of the input stream and the variation in execution
time of stream processing applications make the input rates hard to predict.

Referring to Figure 6, the problem at hand is to compute the feasible rates
of the input streams, given the output consumption rate of a stream (e.g., by
the video output device), the service offered by the two processors (determined
by the frequency of the processors and the scheduling policy implemented on
them), and the properties of the streams (processor cycle requirement for each
macroblock and its variability). If the input rates are too high, the buffers will
overflow. On the other hand, too low a rate will lead to play-out buffer underflow
and hence, loss of video output quality. Therefore, there is only a specific range
of inputs to consider and this range is a function of the service provided by
the processors and buffer sizes. The rate analysis problem is important since it
helps designers to choose a suitable architecture and to determine the output
quality that can be supported.

2.3 Traffic Analysis

The SAN approach presented in Section 2.1 is based on a Markovian model
for probability distributions. While the Markovian assumption is a convenient
mathematical simplification, it is not always applicable in practice, particu-
larly for video applications. For example, it can be shown that the multimedia
traffic generated at macroblock-level exhibits self-similar (or long-range) phe-
nomena [Beran 1994]. This means that the correlations between the processed
macroblocks do not necessarily decay exponentially, but rather obey a power
law characterized by the Hurst parameter. As such, if used for buffer sizing,
Markovian models would not produce accurate results.

To be concrete, Figure 7 shows a possible mapping of the IP cores which imple-
ments the MPEG-2 decoder using a platform where communication among the
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Fig. 7. Mapping of an MPEG-2 decoder to a NoC platform such that the cores that communicate

with each other are placed into neighboring tiles (Figure taken from Varatkar and Marculescu

[2004]).

Fig. 8. The variation of packet dropping probability (log scale) as a function of the queue length

(linear scale) estimated by a Markovian model, an LRD model, and simulation (Figure taken from

Varatkar and Marculescu [2004]).

IPs is realized via the NoC approach. The analysis of multiple traces taken be-
tween the VLD-MC and VLD-IDCT/IQ modules reveals that the traffic exhibits
long-range dependencies, thus, the rate of the autocorrelation function decays
much more slowly than the exponential decay [Varatkar and Marculescu 2004].

Since self-similar processes are so different from Markovian processes, this
observation has significant consequences for the design of multimedia systems.
For example, using a Markovian analysis technique to determine the size of the
buffers highlighted in Figure 7 will significantly underestimate buffer overflow
probabilities. This is because the actual variance of the network traffic is much
larger than predicted by Markovian models.

In Figure 8, the Y axis gives the probability of overflowing a buffer Q as
a function of its size. The precise mathematical relationship was derived by
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Norros [1994]; it relates the buffer overflow probability to the Hurst parameter
which characterizes the burstiness in the data. For instance, if the buffer size is
chosen arbitrarily to be 2.8K, then Markovian analysis would predict a buffer
overflow probability of about 10−2. On the other hand, nonMarkovian analysis
based on the Norros formula would predict an overflow probability about one
order of magnitude higher, which matches the simulation results very well,
as can be observed in Figure 8. Sizing the buffer based on such an erroneous
(former) prediction would drastically affect the capability of the video decoder,
since the buffer will overflow too often to maintain a reasonable quality of the
video. For this reason, it is important to investigate nonMarkovian analysis
techniques and find suitable ways to deal with the video traffic affected by
long-range dependencies.

To summarize, formal approaches for modeling and analysis are important
in system-level design. Despite many years of research, building and solving
the stochastic model remains the main challenge. The models used in system-
level analysis should be aimed at the highest level of abstraction; they should
exploit the separation of concerns between function-architecture, and between
computation-communication. If successful, system-level analysis can provide
quick feedback to the designer about possible power-performance tradeoffs. The
results of this analysis can be used at the microarchitectural-level of abstraction
for further optimization.

3. COMMUNICATION REFINEMENT

In its most abstract form, the application can be modeled as a set of communica-
tion processes free of any architectural constraints, as illustrated in Figure 9(a)
and discussed in Section 2. As we move the level of abstraction down, the com-
munication mechanism needs to be taken into account since the behavior of
the processes depends on the behavior of the communication channel. More
specifically, the behavior and constraints imposed by the platform need to be
integrated into the system model. For example, communication can take place
over an ideal channel connecting two processes with finite buffers, as shown in
Figure 9(b). A concrete instance of such a communication scenario would be a
bus architecture, or two processes communicating over a Point-to-Point (P2P)
link. We can lower the level of abstraction further down by considering a more
detailed model for the channel itself. For instance, the communication can take
place over a lossy wireless channel, as shown in Figure 9(c), where the error
model plays a significant part. The important thing is that the communication
refinement process makes the effects of the communication mechanism and
constraints imposed by the available resources more salient.

A system-level analysis for platforms that are designed to support portable
encoding/decoding devices that interact and communicate over a wireless chan-
nel is presented in Marculescu et al. [2001]. The technique models all compo-
nents, namely, encoder, decoder, and communication channel, using the SAN
approach. This allows us to estimate the degradation in performance (i.e., QoS)
seen at the decoder-level as a function of channel behavior and enables ana-
lytical calculations of power-performance metrics which are significantly faster
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Fig. 9. (a) Simple two-process model with infinite communication buffer, (b) replacing infinite

buffers with finite ones, (c) adding errors, and (d) communicating through a multihop network.

than time-consuming profiling simulations. This kind of analysis shows, for
instance, that the communication may become too costly for some encoding
rates; this is because the design constraints that should be satisfied become too
severe in terms of power consumption and/or end-to-end latency. Under such
conditions, a data encoding rate cannot be chosen arbitrarily. On the contrary,
the affordable rate is imposed by channel behavior. Obviously, determining this
data rate using simulations is extremely difficult.

All the communication channels discussed so far (see Figure 9(a)–(c)), model
P2P links. This means that the sender and receiver are directly connected to
each other via a communication channel. A more general case to consider is that
of a network connecting several processes. For instance, the process i on the left
side of Figure 9(d) can be an application which accesses a remote database,
modeled by process j , over a multihop (wired or wireless) network. Another
example would be to consider the VLD core in Figure 7 as being remapped to
an arbitrary tile labeled X ; then, the communication between the VLD and
IDCT modules needs to take place across a multihop network, similar to the
scenario shown in Figure 9(d).

The most general case corresponds to having a set of nodes (which encap-
sulate several communicating processes) connected in a network (Figure 10).
Under such a scenario, multiple distributed applications can run concurrently
while sharing the same network. Hence, different processes from the same ap-
plication can communicate across the network, as discussed in the previous
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Fig. 10. An on-chip network running two applications. Each node in the network executes several

processes in parallel.

case. If we compare Figures 5, 9, and 10, we can clearly see the increasing
importance of the communication part and its subtle relationship with com-
putation. Indeed, refining the communication medium from the simple buffer
in Figure 5 to the multihop network in Figure 9 (or 10) changes the nature of
the design problem [Sangiovanni-Vincentelli et al. 2006]. Moreover, the power
and performance figures of the system depend critically on the efficiency of the
communication infrastructure. For this reason, communication-centric design
plays an increasingly important role in system-level design; this is the focus of
the following sections.

3.1 Communication Infrastructure Modeling and Optimization

Traditionally, bus-based communication has been the most common choice for
both off-chip and on-chip designs. Indeed, industrial standards such as AMBA
[Flynn 1997], CoreConnect [IBM 2006], and OCP [Open Core Protocol Interna-
tional Partnership 2006] have been successfully deployed in a wide range of sys-
tems. This is mainly due to the low costs and simple, well-understood concepts
that govern bus-based design. Unfortunately, the buses are not scalable. Each
new component connected to the bus shares the same limited bandwidth and
adds more parasitics which deteriorate the interconnect delay; this becomes
a major problem in the nanoscale domain. Furthermore, the power-hungry
nature of buses makes them unsuitable for portable and other low-power
applications.

On the other hand, P2P communication architectures bring the utmost of
communication performance by providing dedicated channels to all communi-
cating IP pairs. However, P2P architectures do not scale well due to their large
number of communication interfaces and dedicated links. In contrast to these
methods, the NoC approach emerged as a promising solution to on-chip com-
munication problems [Hemani et al. 2000; Dally and Towles 2001; Benini and
De Micheli 2002; Jantsch and Tenhunen 2003].
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NoC architectures consist of heterogeneous cores such as CPUs, DSPs, video
processors, embedded memory blocks, and application-specific components. The
cores are connected through an interconnection network. Hence, communica-
tion between the nodes is achieved by routing packets rather than wires. As
a result, NoC represents a highly scalable communication architecture. More-
over, the modularity and standard network interfaces of the NoC approach
facilitate reusability across many different applications, and thus, make NoC
an attractive platform for SoC integration.

Formal descriptions of NoC architectures, as well as analysis methodologies
similar to the application models presented in Section 2, are needed to tackle
the NoC design problem. For example, effective performance and energy models
are essential, for optimization purposes, where long simulation times cannot
be tolerated. A layered protocol stack has been successfully applied in the con-
text of macronetworks to expedite the network design [Bertsekas and Gallager
1987]. While some ideas from this domain can be transferred to NoCs, it should
be noted that, as opposed to NoCs, macronetworks aim at general purpose com-
munication. As such, several fundamental problems in NoC design (e.g., appli-
cation mapping, application-specific topology optimization, etc.) simply do not
appear in the macronetwork domain; this is because the macronetwork design
is typically decoupled from driver applications. Therefore, a formal description
and specific algorithms reflecting the NoC design space can point out salient
issues and expedite research towards finding and/or improving solutions to the
existing problems [Ogras et al. 2005].

For a given class of applications, the NoC architectures have the potential
to be fully structured, general purpose, or customized. The first enables pre-
optimized interconnections and well-controlled electrical parameters. On the
other hand, homogeneous structures may not satisfy the strict requirements of
heterogeneous SoC traffic, which typically varies widely across different appli-
cation domains. The optimization process can explicitly consider performance
in a variety of contexts such as partial [Ogras and Marculescu 2005a] or com-
plete [Ogras and Marculescu 2005b; Pinto and Sangiovanni-Vincentelli 2003;
Srinivasan et al. 2004; Jalabert et al. 2004] topology customization, buffer space
allocation [Hu et al. (to appear); Saastamoinen et al. 2003], network channel
[Lin and Pileggi 2002; Morganstein et al. 2004] and floorplan design [Ye and
De Micheli 2003]. Interestingly enough, imposing regularity constraints (e.g.,
mesh-based architectures) causes the topology synthesis problem to degener-
ate into the application mapping problem, as described in the previous section.
Two relevant optimization problems, namely, network topology optimization
and buffer space allocation, are discussed next.

3.1.1 Network Topology. Network topologies are graphs whose properties
determine the information dissemination capability of the network. For in-
stance, the diameter of a 2D mesh network grows linearly with each dimension.
This results in long internode distance, hence, poor performance for large net-
works. On the other hand, fully customized networks, such as in Figure 11, can
provide significant improvements in terms of performance, power consumption,
and area.
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Fig. 11. Structured and fully customized communication architectures. Regular structures provide

greater scalability but often worse performance, while fully customized ones require more design

effort but yield better performance results.

The topology synthesis problem can be cast in very general terms. While it is
true that a large number of different communication patterns can be observed
in any network, certain generic communication primitives such as gossiping
(i.e., all-to-all communication), broadcasting (i.e., one-to-all), and multicasting
(i.e., one-to-many) are encountered more frequently. The optimal topologies for
these common communication primitives have been well-studied in the past
[Hedetniemi et al. 1988]. Therefore, these communication primitives can be
used as an alphabet to characterize any given communication patterns in real
applications [Ogras and Marculescu 2005b]. Hence, solving the communication
synthesis problem reduces to decomposing arbitrary application graphs into
combinations of basic communication primitives.

The decomposition step consists of identifying the subgraphs in the input
graph that are isomorphic to one of the graphs (i.e., primitives) in the com-
munication library. A sample graph decomposition is shown in Figure 12. Each
path from the root of the tree to one of the leaves is a valid decomposition which
has a cost proportional to the communication energy consumption of its imple-
mentation. Once a set of decompositions is found using a branch-and-bound
algorithm, the decomposition with the minimum cost is selected as the solu-
tion (e.g., leftmost branch in Figure 12). Also, after the best decomposition is
obtained, the basic graphs are replaced by their optimal implementations in
a predefined library and finally, the customized topology is obtained by gluing
them together under imposed design constraints.

A constraint-driven communication synthesis approach based on P2P com-
munication specifications is presented in Pinto and Sangiovanni-Vincentelli
[2003]. The resulting architecture consists of optimized channels obtained by
merging or separating the original P2P links. In Srinivasan et al. [2004], a linear
programming-based approach is proposed for synthesizing application-specific
NoC architectures such that the power consumption is optimized subject to per-
formance constrains. Fully customized topologies improve overall network per-
formance at the expense of a penalty in the structured wiring which is nonethe-
less one of the main advantages offered by regular on-chip networks. A trade-off
between these two extremes can be achieved by application-specific long-range

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



Computation and Communication Refinement for Multiprocessor SoC Design • 581

Fig. 12. Illustration of the graph decomposition algorithm. The cost of each decomposition is used

to select the final solution (Figure taken from Ogras and Marculescu [2005b]).

link insertion to regular architectures [Ogras and Marculescu 2006a]. This
approach boosts the network performance while only minimally affecting the
network regularity and area.

Finally, using fully customized topologies or imposing long-range links on top
of regular topologies may result in links with varying lengths and performance
figures. In order to decouple high-level design problems from timing and syn-
chronization problems, latency-insensitive design techniques can be used. The
latency-insensitive design [Carloni and Sangiovanni-Vincentelli 2002] main-
tains the simplicity of synchronous designs while separating communication
from computation in a system where several computational processes exchange
data by means of communication channels.

3.1.2 Buffer Sizing. The input buffers in routers represent a substantial
portion of the on-chip overall area. At the same time, buffering space signifi-
cantly affects network performance. The current practice in NoC design is to
allocate the buffering resources uniformly across each router in the design (i.e.,
all the buffers in the network have equal depth). This makes sense only if all
the buffers are equally utilized. However, due to traffic variations, some parts of
the network are clearly utilized much more than others. Therefore, the buffer-
ing resources should be allocated judiciously so as to optimize the application
performance subject to the resource constraints, as illustrated in Figure 13.

Towards this end, an automated buffer space assignment for structured grid-
like NoC architectures is discussed in Hu and Marculescu [2004a] and Hu et al.
[To appear]. This technique starts with a network configuration where all the
buffers have a depth of 1. Then, using sophisticated queueing models for routers,
it determines the most likely channel to become congested as a function of the
architectural (e.g., network topology, packet service time at routers, etc.) and
application-specific (e.g., injection rate at each IP, probability distribution of
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Fig. 13. Illustration of nonuniform buffer space allocation for on-chip routers.

packet destinations, etc.) parameters. After that, the size of the buffer connected
to the most congested channel is increased and the procedure repeated until
the total buffering space is used up.

Other studies about on-chip buffers include Saastamoinen et al. [2003] and
Chandra et al. [2004]. The study in Saastamoinen et al. [2003] analyzes the
properties of on-chip buffers and reports gate-level area estimates and buffer
utilization across the network. The authors in Chandra et al. [2004] investigate
the impact of FIFO sizing on the interconnect throughput for single-source,
single-sink interconnect scenarios.

3.2 Communication Paradigm

Designing the communication infrastructure involves only the static aspect of
network-based communication. The actual paths followed by packets are gov-
erned by the routing strategy adopted in the network. The choice of routing
decision has a significant impact on network performance and power consump-
tion [Duato et al. 2002; Glass and Ni 1992; Ni and McKinley 1993; Shang
et al. 2006] as well as area [Hu and Marculescu 2004]. Since more complicated
routing strategies will typically result in larger designs. In addition to this,
proper design of a routing algorithm can enable fault-tolerant communication
[Dumitras and Marculescu 2003].

A common choice for on-chip routing is deterministic routing, which means
that the routing decision is fixed, given the source-destination pair. An alterna-
tive is adaptive routing, where the routers base their routing decisions on the
level of congestion in downstream routers as well as on the source-destination
pairs. Deterministic routing algorithms are simpler to implement compared
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Fig. 14. Performance comparison of deterministic (XY) and adaptive (odd-even) routing for a 6×6

2D mesh network under transpose traffic pattern. Both plots show that odd-even routing can

sustain higher traffic rates than XY, but plot (b) demonstrates that at low traffic rates, XY routing

outperforms odd-even routing (Figure taken from Hu and Marculescu [2004]).

to their adaptive counterparts. Typically, they result in lower area overhead
and shorter latency values when the network is not congested. Nevertheless,
as the congestion level in the network increases, the performance of determin-
istic algorithms deteriorates rapidly; this is because the routers cannot adapt
to changing traffic conditions. Adaptive algorithms, on the other hand, have
more degrees of freedom in making the routing decision since alternative paths
can be used in case of severe congestion. This alleviates the accumulation of
messages in a certain region of the network and allows for a higher message
throughput.

The tradeoff between deterministic and adaptive algorithms in terms of per-
formance is illustrated in Figure 14. Although more difficult to implement,
adaptive routing algorithms (e.g. odd-even routing2 in Chiu [2000]) can achieve
larger saturation throughput values compared to deterministic ones (e.g. XY
routing in Duato et al. [2002]). This tradeoff suggests that deterministic and
adaptive algorithms can be combined to achieve higher performance at all levels
of traffic congestion.

The approach proposed in Hu and Marculescu [2004] achieves this goal by
dynamically switching between adaptive and deterministic routing modes as a
function of the network congestion level. Routers in the network continuously
monitor the traffic congestion level in neighboring routers. Unless one of the
neighboring routers asserts the congestion flag, the router uses deterministic
routing to obtain minimum latency. If the congestion flag is set, it switches to
an adaptive mode and makes a smart choice in order to avoid congested links.
As a result, routers in the network switch dynamically between determinis-
tic and adaptive modes to obtain the best possible performance. Experimental
studies performed using synthetic and multimedia traffic demonstrate that

2The Odd-Even routing prohibits East-North and East-South turns at any tile located in an even

column, and North-West and South-West turns at any tile in an odd column.
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the resulting dynamic routing algorithm performs well at low and high traffic
levels.

To give some insight, better performance can be achieved via combined deter-
ministic/adaptive routing because the routers in both deterministic and adap-
tive modes actually coexist in the network. To be more specific, even at low
injection rates, some of the routers in the network may experience transient
congestion. During these intervals, a few routers can switch to an adaptive mode
and prevent messages from blocking the network links and getting stuck in the
routers. By the same token, as the network congestion increases, the number
of routers in the adaptive mode and the duration they remain in the adaptive
mode increases. Nevertheless, some routers in the less congested regions of the
network may switch to a deterministic mode and enjoy faster operation. Hence,
this heterogeneity results in better performance compared to that using purely
adaptive routing algorithms.

3.3 Application Mapping to NoC Architectures

When the network architecture is fixed a priori or its optimization process is
already completed, the job of the designer is to map the target application to
the NoC architecture. To solve the mapping problem, we first need a description
of the target application. While it may come in different flavors as described in
Section 2, a common choice is to describe the target application by a set of com-
municating processes. When the description is given at task-level, the solution
to a task scheduling problem can lead to very interesting algorithms that stat-
ically schedule both communication transactions and computation tasks onto
heterogeneous NoC architectures under soft or hard real-time constraints [Hu
and Marculescu 2005a].

When the task and communication scheduling/binding are fixed using prede-
fined IPs, the application can be modeled as a directed graph where the vertices
represent cores and the arcs characterize the communication relationship be-
tween them. For instance, the arcs can be annotated by the communication
volume and bandwidth requirements for the connection. In this case, the prob-
lem is to determine how to topologically map the selected IPs onto the network
such that certain metrics of interest are optimized [Hu and Marculescu 2005b;
Murali and De Micheli 2004a, 2004b; Ascia et al. 2004].

Network architecture can also be modeled as a graph where the vertices rep-
resent network tiles and the arcs characterize the direct links between them.
Similar to the application graph, the architecture graph is annotated with infor-
mation such as the maximum bandwidth of the links, average energy consump-
tion of sending one bit of data, etc. Given the application and platform charac-
terizations, the mapping problem consists of assigning the cores implementing
the application to tiles in the architecture such that a certain objective (e.g., per-
formance, energy consumption, fault-tolerance) is achieved subject to different
design constraints (e.g., area, bandwidth, latency), as illustrated in Figure 15.

The authors in Hu and Marculescu [2005b] present a mapping technique
for regular NoCs aimed at minimizing communication energy consumption
while exploiting different routing algorithms. The technique is based on a
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Fig. 15. Target HW platform (a tile-based NoC) and application description are shown. Mapping

of IP cores to network tiles and different routing choices are also illustrated (Figure taken from Hu

and Marculescu [2005b]).

branch-and-bound algorithm that explores the design space by both topolog-
ically mapping IP cores to network tiles and generating a routing path for each
communicating pair. Once a feasible mapping is obtained, the communication
energy consumption of the resulting system is calculated using the average en-
ergy consumed to transport one bit from one node to another [Ye et al. 2002].
Finally, the mapping and corresponding routing path allocation which mini-
mizes communication energy consumption are selected as the best solutions.

Another mapping algorithm that optimizes performance under bandwidth
constraints is presented in Murali and De Micheli [2004a]. A multiobjective
mapping to mesh-based NoC architectures is discussed in Ascia et al. [2004] and
mapping of heterogeneous cores with an embedded floorplanner is presented in
Murali and De Micheli [2004b]. Mapping techniques can also be used to reduce
the potential hotspots and obtain a thermally-balanced design. For example,
a genetic algorithm is proposed to design a thermally-balanced design while
minimizing communication cost via placement in Hung et al. [2004].

3.4 Stochastic Communication

As we move deeper into the DSM domain, one of the unavoidable consequences
is the increasing failure rate in the design. Failures occur mainly due to an
increasing number of timing violations and soft-error rates, and the sensitivity
of DSM circuits to neutron and alpha radiation [Constantinescu 2002]. Besides
this, transient faults and silent data corruption can have a negative effect on
circuit behavior [Horst et al. 1993; Constantinescu 2001]. Therefore, it is de-
sirable to inject some architectural and system-level fault-tolerance into the
system so as to relax the “100% correctness” requirement for VLSI circuits,
and reduce the design and verification costs [Dumitras and Marculescu 2003;
Bertozzi et al. 2002; Maly 2001; Semiconductor Association 2003].

A fault-tolerant communication in a network can be achieved through a
probabilistic broadcasting scheme called on-chip stochastic communication
[Dumitras and Marculescu 2003]. In this approach, the network nodes con-
sist of an IP core for doing computation and a stochastic router, as shown in
Figure 16(a). The routers are composed of send/receive buffers, cyclic redun-
dancy check (CRC) hardware, and random number generators.
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Fig. 16. (a) The on-chip stochastic router design and (b) information dissemination using stochastic

communication on a 2D grid.

Suppose we want to exploit router stochastic behavior to transmit messages
from the source node 1 (the “Producer” in Figure 16(b)) to the destination node
12 ( “Consumer”). In such a setup, information dissemination takes place across
multiple paths, so several nodes within a larger region (Figure 16(b)) will be-
come aware of the newly transmitted message. Upon receiving a new message,
the routers first check whether or not the message is corrupted; this check is
done using the CRC hardware available at each node in the network. In case
of error, the packet is safely discarded because the same message is sent many
times to different directions in any case. Otherwise, the message is written to
the send/receive buffers. All output ports read a message from this buffer and
forward it to their downstream routers with probability p > 0. This way, the
messages simply diffuse through the network, similar to the proliferation of
an epidemic in a large population [Bailey 1975]. When a message reaches its
destination, it is forwarded to the local IP, as illustrated in Figure 16(b).

In order to avoid overpopulating the network, a time-to-live (TTL) constant
is assigned to every message upon generation. The TTL value is decremented at
every hop and when the TTL becomes equal to 0, the message is simply ignored
and removed from the network. The forwarding probability p and the TTL are
also used to tune the tradeoff between performance and energy consumption.
Further details of stochastic communication and experimental evaluations can
be found in Dumitras and Marculescu [2003]; alternative approaches are dis-
cussed in [Pirretti et al. 2004; Manolache et al. 2005].

To summarize, communication-based design is a fundamental paradigm shift
which is becoming increasingly important for both on- and off-chip communi-
cation. A holistic approach to the network paradigm involves understanding
the theoretical basis (e.g., stochastic modeling and analysis), essential prop-
erties (e.g., structure, dynamics), and metrics (e.g., energy, fault-tolerance)
which are relevant to designing different networks. At the same time, a deeper

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



Computation and Communication Refinement for Multiprocessor SoC Design • 587

integration of physical-level and system-level issues is needed in order to better
understand the complex behavior of future SoCs.

4. SIMULATION AND PROTOTYPING FOR PERFORMANCE EVALUATION

Referring to the design methodology in Figure 1, loop A is most likely iterated a
large number of times in order to solve a constrained optimization problem such
as minimizing energy consumption with performance constraints. Therefore,
the speed of the analysis techniques and the type of metrics they can provide are
more important than absolute accuracy. On the other hand, when the commu-
nication refinement stage is completed, the system has already evolved towards
a more stable state. At this point, more accurate, yet time-consuming, perfor-
mance evaluation techniques are used. Longer execution times can be tolerated
at this stage since only a small number of iterations are typically expected for
the B loop in Figure 1. Absolute accuracy, on the other hand, becomes crucial
in this case because any iteration during later stages of the design results in
major penalties in both time and cost. For this reason, systematic approaches
for accurate system evaluation are needed. Simulation and prototyping are two
possible means towards this end.

Simulation models the system under study at a level of detail which is
intractable for analytical approaches. In turn, simulation provides: (i) more
accurate estimations; and (ii) a flexible framework to obtain metrics beyond
the reach of analysis. For instance, queueing network analysis becomes eas-
ily intractable when considering nonMarkovian traffic and finite buffers in the
system. On the other hand, simulations for various parameters and network
configurations can easily capture such effects. As examples of simulation-based
approaches, the Metropolis [Balarin et al. 2003] and SPADE [Lieverse et al.
2001] frameworks provide capabilities for design exploration of heterogeneous
systems by following the Y-Chart paradigm discussed in Section 1. Metropolis
provides a simulation environment based on a metamodel with precise seman-
tics. This metamodel is general enough not only to support existing models of
computation, but also to accommodate new ones. The metamodel supports func-
tionality and architecture specification and simulation and formal verification,
as well as the mapping of functionality to architectural resources. In SPADE
the application is modeled as a network of KPNs and since this choice provides
an executable model, it can be directly simulated to obtain output traces. The
traces capture both the computation and communication workloads imposed
on system resources. SPADE provides abstract architecture models developed
using a library of generic and extendable building blocks. Finally, the applica-
tion is mapped to the architecture and trace-based simulations are performed
for performance evaluation.

Prototyping provides even more accurate results compared to simulation.
However, it requires a significant effort and lacks flexibility, since the prototype
is tailored towards a specific system [Ogras et al. 2006; Lee et al. 2006; Adria-
hantenaina and Greiner 2003; Bartic et al. 2003]. Having a prototype available
enables the designer to make evaluations beyond the capabilities of simulation.
For instance, simulation can be used for power consumption evaluation only
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Fig. 17. MPEG-2 encoder implementation using (a) P2P- and(b) NoC-based architectures.

after developing power models for all components in the system and estimating
the workload. All assumptions and approximations made during this process
deteriorate the accuracy of the results. In addition, simulations cannot be used
for area estimation. On the other hand, prototypes can successfully address all
of these problems.

An FPGA-based NoC prototype is introduced in Lee et al. [2006]. The au-
thors present complete P2P- and NoC-based implementations of the MPEG-2
encoder in Figure 17. The NoC-based implementation of the encoder achieves
a 47 frames/sec encoding rate for a CIF frame of size 352 × 288, while the
P2P architecture provides a throughput of 48 frames/sec. By performing direct
measurements on the FPGA prototype and using real video clips, the authors
show the real benefits of using the NoC approach in terms of power consump-
tion and area, particularly as the system size becomes larger. Other examples
of prototyping include Adriahantenaina and Greiner [2003] and Bartic et al.
[2003]. In the former, the authors present the SPIN interconnect architecture
and implement a 32-port network architecture supporting best-effort service.
In the latter, a flexible FPGA-based NoC design that consists of instruction set
processors and reconfigurable components is presented.

To summarize, simulation and prototyping are very important tools for sys-
tems design. They complement formal approaches for analysis and optimization
purposes. Together, they offer the accuracy and flexibility the designer needs
in order to find the best design tradeoffs.

5. CONCLUSION

In this article, we have discussed some fundamental research issues concerning
both computation and communication aspects in system-level design. We have
shown that as applications become more complex, concurrency and communica-
tion play increasingly important roles in the design process. In particular, highly
concurrent communicating models demand truly scalable communication ar-
chitectures. As shown, refining the communication medium from a simple bus
to a multihop network requires a completely new design methodology. Towards
this end, we presented a communication-centric approach where abstract ap-
plication and platform models are used to optimize the system via performance
analysis. Both computation and communication refinement steps have been
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addressed and state-of-the-art solutions were discussed. Finally, simulation
and prototyping were considered as possible means for pushing the limits of
analytical approaches for performance analysis.
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