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Preface

Lots of graphs having a symmetry property can be described as cover-
ings of simpler graphs. In this manuscript, we examine several enumer-
ation problems for various types of nonisomorphic graph coverings of a
graph and some of their applications to a group theory or to a surface
theory. This manuscript is organized as follows. In chapter 1, we intro-
duce basic concepts. In chapter 2, by using covering graph construction,
we count the positive isomorphism classes of cycle permutation graphs,
which is equal to the number of double cosets of the dihedral group Dn

in the symmetric group Sn on n elements. In chapter 3, we count non-
isomorphic (connected) coverings of a graph and, as its application, we
have another recursive formula for the number of conjugacy classes of
subgroups of given index of a finitely generated free group. In chapter
4, we count nonisomorphic regular coverings of a graph whose cover-
ing transformation groups are abelian and, as its application, we count
subgroups of given index of free abelian groups. The same work is done
in chapter 5 for regular coverings having dihedral voltage groups. In
chapter 6, we discuss a general counting formula for regular coverings
having any finite voltage group. In chapter 7, after discussing a com-
binatorial proof of Hurwitz theorem for surface branched coverings, we
consider the number of subgroups of surface groups. Finally, in chapter
8, we discuss a distribution of branched surface coverings of surfaces
and some related topological properties including a generalization of
the classical Alexander theorem.
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Chapter 1

Definitions and Notations

Let G be a connected finite simple graph with vertex set V (G) and edge
set E(G). The neighborhood of a vertex v ∈ V (G), denoted by N(v), is
the set of vertices adjacent to v. We use |X| for the cardinality of a set
X. The number β(G) = |E(G)| − |V (G)|+1 is equal to the number of
independent cycles in G and it is referred to as the Betti number of G.

Two graphs G and H are isomorphic if there exists a one-to-one
correspondence between their vertex sets which preserves adjacency,
and such a correspondence is called an isomorphism between G and
H. An automorphism of a graph G is an isomorphism of G onto itself.
Thus, an automorphism of G is a permutation of the vertex set V (G)
which preserves adjacency. Obviously, a composition of two automor-
phisms is also an automorphism. Hence the automorphisms of G form
a permutation group, Aut (G), which acts on the vertex set V (G).

A graph G̃ is called a covering of G with projection p : G̃ → G if
there is a surjection p : V (G̃)→ V (G) such that p|N(ṽ) : N(ṽ)→ N(v)
is a bijection for any vertex v ∈ V (G) and ṽ ∈ p−1(v). We also say that

the projection p : G̃→ G is an n-fold covering of G if p is n-to-one. A
covering p : G̃ → G is said to be regular(simply, A-covering) if there

is a subgroup A of the automorphism group Aut (G̃) of G̃ acting freely

on G̃ so that the graph G is isomorphic to the quotient graph G̃/A,

say by h, and the quotient map G̃ → G̃/A is the composition h ◦ p of
p and h. The fibre of an edge or a vertex is its preimage under p.

Two coverings pi : G̃i → G, i = 1, 2, are said to be isomorphic (or,

equivalent) if there exists a graph isomorphism Φ : G̃1 → G̃2 such that

1



2 Definitions and Notations

the diagram

G̃1 G̃2

G

-Φ

^

p1
À

p2

commutes. Such a Φ is called a covering isomorphism. In particular,
when p1 = p2 (say, = p) with G̃1 = G̃2 (say, = G̃), it is called a covering
tansformation of p, and the set of all covering transformations forms a
group under the composition, called the covering transformation group
of the covering p : G̃→ G .

Every edge of a graph G gives rise to a pair of oppositely directed
edges. By e−1 = vu, we mean the reverse edge to a directed edge e = uv.
We denote the set of directed edges of G by D(G). Each directed edge
e has an initial vertex ie and a terminal vertex te. Following [4], a
permutation voltage assignment φ on a graphG is a map φ : D(G)→ Sn
with the property that φ(e−1) = φ(e)−1 for each e ∈ D(G), where Sn is
the symmetric group on n elements {1, . . . , n}. The permutation derived
graph Gφ is defined as follows: V (Gφ) = V (G)×{1, . . . , n}, and for each
edge e ∈ D(G) and j ∈ {1, . . . , n} let there be an edge (e, j) in D(Gφ)
with i(e,j) = (ie, j) and t(e,j) = (te, φ(e)j). The natural projection p :
Gφ → G is a covering. Let A be a finite group. An ordinary voltage
assignment (or, A-voltage assignment) of G is a function φ : D(G)→ A
with the property that φ(e−1) = φ(e)−1 for each e ∈ D(G). The values
of φ are called voltages, and A is called the voltage group. The ordinary
derived graph G ×φ A derived from an ordinary voltage assignment
φ : D(G) → A has as its vertex set V (G) × A and as its edge set
E(G) × A, so that an edge (e, g) of G ×φ A joins a vertex (u, g) to
(v, φ(e)g) for e = uv ∈ D(G) and g ∈ A. In the (ordinary) derived
graph G ×φ A, a vertex (u, g) is denoted by ug, and an edge (e, g) by
eg. The first coordinate projection p : G×φ A → G, called the natural
projection, commutes with the left multiplication action of the φ(e) and
the right action of A on the fibers, which is free and transitive, so that
p is a regular |A|-fold covering, called simply an A-covering. Gross and
Tucker ([4]) showed that every covering (resp. regular covering) of a
graph G can be derived from a permutation (resp. ordinary) voltage
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assignment φ which assigns the identity voltage to the edges of an
arbitrary fixed spanning tree T of G.

The following lemma is useful to count nonisomorphic objectives in
enumerative combinatorics and will be repeatedly used in this manuscript.

Lemma 1 (Burnside’s Lemma) Let a finite group A act on a finite set
X, and let X/A denote the set of orbits of the action. Then,

|X/A| =
1

|A|

∑

g∈A

|Fix (g)| =
1

|A|

(
|X|+

∑

g∈A, g 6=1

|Fix (g)|

)
,

where Fix (g) = {x ∈ X | gx = x}, the set of fixed elements by g.

Consider another group A-action on a set Y. Two A-actions are
called mutually orthogonal if each non-identity element g of A has a
fixed element in at most one action, that is, g cannot have a fixed
element in both X and Y . Let Ax = {g ∈ A | gx = x} denote the
stabilizer of x ∈ X. Then, it follows from Burnside’s Lemma that

|Y/Ax| =
|Y |

|Ax|
and |X/Ay| =

|X|

|Ay|

for any x ∈ X and any y ∈ Y.
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Chapter 2

Cycle permutation graphs
and the double cosets of Dn

in Sn

Throughout this chapter, let Sn denote the symmetric group on n el-
ements {1, 2, . . . , n} and let Dn denote the dihedral subgroup of Sn
containing the n-cycle ρ = (1 2 · · · n), so that |Dn| = 2n.

An n-cycle permutation graph Pα(Cn) consists of two copies of an n-
cycle Cn , say Cx and Cy , with vertex sets V (Cx) = {x1, x2, . . . , xn} and
V (Cy) = {y1, y2, . . . , yn} , along with edges xiyα(i) for some α ∈ Sn. The
edges xiyα(i) are called the permutation edges of a cycle permutation
graph Pα(Cn) .

Let G denote the dumbbell graph with two vertices x, y, an edges
e = xy and two loops ex = xx, ey = yy as illustrated in Figure 2.1. The
permutation derived graph Gφ with the voltage assignment φ defined
by φ(ex) = φ(ey) = ρ and φ(e) = α , α ∈ Sn , is clearly the cycle

• •x y
e

ex ey

Figure 2.1: The dumbbell graph

5



6 Cycle permutation graphs

permutation graph Pα(Cn) . Moreover, with a suitable relabelling of
the vertices of the inner cycle Cy of Pα(Cn), we can assume that the
permutation edges are xiyi, i = 1, 2, . . . , n. It is not difficult to show
the following theorem.

Theorem 1 A cycle permutation graph Pα(Cn) is isomorphic to the
permutation derived graph Gψ with voltage assignment ψ defined by
ψ(ex) = ρ, ψ(e) = the identity in Sn and ψ(ey) = α−1ρα ( or ψ(ey) =
α−1ρ−1α ) over the dumbbell graph G.

Note that the permutations α−1ρα and α−1ρ−1α, α ∈ Sn, have the
same cycle type as the cycle ρ. Let Σn denote the conjugacy class of
ρ = (1 2 · · · n) in Sn, i.e., Σn is the set of all n-cycles in Sn. From
the isomorphic identification in Theorem 1, it is enough to consider
a permutation derived graph with a permutation voltage assignment
which assigns the identity on the edge e , ρ = (1 2 · · · n) on the loop
ex and σ ∈ Σn on the loop ey of the dumbbell graph G for a cycle
permutation graph. Hence, the set Σn can be identified with the set of
all n-cyclic permutation graphs.

Two n-cycle permutation graphs Pα(Cn) and Pβ(Cn) are said to
be isomorphic by a positive natural isomorphism Θ if Θ : Pα(Cn) →
Pβ(Cn) is an isomorphism satisfying Θ(Cx) = Cx and Θ(Cy) = Cy .

The following theorem gives a group-theoretic characterization of
two cyclic permutation graphs to be positively natural isomorphic.

Theorem 2 Let α and β be two permutations in Sn Then the cyclic
permutation graphs Pα(Cn) and Pβ(Cn) are isomorphic by a positive
natural isomorphism if and only if there exists d ∈ Dn such that

β−1ρβ = d(α−1ρα)d−1 or β−1ρβ = d(α−1ρα)−1d−1 .

It is also equivalent to say that β ∈ DnαDn , that is, the permutations
α and β belong to the same double cosets of Dn in Sn .

Proof: Use the identification Pα(Cn) = Gφ and Pβ(Cn) = Gψ given
in Theorem 1. If Gφ and Gψ are isomorphic by a positive natural
isomorphism, say Θ, then Θ maps the outer cycle of Gφ to the outer
cycle of Gψ isomorphically, which induces an element d in Dn. (Note
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Aut (Cn) = Dn.) Then it follows that the path xiyiyα−1ρα(i)xα−1ρα(i) (or
xiyiyα−1ρ−1α(i)xα−1ρ−1α(i) depending on the orientation of ey) in Gφ is
mapped to the path

xd(i)yd(i)yβ−1ρβd(i)xβ−1ρβd(i) or xd(i)yd(i)yβ−1ρ−1βd(i)xβ−1ρ−1βd(i)

depending on the orientation of ey in Gψ. In either case, we have
β−1ρβ = d(α−1ρα)d−1 or β−1ρβ = d(α−1ρα)−1d−1 from the con-
struction of the derived covering Gψ. Also, it gives

ρ = (βdα−1)ρ(αd−1β−1)

= (βdα−1)ρ(βdα−1)−1,

or
ρ−1 = (βdα−1)ρ(βdα−1)−1

for some d ∈ Dn. Hence, βdα
−1 is contained in the normalizer N(ρ, ρ−1)

of {ρ, ρ−1} in Dn. But N(ρ, ρ−1) = Dn. Therefore, β ∈ DnαDn .
Conversely, if β = d1αd2 for some d1, d2 ∈ Dn then β−1ρβ =

d−12 α−1d−11 ρd1αd2 . Then the element d2 in Dn induces an automor-
phism in the n-cycle Cn , and hence an isomorphism from the outer
cycle of Gφ to the outer cycle of Gψ. It is also easily extended to a
positive natural isomorphism from Gα

n to Gβ
n by the condition.

So far, we show that the number of double cosets of the dihedral
group Dn in the symmetric group Sn is equal to the number Iso P (Cn)of
positive natural isomorphism classes of n-cyclic permutation graphs.
Also, every n-cyclic permutation graph can be constructed as an n-fold
covering graph of the dumbbell.

To count the number Iso P (Cn), let I : Sn → Sn be the map defined
by I(σ) = σ−1 for all σ ∈ Sn and denote Γ = Dn × {1, I} . Define a
group action Γ × Σn → Σn by (d, 1)(σ) = dσd−1 and (d, I)(σ) =
dσ−1d−1 . Then, by Theorem 2 and Burnside’s Lemma, we get

Iso P (Cn) = |Σn/Γ| =
1

4n

∑

γ∈Γ

|Fix (γ)| ,

where Fix (γ) = {σ ∈ Σn : γσ = σ} .
The authors computed |Fix (γ)| for each γ ∈ Γ to get the following

theorem.
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n 3 4 5 6 7 8 9 10 11
Iso P (Cn) 1 2 4 12 39 202 1219 9468 83435

Table 2.1: The number Iso P (Cn) for small n

Theorem 3 ([26]) Let phi denote the Euler phi-function, that is, phi(n)
is the number of natural numbers relatively prime to n. Then

Iso P (C2) = 1,

Iso P (Cn)

=





1

4n



∑

d|n

phi(d)2
(n
d
− 1
)
! d

n
d
−1 +

n

2
!
(
3 +

n

2

)
2
n
2
−1


 if n is even,

1

4n



∑

d|n

phi(d)2
(n
d
− 1
)
! d

n
d
−1 + n2

n−1
2

(
n− 1

2

)
!


 if n is odd.

In particular, for odd prime q,

Iso P (Cq) =
1

4q

[
(q − 1)! + (q − 1)2 + q2

q−1
2

(
q − 1

2

)
!

]
.

A short calculation gives the table 2.1 for Iso P (Cn).

Question: Find an algorithm to list the representatives σ’s in Σn of
the double cosets of Dn in Sn . It gives how to draw all positively
nonisomorphic cycle permutation graphs. Compute the size of each
double coset of Dn in Sn . It gives how many permutations in Sn present
the same cycle permutation graph.

Remark According to J.M. Montesinos [41], any closed orientable
3-dimensional manifold can be obtained as a finite sheeted covering
of the 3-dimensional sphere S3 branched over the dumbell graph (i.e.,
over the Hopf link with a bridge). Hence, the number Iso P (Cn) of
positive natural isomorphism classes of n-cyclic permutation graphs is
equal to the number of closed orientable n-fold coverings of the sphere
S3 branched over the dumbell graph.



Chapter 3

Graph coverings and
subgroups of free groups

Let G be a connected graph and let T be a fixed spanning tree of G. A
permutation voltage assignment φ is said to be normalized (with respect
to T ) if φ assigns the identity voltage to the edges of the fixed spanning
tree T . Let C1

T (G;n) denote the set of all normalized permutation
voltage assignments. In order to find an algebraic characterization of
two n-fold coverings p : Gφ → G and q : Gψ → G to be isomorphic,
we assume that they are isomorphic by a covering isomorphism Φ :
Gφ → Gψ. Then Φ|p−1(v) : p

−1(v)→ q−1(v) is a bijection between the n
vertices {v1, v2, . . . , vn} for all v ∈ V (G). Now, we define f : V (G) →
Sn by f(v) = Φ|p−1(v) for all v ∈ V (G). For an edge uv ∈ D(G), if (u, h)
is joined to (v, k) in Gφ, then φ(uv)(h) = k and (u, f(u)(h)) is joined
to (v, f(v)(k)) in Gψ for any h. Thus, we have ψ(uv)f(u) = f(v)φ(uv),
or ψ(uv) = f(v)φ(uv)f(u)−1 for all uv ∈ D(G). The authors showed
that the converse is also true.

Theorem 4 ([24]) Two n-fold coverings p : Gφ → G and q : Gψ → G
are isomorphic if and only if there exists a function f : V (G)→ Sn such
that ψ(uv) = f(v)φ(uv)f(u)−1 for each uv ∈ D(G). Moreover, if φ, ψ ∈
C1
T (G;n), then it is equivalent to say that there exists a permutation

σ ∈ Sn such that ψ(uv) = σφ(uv)σ−1 for each uv ∈ D(G)−D(T ).

By labeling the positively directed edges in D(G)−D(T ) as e1, e2,
. . ., eβ(G), a normalized permutation voltage assignment can be identi-

9



10 Graph coverings and subgroups of free groups

fied as a β(G)-tuple of permutations in Sn, and the set C1
T (G;n) can

be identified as

C1
T (G;n) = Sn × Sn × · · · × Sn, (β(G) times).

With an Sn-action on the set C1
T (G;n) defined by simultaneous coordi-

natewise conjugacy: for any g ∈ Sn and any (σ1, . . . , σβ(G)) ∈ C
1
T (G;n),

g(σ1, σ2, . . . , σβ(G)) = (gσ1g
−1, gσ2g

−1, . . . , gσβ(G)g
−1),

it follows from Theorem 4 that two normalized permutation voltage
assignments φ, ψ in C1

T (G;n) derive isomorphic coverings of G if and
only if they belong to the same orbit under the Sn-action. That is,
each β(G)-tuple of permutations (σ1, . . . , σβ(G)), σi ∈ Sn is identified
with a normalized permutation voltage assignment φ in C1

T (G;n), and
such two tuples derive isomorphic coverings of G if and only if they are
simultaneous coordinatewise conjugate.

Two β-tuples of permutations (σ1, σ2, . . . , σβ) and (τ1, τ2, . . . , τβ) in
Sn are said to be similar by g, or simply similar, if they are simultaneous
coordinatewise conjugate by g, that is,

τi = gσig
−1 for i = 1, 2, . . . , β.

If we can find g ∈ Sn that leaves fixed some k in {1, 2, . . . , n}, then the
tuples are said to be k-similar.

By Theorem 4, there is a one-to-one correspondence between the
similarity classes of β(G)-tuples of permutations in Sn and the iso-
morphism classes of n-fold coverings of the graph G. We denote by
Iso (G;n) the number of such isomorphism classes of n-fold coverings
of G.

To count Iso (G;n) by Burnside’s Lemma, we first count Fix (g) for
each g ∈ Sn. Let C(g) and Z(g) denote the conjugacy class containing
g and the center of g in the symmetric group Sn, respectively.

Lemma 2 Under the Sn-action on C1
T (G;n) = Sn × Sn × · · · × Sn, we

have

(1) if g1 and g2 are conjugate, then |Fix (g1)| = |Fix (g2)|,

(2) for each g ∈ Sn, Fix (g) = Z(g)×Z(g)×· · ·×Z(g), β(G) times,
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β(G) 1 2 3 4 5 6

n = 1 1 1 1 1 1 1
n = 2 2 4 8 16 32 64
n = 3 3 11 49 251 1393 8051
n = 4 5 43 681 14491 336465 7997683
n = 5 7 161 14721 1730861 207388305 24883501301

Table 3.1: The number Iso (G;n) for small n and small β(G)

(3) |C(g)||Z(g)| = n! for any g ∈ Sn.

By using Lemma 2 and Burnside’s Lemma, we have

Theorem 5 ([24]) The number of isomorphism classes of n-fold cov-
erings of G is

Iso (G;n) =
∑

`1+2`2+···+n`n=n

(
`1! 2

`2`2! · · ·n
`n`n!

)β(G)−1
.

Next, we aim to compute the number Isoc (G;n) of isomorphism
classes of connected n-fold coverings of G. Let p : G̃ → G be an n-
fold covering and let G̃1, G̃2, . . ., G̃` be the components of G̃. Then
pi = p|G̃i : G̃i → G is a connected covering of G for each i = 1, 2, . . . , `.

Let ni be the fold number of the connected covering pi : G̃i → G.
Then ni ≥ 1 and n1 + · · ·+ n` = n. In this case, the ordered sequence
[n1n2 · · ·n`] with n1 ≤ n2 ≤ · · · ≤ n` is just a partition of n, denoted
by p[n] or simply by p. Also, we say that a covering p : G̃ → G has
the component type of partition p[n] = [n1n2 · · ·n`]. Clearly, any two
isomorphic n-fold coverings have the same component type. A partition
p of n is denoted by [[k; n

k
]] if every term of p is k. Note that [[k;m]]

denotes the partition of the natural number km each of whose terms is
k. For a partition p of n, let jk(p) denote the multiplicity of k in the
partition p, so that j1(p) + 2j2(p) + · · ·+ njn(p) = n. For convenience,
let P(n) denote the set of all partitions of a natural number n. For
a partition p of n, let Iso (G; p) denote the number of nonisomorphic
n-fold coverings of G having the component type p. Clearly,

Iso (G; [[n; 1]]) = Isoc (G;n), Iso (G; [[1;n]]) = 1,
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and
Iso (G;n) =

∑

p∈P(n)

Iso (G; p).

It gives a recursive formula for calculation the number Isoc (G;n)
as follows.

Theorem 6 ([28]) For n ≥ 2, the number of nonisomorphic connected
n-fold coverings of G is

Isoc (G;n)

=
∑

`1+2`2···+(n−1)`n−1=n−1

(
(`1 + 1)β(G)−1 − 1

)

×
(
`1! 2

`2`2! · · · (n− 1)`n−1`n−1!
)β(G)−1

+
∑

2`2+3`3+···+n`n=n

(
2`2`2! 3

`3`3! · · ·n
`n`n!

)β(G)−1

−
∑

p ∈ P(n)− {[[n; 1]]}
j1(p) = 0

∏

jk(p)6=0


 1

jk(p)!

jk(p)−1∏

`=0

(Isoc (G; k) + `)


 ,

where the summation over the empty index set is defined to be 0.

Proof: Since an n-fold covering of G having the component type [[n; 1]]
is connected, we have

Iso (G; [[n; 1]]) = Isoc (G;n)

and
Isoc (G;n) = Iso (G;n)−

∑

p∈P(n)−{[[n;1]]}

Iso (G; p),

where the summation over the empty index set is defined to be 0. Let
p ∈ P(n) with j1(p) 6= 0 and let p : G̃ → G be a covering having the
component type p. Then G̃ has j1(p) components which are isomorphic
to G, and the restriction of p : G̃ → G on the complement of one of
such components in G̃ is an (n− 1)-fold covering of G. Hence, we get

∑

p∈P(n), j1(p)6=0

Iso (G; p) = Iso (G;n− 1).
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It implies that

Isoc (G;n)

= Iso (G;n)− Iso (G;n− 1)−
∑

p ∈ P(n)− {[[n; 1]]}
j1(p) = 0

Iso (G; p)

=
∑

`1+2`2···+(n−1)`n−1=n−1

(
(`1 + 1)β(G)−1 − 1

)

×
(
`1! 2

`2`2! · · · (n− 1)`n−1`n−1!
)β(G)−1

+
∑

2`2+3`3+···+n`n=n

(
2`2`2! 3

`3`3! · · ·n
`n`n!

)β(G)−1

−
∑

p ∈ P(n)− {[[n; 1]]}
j1(p) = 0

Iso (G; p),

where Iso (G; 0) = 0 by definition and the summation over the empty
index set is defined to be 0. Since

Iso (G; 1) = Isoc (G; 1) = Iso (G; [[1;m]]) = 1

for any natural number m, we have

Iso (G; p) =
∏

jk(p)6=0,k 6=1

Iso (G; [[k; jk(p)]])

for any partition p ∈ P(n)−{[[n; 1]]} with j1(p) = 0. Now, to complete
the proof, we need to estimate the number Iso (G; [[s; t]]) for any natu-
ral numbers s and t. Let p : G̃→ G be a covering having the component
type [[s; t]]. Then G̃ has exactly t components and the restriction of
p : G̃→ G on each of such t components is a connected s-fold covering
of G. Hence, a covering automorphism on a covering p : G̃→ G having
a component type [[s; t]] must permute its t components so that each
component maps onto its isomorphic copy. It implies that the number
Iso (G; [[s; t]]) is equal to the number of selections with repetition of t
objects chosen from Isoc (G; s) types of objects, i.e.,

Iso (G; [[s; t]]) =

(
Isoc (G; s) + t− 1

t

)
=

1

t !

(
t−1∏

i=0

(Isoc (G; s) + i)

)
.
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This completes the proof.

Corollary 1 Let p be a partition of a natural number n. Then

Iso (G; p) =
∏

jk(p)6=0

1

jk(p)!



jk(p)−1∏

i=0

(Isoc (G; k) + i)


 .

In particular, if jk(p) = 0 or 1 for each k = 1, 2, . . . , n, then

Iso (G; p) =
∏

jk(p)=1

Isoc (G; k).

In fact, Liskovets [31] computed the number Isoc (G;n) in terms of
the Möbius function and the number SFβ(G)

(m) :

Isoc (G;n) =
1

n

∑

m|n

SFβ(G)
(m)

∑

d| n
m

µ
( n

md

)
d(β(G)−1)m+1,

where µ(k) is the number-theoretic Möbius function and SFβ(G)
(m) de-

notes the number of subgroups of index m in the free group Fβ(G)
generated by β(G) elements.

Example 1 By applying Theorem 6, we have

Isoc (G; 2) = (2β(G)−1 − 1) + 2β(G)−1 = 2β(G) − 1,

Isoc (G; 3) = (3β(G)−1−1)2β(G)−1+3β(G)−1 = 6β(G)−1+3β(G)−1−2β(G)−1,

and

Isoc (G; 4)

= (4β(G)−1 − 1)6β(G)−1 + (2β(G)−1 − 1)2β(G)−1 + 8β(G)−1 + 4β(G)−1

−Iso (G; [[2; 2]])

= 24β(G)−1 + 8β(G)−1 + (2β(G) − 1)2β(G)−1 − 6β(G)−1

−(2β(G) − 1)2β(G)−1

= 24β(G)−1 + 8β(G)−1 − 6β(G)−1.
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It is well-known (e.g., see [35]) in topology that the fundamental
group of a graph G is a free group of rank β(G), and there exists a one-
to-one correspondence between the isomorphism classes of connected
n-fold coverings of G and the conjugacy classes of subgroups of index
n of the fundamental group of G. Thus, by using the enumerating
formula for Isoc (G;n) in Theorem 6, we can compute the number of
conjugacy classes of subgroups of index n of any finitely generated free
group.

Notice that the number Iso (G;n) of nonisomorphic n-fold coverings
of G can be expresses (in terms of Isoc (G;n)) as follows.

Iso (G;n) =
∑

p∈P(n)

∏

jk(p)6=0


 1

jk(p)!

jk(p)−1∏

`=0

(Isoc (G; k) + `)


 .

Remark An enumeration of the number of nonisomorphic n-fold cov-
erings or n-fold connected coverings of a graph was also independently
done by Hofmeister ([10, 14]). Liskovets ([31]) also enumerated those
connected coverings by counting the conjugacy classes of subgroups of
a finitely generated free group in terms of Möbius function.

Comparing with the combinatorial computation of the number Isoc
(G;n) of nonisomorphic connected n-fold coverings of G in Theorem
6, there is another group-theoretic computation of it with Burnside’s
Lemma. A β(G)-tuple of permutations (σ1, . . . , σβ(G)), σi ∈ Sn is called
transitive if the permutation group< σ1, . . . , σβ(G) > generated by them
acts transitively on the set {1, 2, . . . , n} . Let G(n; β) denote the set of
all transitive β-tuples of permutations in Sn.

Lemma 3 The following are equivalent for a voltage assignment φ =
(σ1, . . . , σβ(G)) in C

1
T (G;n).

(1) It is transitive, i.e., φ ∈ G(n; β(G)).

(2) The associated transition graph with {1, 2, . . . , n} as its vertex set
and with pairs {i, σj(i)}i,j as its edges is connected.

(3) The permutation derived graph Gφ is connected.

The following is a direct consequence of Lemma 3 and Theorem 4.
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Lemma 4 ([32]) There is a one-to-one correspondence among the fol-
lowing sets:

(1) The set of similarity classes of transitive β(G)-tuples of permuta-
tions in Sn.

(2) The set of nonisomorphic connected n-fold coverings of G.

(3) The set of conjugacy classes of subgroups of index n in the free
group generated by β(G) elements.

Liskovets ([31]) used Burnside’s Lemma to compute the number
Isoc (G;n) of the conjugacy classes of subgroups of index n in the free
group generated by β = β(G) elements:

Isoc (G;n) = |G(n; β)/Sn| =
1

n!

∑

g∈Sn

|Fix (g)|

=
1

n

∑

m|n

SF(m)
∑

d| n
m

µ
( n

md

)
d(β−1)m+1,

where β = β(G), µ(n) is the number-theoretic Möbius function and
SF(m) denotes the number of subgroups of index m in the free group
F generated by β elements.

In advance of stating Liskovets’ method for computing the number
Isoc (G;n), we introduce Hall’s formula to count the number of sub-
groups of index n in a finitely generated free group. Let F be the free
group of rank β generated by Y = {s1, s2, . . . , sβ}. Let U be a subgroup
of index n in F with a left coset representation:

F = U 1 + Ug2 + · · ·+ Ugn = U + Ug2 + · · ·+ Ugn.

Here, we can assume that the representatives gi’s with g1 = 1, the
identity, are selected to be a Schreier system,1 even it is not unique in
general. Define a function φ on the set {gsε | g ∈ {gi}, s ∈ Y, ε = ±1}
so that φ(gsε) is the representative of the coset containing gsε, i.e.,
φ(gsε) = gi if gs

ε ∈ Ugi. Then the function φ satisfies the following
three conditions:

1 A set W of reduced words in a free group F is a Schreier system if any g =
a1a2 · · · at, in a reduced form, belongs to W , then the element a1a2 · · · at−1 is also
belonging to W.
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(i) φ(gis
ε) ∈ {gi},

(ii) if gis
ε ∈ {gi}, then φ(gis

ε) = gis
ε,

(iii) φ[φ(gis
ε)s−ε] = gi .

For a subgroup U of a free group F generated by Y, the pair U =
U [{gi}, φ] of a Schreier system {gi} of coset representatives and a func-
tion φ on the set {gsε} satisfying the three conditions (i)-(iii) listed
above is called the standard representation for the subgroup U . For a
standard representation U = U [{gi}, φ] for U , it is known that the el-
ements gsφ(gs)−1’s, where g runs over the representatives gi’s and s
over the generating set Y , generate the subgroup U . In particular, the
subgroup U is also finitely generated.

The following lemma gives a criterion for recognizing different rep-
resentations of the same subgroup.

Lemma 5 ([7]) Let U1 = U1[{g
(1)
i }, φ1] and U2 = U2[{g

(2)
j }, φ2] be

standard representations for the subgroups U1 and U2, respectively.
Then U1 = U2 if and only if there is a one-to-one correspondence
{g

(1)
i } ↔ {g

(2)
j } between the representative sets mapping the identity

onto itself such that if g
(1)
i ↔ g

(2)
j including 1 = g

(1)
1 ↔ g

(2)
1 = 1, then

φ1(g
(1)
i sε)↔ φ2(g

(2)
j sε) for any s ∈ Y.

Proof: The necessity is clear: Suppose U1 = U2 = U . If Ug
(1)
i = Ug(2)j

is the same left coset of U in the two coset representatives, then the
correspondence g

(1)
i ↔ g

(2)
j gives a desired one-to-one correspondence

between {g
(1)
i } and {g

(2)
j }.

For the sufficiency, suppose that a 1-1 correspondence {g
(1)
i } ↔

{g
(2)
j } is given with 1 = g

(1)
1 ↔ g

(2)
1 = 1 such that if g

(1)
i ↔ g

(2)
j , then

φ1(g
(1)
i sε)↔ φ2(g

(2)
j sε) for any s ∈ Y. By induction on length `(f) of an

element f ∈ F , (i.e., the length of the reduced word for f) we can show
that an element belonging to a coset of U1 belongs to the corresponding
coset of U2. This is true for `(f) = 0, since f = 1 and 1↔ 1. And if f

is in the cosets U1g
(1)
i = U2g

(2)
j , then fsε is in the corresponding cosets

U1φ1(g
(1)
i sε) ↔ U2φ2(g

(2)
j sε) . Hence, the corresponding cosets are the
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same, and in particular U1 = U2.

For the next lemma, let U be a subgroup of a (free or not) group
F generated by Y = {s1, . . . , si, . . .}. For an si ∈ Y , by multiplying si
on the right of each (left) coset of U in F , we have a permutation
πi = π(si) on the left cosets. Since Y = {si} generates F , the πi’s
generate a group which is transitive on the set of cosets. The following
is a kind of converse for free groups.

Lemma 6 Given a free group F generated by Y = {s1, . . . , si, . . .}, and
a set of indices I = {1, . . . , i, . . .}. With each generator si, associate
a permutation πi on the indices I. Suppose J = {1, . . . , j, . . .} is the
transitive constituent of I containing 1. Then in F , there is a Schreier
system {g1 = 1, g2, . . . , gj, . . .} indexed by J and a function φ on the set
{gjs

ε
i} such that

φ(gjs
ε
i ) = gk if and only if πεi (j) = k .

Proof: The permutations πi generate a permutation group P of indices.
Let E be the subgroup of P consisting of permutations π which fix the
index 1. The mapping si 7→ πi determines an epimorphism of F → P,
and let U be the subgroup of F mapped onto E ; U → E. Now, choose
a coset representative {g} of U in F as a Schreier system:

F = U 1 + Ug2 + · · ·+ Ugj + · · · ,

and let φ(gjs
ε) is the representative of the coset containing gjs

ε, as
before. If g 7→ π, then Ug 7→ Eπ, i.e., the epimorphism F → P
preserves the left coset representative. If π maps the index 1 to j, we
write (1)π = j, and assign the index j to g, putting g = gj. Hence, the
Schreier system {g} is indexed by J , in which if gj 7→ π and sεi 7→ πεi
then gjs

ε
i 7→ ππεi . Now, if (j)π

ε
i = k, then (1)ππεi = k and ππεi belongs

to the left coset Eη of E consisting of those permutations τ of E which
maps 1 to k, (1)τ = k. Here, Ugk → Eη. Hence, gjs

ε
i belongs to Ugk,

or φ(gjs
ε
i ) = gk.

With each element f of F generated by {s1, . . . , sβ}, say f =
si1 · · · sit , the associated permutation π(f) = π(si1) · · · π(sit) defines
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a transitive n-degree permutation representation of the group F , and
those elements f such that π(f) fixes 1 will form the subgroup U . Con-
versely, any transitive n-degree permutation representation of the group
F determines a subgroup of index n in the group F , by Lemma 6. And,
by Lemma 5, such kinds of two representations derived by a Schreier
system {gi} and functions {φ(gis)} determines the same subgroup U if
and only if they are equivalent via a permutation σ on {gi} such that
σ(1) = 1. By identifying an n-degree permutation representation of F
with its restriction on the generating set Y = {s1, s2, . . . , sβ}, i.e., with
a transitive β-tuples of permutations on Sn, Lemma 5 can be rephrased
as follows.

Lemma 7 For n > 1, there exists a one-to-one correspondence between
the subgroups of index n of the free group F and the 1-similarity classes
of transitive β-tuples of permutations in Sn.

So far, we used some group theory terminologies like Schreier sys-
tems or the standard representations for subgroups to have Lemma 7.
But, we can give simpler proof by using graph coverings and a fun-
damental group theory as follows: Consider the free group F as the
fundamental group π1(G, v) of a connected graph G with base vertex
v. We assume that G has β = β(G) cotree edges. It is well-known that
every subgroup of F = π1(G, v) is expressed as the image p](π1(G

φ, vi))
of the fundamental group of a connected covering p : Gφ → G, where
φ = (σ1, . . . , σβ(G)) is a transitive permutation voltage assignment in
C1
T (G;n), and vi is a vertex in the fibre of v. Furthermore, for any two

transitive permutation voltage assignments φ, ψ in C1
T (G;n),

p](π1(G
φ, vi)) = p](π1(G

ψ, vj))

if and only if the two coverings are isomorphic by a covering isomor-
phism Φ which preserves the base point. Hence, we can say that in
Theorem 4, the permutation σ leaves fixed 1, by relabeling of vertices
in the fibre p−1(v) if necessary.

Remark As a generalization of Lemma 7, the connection between
subgroups of any finitely presented group and its transitive permuta-
tional representations (see [8] Ch5 or [33]) can be formulated as follows:
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Given a finitely presented group

A = {x1, x2, . . . , xr : f1 = 1, f2 = 1, . . . }

there is a one-to-one correspondence between the subgroups of in-
dex n ≥ 1 in A and the root-similarity classes of transitive r-tuples
(x1, x2, . . . , xr) in Sn that satisfy the defining relations {fj = 1}, j =
1, 2, . . . .

Now, we may enumerate recursively the number of subgroups of
index n in the free group F .

Theorem 7 ([7]) The number SF(n) of subgroups of index n in the
free group F generated by β elements is given as

SF(n) = n(n!)β−1 −
n−1∑

t=1

(n− t)!β−1SF(t) with SF(1) = 1.

Proof: Clear for n = 1. Choose β permutations P1, . . . , Pβ on symbols
{1, g2, . . . , gn}. In general, P1, . . . , Pβ need not generate a group tran-
sitive on all of 1, g2, . . . , gn. Let the transitive constituent including
1 be 1, b2, . . . , bt. Disregarding the remaining letters, we may take as
π(s1), . . . , π(sβ) the permutations on 1, b2, . . . , bt, and these will deter-
mine a unique subgroup of index t. The remaining n − t letters could
occur in P1, . . . , Pβ in [(n − t)!]β ways. In addition, by Lemma 5, the
same group will be determined if we replace 1, b2, . . . , bt by any other
combination 1, c2, . . . , ct in the symbols {1, g2, . . . , gn}, and the remain-
ing n − t letters in an arbitrary way. Also, the symbols b2, . . . , bt can
be replaced by c2, . . . , ct from g2, . . . , gn in (n− 1)(n− 2) · · · (n− t+1)
different ways. Thus a total of

(n− 1)(n− 2) · · · (n− t+ 1)[(n− t)!]β = (n− 1)! [(n− t)!]β−1

different permutations P1, . . . , Pβ may be associated with the same sub-
group of index t, and (n− 1)! [(n− t)!]β−1SF(t) permutations are asso-
ciated with the subgroups of index t. Hence, we get

n∑

t=1

(n− 1)! [(n− t)!]β−1SF(t) = (n!)β .
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Dividing by (n− 1)!, we can get the desired formula.

The symmetric group Sn acts naturally on the set {1, 2, . . . , n},
and also acts on the set G(n; β) by the simultaneous coordinatewise
conjugacy. But, these two actions are mutually orthogonal, because
any β-tuple in the set G(n; β) is transitive. Hence, the group Sn−1, as
the subgroup of Sn consisting of permutations σ fixing 1, i.e., σ(1) = 1,
acts freely on the set G(n; β) and it follows by Lemma 7 and Burnside’s
Lemma

|G(n; β)| = (n− 1)!SF(n) ,

where F is the free group generated by β elements.
Now, we go back to Liskovets’ method for computing the number

Isoc (G;n). It is already known that

Isoc (G;n) = |G(n; β)/Sn| =
1

n!

∑

g∈Sn

|Fix (g)|

and Fix (g) = G(n; β)∩(Z(g)×. . .×Z(g)), where β = β(G). If Fix (g) 6=
∅ and φ = (σ1, . . . , σβ) belongs to Fix (g), then g commutes with the the
group< σ1, . . . , σβ >, which is transitive on the set {1, 2, . . . , n}. Hence,
g must be a regular permutation, i.e., it consists of independent cycles
of the same length `. For each `m = n, there exist n!/(m! `m) regular
permutations g in Sn consisting of m cycles of length `, and |Fix (g)|
are equal for all such regular g. We denote this value by |Fix ((`m))|,
and call such g a permutation of type (`m). Hence, we get

Isoc (G;n) =
1

n!

∑

g∈Sn

|Fix (g)| =
∑

`|n,`m=n

|Fix ((`m))|

m! `m
.

The following lemma is well-known and an elementary exercise in
group theory.

Lemma 8 Let g0 be the permutation in Sn of type (`m):

g0 = (12 · · · `) (`+ 1 · · · 2`) · · · ((m− 1)`+ 1 · · ·n) .

Then, the centralizer Z(g0) of g0 is a wreath product Z` o Sm, where Z`

is the cyclic group generated by the `-cycle (12 · · · `). An element of the
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wreath product Z` o Sm is of the form a = (c1, . . . , cm; ã), where ci ∈ Z`

and ã ∈ Sm. The element a = (c1, . . . , cm; ã) represents a permutation
in Sn acting on the set {1, . . . , n} as follows. Notice that each element
in {1, . . . , n} is of the form k = (s−1)`+ t = ts(1 ≤ s ≤ m, 1 ≤ t ≤ `).
Then

(ts)a = (k)a = (k)(c1, . . . , cm; ã) = ((s)ã− 1)`+ (t)cs = ((t)cs)(s)ã,

that is, first perform a cyclic transposition by the s-th cycle cs of the
permutation g0 for all s = 1, . . . ,m, and then shift through the action
of the permutation ã in Sm. If b = (d1, . . . , dm; b̃) ∈ Z` o Sm, then

a · b = (c1 + d(1)ã, . . . , cm + d(m)ã; ãb̃) = (c1d(1)ã, . . . , cmd(m)ã; ãb̃) ,

where (s)ab = ((s)a)b for all s ∈ {1, . . . ,m}.

Proof: Let g0 = (12 · · · `) (`+ 1 · · · 2`) · · · ((m− 1)`+ 1 · · ·n). Then g0
can be identified with the element (1, . . . , 1; 1) in Z` oSm. Then, for each
g = (c1, . . . , cm; ã) in Z` oSm, we have gg0 = (1+c1, . . . , 1+cm; ã) = g0g.
It implies that Z` o Sm is a subgroup of the centralizer Z(g0) of g0. Let
C(g0) be the conjugacy class of g0. Then |C(g0)| = n!/(m!`m). Since
|Sn| = |Z(g0)| |C(g0)|, |Z(g0)| = m!`m = |Z` o Sm| and hence Z` o Sm is
the centralizer Z(g0) of g0.

From the notations, we have |Fix ((`m))| = |Fix (g0)| and

Fix (g0) =
{
(a1, . . . , aβ) ∈ (Z` o Sm)

β |
< a1, . . . , aβ > is transitive in {1, . . . , n = `m}} .

We set

F (`m) =
{
(a1, . . . , aβ) ∈ (Z` o Sm)

β |
< ã1, . . . , ãβ > is transitive in {1, . . . ,m}} .

The following lemma is due to Liskovets [31].

Lemma 9 For any n = `m and any β, we have

(1) |F (`m)| =
∑

k|`,kd=`

km−1|Fix ((dm))| .
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(2) |F (`m)| = `βm|G(m; β)| .

Proof: Set S = {1, 1 + k, . . . , 1 + (d − 1)k}. For each 2 ≤ s ≤ m and
0 ≤ hs ≤ k − 1, let

B(0, h2, . . . , hm)0 = S ∪

(
m⋃

s=2

S + (s− 1) `+ hs

)

and

B(h, s)t = B(0, h2, . . . , hm)0 + t

for each t = 1, 2, . . . , k − 1, where all arithmetic is done by modulo
`. It is not hard to show that every element in F (`m) is transitive on
each of the following sets B(0, h2, . . . , hm)0, . . . , B(0, h2, . . . , hm)k−1 for
some s = 2, . . . ,m and hs = 0, 1, . . . , k − 1. Notice that Fix ((dm)) can
be identified with the set of all elements in (Z` o Sm)

β which is tran-
sitive on each of the sets B(0, 0, . . . , 0)0, . . . , B(0, 0, . . . , 0)k−1. More-
over, (0, h2, . . . , hm; 1)Fix ((d

m))(0, h2, . . . , hm; 1)
−1 is the set of all el-

ements in (Z` o Sm)
β which is transitive on each of the following sets

B(0, h2, . . . , hm)0, . . . , B(0, h2, . . . , hm)k−1. Hence, we have (1).

Now, we aim to show (2). For each β-tuple (ã1, . . . , ãβ) which is
transitive in {1, . . . ,m}, there exists `βm elements (b1, . . . , bβ) in F (`

m)
such that (b̃1, . . . , b̃β) = (ã1, . . . , ãβ). It implies (2).

Theorem 8 ([31]) The number Isoc (G;n) of the conjugacy classes of
subgroups of index n in the free group generated by β elements is given
by the formula

Isoc (G;n) =
1

n

∑

m|n

SF(m)
∑

d| n
m

µ
( n

md

)
d(β−1)m+1,

where β = β(G) and µ(n) is the number-theoretic Möbius function.

Proof:
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Let A(n) =
|F (nm)|

nm−1
and a(n) =

|Fix ((n)m)|

nm−1
. Then, by Lemma 9

(1),

A(n) =
1

nm−1



∑

d|n

(n
d

)m−1
|Fix ((dm))|


 =

∑

d|n

1

dm−1
|Fix ((dm))|

=
∑

d|n

a(d).

By the Möbius inversion formula, we can see that

a(`) =
∑

d|`

µ(d)A

(
`

d

)
=
∑

d|`

µ(d)

(
d

`

)m−1 ∣∣∣∣F
(
`m

dm

)∣∣∣∣ .

By the definition of the function a(n), we can get

|Fix ((`)m)| =
∑

d|`

µ(d) dm−1
∣∣∣∣F
(
`m

dm

)∣∣∣∣ .

Recall that

Isoc (G;n) =
1

n!

∑

g∈Sn

|Fix (g)| =
∑

`|n,`m=n

|Fix ((`m))|

m!`m

and

|G(n; β)| = (n− 1)!SF(n).

Now, by using these facts and Lemma 9 (2) together with an elementary
computation, we have the theorem.

The number Isoc (G;n) for small n and β(G) is listed in table 3.2.

Question: What are the relations between two different formulas for
Isoc (G;n) ?
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β(G) 1 2 3 4 5 6

n = 1 1 1 1 1 1 1
n = 2 1 3 7 15 31 63
n = 3 1 7 41 235 1361 7987
n = 4 1 26 604 14120 334576 7987616
n = 5 1 97 13753 1712845 207009649 24875000437
n = 6 1 624 504243 371515454 268530771271 193466859054994

Table 3.2: The number Isoc (G;n) for small n and small β(G)

Remark The fundamental group of any (connected) graph G is a
free group generated by β(G) elements, and the conjugacy classes of
its subgroups of index n are in one-to-one correspondence with the
nonisomorphic connected n-fold coverings of G. Such a correspondence
is established via the monomorphic image of the fundamental group
of a connected covering of G. Since any covering of a graph is also a
graph, every subgroup of a free group is also a free group. Moreover,
any subgroup of index n in the free group generated by β = β(G)
elements is a monomorphic image of the fundamental group of an n-
fold connected covering of G. Hence, it must be a free group generated
by 1 + n(β(G) − 1) elements, because it must be equal to the Betti
number of a connected n-fold covering of G.

Remark Related to the construction problem for all nonisomorphic
connected n-fold coverings of a graph, one can ask the following two
questions: (1) find a (minimal) generating set for each subgroup of a
given index of a finitely generated free group F and (2) find all possible
lists of a (minimal) generating set for each of those subgroups. The
first question can be answered by Reidemeister-Schreier method. The
second one can be done by the description of Aut (F) (See [34]).
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Chapter 4

Regular coverings with
abelian voltage groups and
subgroups of free abelian
groups

Let A be a finite group and let SA denote the symmetric group on
the group elements of A. It gives the (left) regular representation of
A → SA via g → L(g), the left multiplication by g on A. Clearly, this
representation is monomial and the group A can be identified with the
group of left transformations L(g)’s: A ≡ {L(g) | g ∈ A} (Cayley
Theorem). Notice that a permutation voltage assignment φ : D(G)→
SA having its images in A is nothing but an A-voltage assignment of
G, and for such a voltage assignment φ, the permutation derived graph
Gφ is just the ordinary derived graph G×φ A.

Let C1
T (G;A) denote the set of all normalizedA-voltage assignments

of G. Recall ([4]) that any regular n-fold covering of G is isomorphic
to an ordinary derived graph G×φ A for a group A of order n and for
a φ ∈ C1

T (G;A). From the construction of an ordinary derived graph
G ×φ A, it is clear that if the regular graph covering p : G ×φ A → G
is connected, then the group A becomes the covering transformation
group.

Let Iso (G;A) (resp. Isoc (G;A)) denote the number of noniso-
morphic (resp. connected) regular A-coverings. We use IsoR(G;n) to

27
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denote the number of nonisomorphic regular n-fold coverings regardless
of the group A involved. Similarly, we define IsocR(G;n).

The algebraic characterization of two isomorphic graph coverings
given in Theorem 4 can be rephrased for regular coverings as follows.

Theorem 9 ([16]) Let φ ∈ C1
T (G;A) and ψ ∈ C1

T (G;B) be any two
ordinary voltage assignments in G. If their derived (regular) coverings
pφ : G ×φ A → G and pψ : G ×ψ B → G are connected, then they are
isomorphic if and only if there exists a group isomorphism σ : A → B
such that ψ(uv) = σ(φ(uv)) for all uv ∈ D(G)−D(T ).

In particular, if two voltages φ and ψ in C1
T (G;A) derive connected

coverings, then their derived coverings are isomorphic if and only if
there exists a group automorphism σ ∈ Aut(A) such that

ψ(uv) = σ(φ(uv))

for all uv ∈ D(G)−D(T ).

As the case of the set C1
T (G;n), the set C1

T (G;A) of A-voltage as-
signments of G can be identified as

C1
T (G;A) = A×A× · · · × A, (β(G) times),

that is, anA-voltage assignment φ ofG can be identified as a β(G)-tuple
(g1, . . . , gβ(G)) of group elements gi ∈ A. Moreover, such a β(G)-tuple
of g’s derives a connected covering if and only if it is transitive. It
means by definition that the subgroup < g1, . . . , gβ(G) > generated by
them acts transitively on the group A (under the left translation on
A), or equivalently {g1, g2, . . . , gβ(G)} generates A.

Under the coordinatewise Aut (A)-action on the set of transitive
β(G)-tuples of group elements gi ∈ A, any two transitive β(G)-tuples
of elements in A belong to the same orbit if and only if they derive
(connected) isomorphic A-coverings, by Theorem 9.

Clearly, the Aut (A)-action on the set of transitive β(G)-tuples of
group elements gi ∈ A is free (having no fixed element), from which
Burnside’s Lemma gives an enumeration formula for Isoc (G;A) as
follows.
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Theorem 10 For any finite group A,

Isoc (G;A) =
|G(A; β(G))|

|Aut (A)|
,

where G(A; β) = { (g1, g2, . . . , gβ) ∈ A
β | {g1, g2, . . . , gβ} generates A}.

Note that the set G(A; β(G)) can be identified as the set of epimor-
phisms from the free group generated by β(G) elements onto the group
A. Such kind identification will be reviewed again in chapter 6.

It is not difficult to show that the components of any regular cover-
ing G×φ A → G are isomorphic each other as coverings of G, and any
two connected isomorphic regular coverings of G must have isomorphic
covering transformation groups. To describe a component of the cover-
ing graph G×φ A for φ ∈ C1

T (G;A), let Aφ(v) denote the local voltage
group of φ at v which is, by definition, the subgroup of A consisting
of all net φ-voltages of the closed walks based at v ∈ V (G). The net
φ-voltage of a closed walk is the product of the forward voltages (writ-
ten from right to left) along the edges of the walk. Clearly, the local
voltage groups Aφ(v) of φ ∈ C1

T (G;A), v ∈ V (G), are independent of
the choice of the base vertex v, and we simply denote it by Aφ. It is
clear from the construction of the derived graph G ×φ A that for any
voltage assignment φ ∈ C1

T (G;A), the derived graph G ×φ A is con-
nected if and only if the local voltage group Aφ is just the full group
A. In fact, each component of G×φA is isomorphic to the component
of G×φ A containing the vertices { vid | v ∈ V (G) }, called the identity
component of G ×φ A, where id denotes the identity element of the
group A. In fact, the identity component of an A-covering G ×φ A
is just the Aφ-covering G ×φ Aφ, by the construction of the derived
graph. Now, it comes from Theorem 9 that two regular coverings of
the same fold number of a graph are isomorphic if and only if their
identity components are isomorphic as coverings. Notice that the order
of any subgroup of a finite group A is a divisor of the order |A| of
the group A. The following theorem lists some basic formulas to count
nonisomorphic regular coverings.

Theorem 11 ([22])
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(1) For any natural number n, IsoR(G;n) =
∑

d|n

IsocR(G; d).

(2) For any natural number n, IsocR(G;n) =
∑

A

Isoc (G;A), where

A runs over all nonisomorphic groups of order n.

(3) For any finite group A, Iso (G;A) =
∑

S

Isoc (G;S), where S

runs over all nonisomorphic subgroups of A.

(4) For any finite groups A and B with (|A|, |B|) = 1,

Iso (G;A⊕ B) = Iso (G;A) Iso (G;B)

and
Isoc (G;A⊕ B) = Isoc (G;A) Isoc (G;B).

(5) For any two relatively prime numbers m and n,

IsoR(G;mn) ≥ IsoR(G;m) IsoR(G;n).

Note The number IsoR(G;mn) can be strictly greater than the num-
ber IsoR(G;m) IsoR(G;n), even if m and n are distinct primes. For
example, if β(G) ≥ 2, m = 2 and n = 3, then

IsoR(G; 6) > IsoR(G; 2) IsoR(G; 3),

because

IsoR(G; 6) = Isoc (G;Z6) + Isoc (G;D3)
+Isoc (G;Z3) + Isoc (G;Z2) + 1

= Iso (G;Z6) + Isoc (G;D3),

and Iso (G;Z6) = Iso (G;Z2) Iso (G;Z3) = IsoR(G; 2) IsoR(G; 3).

Example 2 Let Zpm be the cyclic group of order pm, p prime. Then
Aut (Zpm) can be identified with the set of all elements of Zpm which
are relatively prime to pm, that is, the set {λ ∈ Zpm : (λ, pm) = 1}, and

G(Zpm ; β(G)) = { (g1, g2, . . . , gβ(G)) ∈ (Zpm)
β(G) |

at least one of gi’s generates Zpm}.
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It implies that

|Aut (Zpm)| = pm−1(p− 1) and |G(Zpm ; β(G))| = pβ(G)m− pβ(G)(m−1).

Then, by Theorem 10,

Isoc (G;Zpm) =
pβ(G)m − pβ(G)(m−1)

pm−1(p− 1)
= p(β(G)−1)(m−1)

pβ(G) − 1

p− 1

for m > 0. Now, by Theorem 11(3) and the lattice structure of sub-
groups of Zpm , we have

Iso (G;Zpm)

= 1 +
m∑

h=1

p(β(G)−1)(h−1)
pβ(G) − 1

p− 1
= 1 +

pβ(G) − 1

p− 1

pm(β(G)−1) − 1

pβ(G)−1 − 1
.

From Example 2 and Theorem 11(4), we can get

Theorem 12 ([16],[22]) For any n = ps11 p
s2
2 · · · p

s`
` > 1 (a prime factor-

ization), the number of isomorphism classes of connected Zn-coverings
of G is

Isoc (G;Zn) =





0 if β(G) = 0,

∏̀

i=1

p
(β(G)−1)(si−1)
i

p
β(G)
i − 1

pi − 1
if β(G) ≥ 1

And, the number of nonisomorphic Zn-coverings of G is

Iso (G;Zn) =





1 if β(G) = 0,

∏̀

i=1

(si + 1) if β(G) = 1,

∏̀

i=1

(
1 +

(p
β(G)
i − 1)(p

si(β(G)−1)
i − 1)

(pi − 1)(p
β(G)−1
i − 1)

)
if β(G) ≥ 2 .
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For the remain of this chapter, we aim to describe the enumeration
of nonisomorphic regular coverings having a finite abelian voltage group.
By the classification of finite abelian groups, any finite abelian group A
is isomorphic to a direct sum of finite cyclic groups of order powers of
prime numbers. In order to compute the number Iso (G;A), it suffices,
by Theorem 11((3),(4)), to compute the number Iso (G;⊕`

h=1mhZpsh )
or the number Isoc (G;⊕`

h=1mhZpsh ) for a prime p. To do this, we first
introduce the following lemma.

Lemma 10 ([22])

(1) For any natural numbers m and n with m ≤ n, and a prime p,
we have

|G(mZp;n)| = p
m(m−1)

2 (pn − 1)(pn−1 − 1) · · · (pn−m+1 − 1),

and

|Aut (mZp)| = |G(mZp;m)| = p
m(m−1)

2 (pm−1)(pm−1−1) · · · (p−1).

(2) For any natural number s ≥ 1, we have

|G(mZps ;n)| = p(s−1)mn|G(mZp;n)|,

and
|Aut (mZps)| = p(s−1)m

2

|Aut (mZp)|.

By Theorems 11(3), 10 and Lemma 10, we have

Corollary 2 ([22]) For anym, the number of nonisomorphic connected
mZp-coverings of G is

Isoc (G;mZp) =
(pβ(G) − 1)(pβ(G)−1 − 1) · · · (pβ(G)−m+1 − 1)

(pm − 1)(pm−1 − 1) · · · (p− 1)
.

The number of nonisomorphic mZp-coverings of G is

Iso (G;mZp)=1 +
m∑

h=1

(pβ(G) − 1)(pβ(G)−1 − 1) · · · (pβ(G)−h+1 − 1)

(ph − 1)(ph−1 − 1) · · · (p− 1)
.
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This formula for the number Iso (G;mZp) in Corollary 2 is much
more explicit than that of Hofmeister’s in [12].

Remark It is well-known (see [46]) that the number of them-dimensional
subspaces of the n-dimensional vector space nZp over the field Zp is
equal to the Gaussian coefficient

[
n
m

]

p

=

n∏

i=n−m+1

(pi − 1)

m∏

i=1

(pi − 1)

.

Hence, we can say that the number of nonisomorphic connected mZp-
coverings of a connected graph G is equal to the number of the m-
dimensional subspaces of the β(G)-dimensional vector space β(G)Zp.

Letm1Zps1⊕m2Zps2 be the direct sum of two abelian groupsm1Zps1

and m2Zps2 (say, s2 < s1) and let g1 = (g11, g12), . . . , gn = (gn1, gn2) ∈
m1Zps1 ⊕m2Zps2 . Then {g1, . . . , gn} generates m1Zps1 ⊕m2Zps2 if and
only if {(ps1−1g11, p

s2−1g12), . . . , (p
s1−1gn1, p

s2−1gn2)} generates (m1 +
m2)Zp. An analogous argument to the proof of Lemma 10 gives

|G(m1Zps1 ⊕m2Zps2 ;n)| = pn(m1(s1−1)+m2(s2−1))|G((m1 +m2)Zp;n)|.

But, in general,

|Aut (m1Zps1 ⊕m2Zps2 )| 6= |G(m1Zps1 ⊕m2Zps2 ;m1 +m2)|.

Note that the group m1Zps1 ⊕m2Zps2 is an elementary abelian p-group,
so that its automorphism group is isomorphic to the group of nonsin-
gular linear transformations of the vector space m1Zps1 ⊕m2Zps2 . Now,
an elementary exercise gives

|Aut (m1Zps1 ⊕m2Zps2 )| = pg(mi,si)

2∏

i=1

mi∏

h=1

(
pmi−h+1 − 1

)
,

where

g(mi, si) = m

(
2∑

i=1

mi(si − 1)

)
−m1m2(s1 − s2 − 1) +

m(m− 1)

2

with m = m1 +m2 and s2 < s1. In general, we have the following.
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Lemma 11 Let m1, . . . ,m` and s1, . . . , s` be natural numbers with s` <
. . . < s1. Let p be a prime number. Then we have

(1)
∣∣G
(
⊕`
h=1mhZpsh ;n

)∣∣

= pn(m1(s1−1)+···+m`(s`−1))|G((m1 + · · ·+m`)Zp;n)|.

(2)
∣∣Aut (⊕`

h=1mhZpsh )
∣∣ = pg(mi,si)

∏̀

i=1

mi∏

h=1

(
pmi−h+1 − 1

)
,

where

g(mi, si) = m

(
∑̀

i=1

mi(si − 1)

)

−
`−1∑

i=1

mi

(
∑̀

j=i+1

mj(si − sj − 1)

)
+
m(m− 1)

2

with m = m1 + · · ·+m`.

Now, the following comes from Theorem 10 and Lemma 11.

Theorem 13 ([22]) Let m1, . . . ,m` and s1, . . . , s` be natural numbers
with s` < · · · < s1. Then the number of nonisomorphic connected
⊕`
h=1mhZpsh -coverings of G is

Isoc (G;⊕`
h=1mhZpsh ) = pf(β(G),mi,si)

m∏

i=1

pβ(G)−i+1 − 1

∏̀

j=1

mj∏

h=1

pmj−h+1 − 1

,

where m = m1 + · · ·+m`, p is prime and

f(β(G),mi, si) = (β(G)−m)

(
∑̀

i=1

mi(si − 1)

)

+
`−1∑

i=1

mi

(
∑̀

j=i+1

mj(si − sj − 1)

)
.
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Isoc Iso

β (p, q) Zp3 ⊕ Zp Zq2 Zp3 ⊕ Zp ⊕ Zq2 Zp3 ⊕ Zp Zq2 Zp3 ⊕ Zp ⊕ Zq2

1 (2, 3) 0 1 0 4 3 12
2 (2, 5) 6 30 180 32 37 1184
3 (3, 5) 1404 775 1088100 2757 807 2224899
4 (3, 7) 126360 137200 1695792000 161451 137601 22215819051

Table 4.1: The number Isoc (G;A) and Iso (G;A) for some A and
small β(G)

Now, we can compute the number Iso (G;A) for any finite abelian
group A by using Theorems 11((3),(4)) and 13 repeatedly if necessary.
For example, if p and q are two distinct prime numbers, then

Iso (G;Zp3 ⊕ Zp ⊕ Zq2)

= Iso (G;Zp3 ⊕ Zp) Iso (G;Zq2)

=

(
1 +

3∑

i=1

Isoc
(
G;Zpi

)
+

3∑

i=1

Isoc
(
G;Zpi ⊕ Zp

)
)

×

(
1 +

2∑

i=1

Isoc
(
G;Zqi

)
)

=

(
1 +

pβ(G) − 1

p− 1

(
1 + pβ(G)−1

(
1 + pβ(G)−1

))

+

(
pβ(G) − 1

) (
pβ(G)−1 − 1

)

(p− 1) (p2 − 1)

(
1 + pβ(G)−2(p+ 1)

(
1 + pβ(G)−1

))
)

×

(
1 +

(
qβ(G) − 1

) (
qβ(G)−1 + 1

)

q − 1

)
.

For some abelian groupsA and small β(G), the numbers Isoc (G;A)
and Iso (G;A) are listed in table 4.1.

Remark For a connected A-covering p : G̃→ G, the image p∗(π1(G̃))
of the fundamental group of the covering graph G̃ is a normal sub-
group of the fundamental group π1(G) of the base graph G, and the
quotient group π1(G)/p∗(π1(G̃)) is isomorphic to A. If A is abelian,
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β 1 2 3 4 5 6 7 8 9 10
n = 1 1 1 1 1 1 1 1 1 1 1
n = 2 1 3 7 15 31 63 127 255 511 1023
n = 3 1 4 13 40 121 364 1093 3280 9841 29524
n = 4 1 7 35 155 651 2667 10795 43435 174251 698027
n = 5 1 6 31 156 781 3906 19531 97656 488281 2441406
n = 6 1 12 91 600 3751 22932 138811 836400 5028751 30203052
n = 7 1 8 57 400 2801 19608 137257 960800 6725601 47079208
n = 8 1 15 155 1395 11811 97155 788035 6347715 50955971 408345795

Table 4.2: The number of subgroups of index n in ⊕β
1Z

then p∗(π1(G̃)) contains the commutator subgroup [π1(G), π1(G)] of
the free group π1(G). Since [π1(G), π1(G)] is a normal subgroup of
π1(G), the natural homomorphism q : π1(G) → π1(G)/[π1(G), π1(G)]
induces a one-to-one correspondence between the set of all subgroups
of π1(G) containing [π1(G), π1(G)] and the set of all subgroups of the
quotient group π1(G)/[π1(G), π1(G)]. Notice that π1(G)/[π1(G), π1(G)]
is the free abelian group generated by β(G) elements. Now, from a
well-known classification theorem for regular coverings of a topological

space, it follows that the number
∑

A

Isoc (G;A) =
∑

A

|G(A; β(G))|

|Aut (A)|
,

where A runs over all nonisomorphic abelian groups of order n, is
equal to the number of subgroups of index n of the free abelian group
Z×Z× · · · ×Z generated by β(G) elements. For small n and small β,
these numbers are listed in table 4.2.



Chapter 5

Regular coverings having
dihedral voltage groups

In this chapter, we consider a dihedral group as a nonabelian voltage
group, and aim to compute the number of nonisomorphic regular cov-
erings having a dihedral voltage group. Recall that the dihedral group
of order 2n can be presented as follows:

Dn =
〈
a, b : a2 = 1 = bn, aba = b−1

〉
.

Note that D1 = Z2, D2 = Z2 ⊕ Z2, Dn is not abelian for n ≥ 3 with
〈a〉 = Z2 and 〈b〉 = Zn, and an element of Dn can be of the form bi or
abi for i = 0, 1, . . . , n− 1.

Notice that any subgroup of the dihedral group Dn is isomorphic
to one of Di (i is a divisor of n) or Zj (j is a divisor of n), where

37
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Z1 = {identity}. It follows from Theorem 11(3) that for any n ≥ 3

Iso (G;Dn)

=





∑

m|n

Isoc (G;Zm) +
∑

m|n

Isoc (G;Dm) if n is odd

∑

m|n

Isoc (G;Zm) +
∑

m|n,m6=1

Isoc (G;Dm) if n is even

=





Iso (G;Zn) +
∑

m|n

Isoc (G;Dm) if n is odd

Iso (G;Zn) +
∑

m|n,m6=1

Isoc (G;Dm) if n is even.

To compute the number Isoc (G;Dn), we first compute |Aut(Dn)|
and |G(Dn; r)| .

Lemma 12 Let n be a natural number with prime decomposition pm1
1

· · · pm`

` . If n ≥ 3, then

(1) |Aut(Dn)| = n · phi(n) = n pm1−1
1 (p1 − 1) · · · pm`−1

` (p` − 1).

(2) For any natural number r,

|G(Dn; r)| = (2r − 1)
∏̀

i=1

p
(mi−1)r+1
i

(
pr−1i − 1

)
.

Proof: It is not hard to show that

Aut(Dn) =
{
σij : σij(a) = abi, σij(b) = bj, 0 ≤ i, j ≤ n− 1, (n, j) = 1

}
.

It implies that |Aut(Dn)| = n·phi(n) = n pm1−1
1 (p1−1) · · · pm`−1

` (p`−1).
Next, we compute the number |G(Dn; r)|. Since the prime decom-

position of n is pm1
1 · · · pm`

` , Zn =< b > is isomorphic to ⊕`
i=1Zp

mi
i
, where

Zp
mi
i

=< bi > with b = b1 · · · b`. Note that Dn = Zn ∪ aZn, disjoint

union. It is clear that if (g1, . . . , gr) ∈ G(Dn; r) then there exists at
least one j (1 ≤ j ≤ r) such that gj ∈ aZn = {abi | i = 1, . . . , n}. Given
any nonempty subset S of {1, 2, . . . , r}, let G[S] denote the set

{(g1, . . . , gr) ∈ G(Dn; r) : gj ∈ aZn for j ∈ S, and gj ∈ Zn for j 6∈ S}.
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Then ⋃

S(6=∅)⊂{1,2,...,r}

G[S] = G(Dn; r).

Moreover, G[S] and G[T ] are disjoint for any two distinct nonempty
subsets S and T of {1, 2, . . . , r}. It implies that

|G(Dn; r)| =

∣∣∣∣∣∣

⋃

S(6=∅)⊂{1,2,...,r}

G[S]

∣∣∣∣∣∣
=

∑

S(6=∅)⊂{1,2,...,r}

|G[S]|.

For convenience, for each g ∈ Dn, let

g =





(g′1, . . . , g
′
`) if g ∈ Zn = ⊕`

i=1Zp
mi
i

a(g′1, . . . , g
′
`) if g ∈ aZn = a⊕`

i=1 Zp
mi
i
.

Let S be a nonempty subset of {1, . . . , r} and (g1, . . . , gr) ∈ (Dn)
r ≡∏r

i=1 Dn. Then (g1, . . . , gr) ∈ G[S] if and only if for each i = 1, . . . , `,

(g′1i , . . . , g
′
ri
) ∈

r∏

i=1

Zp
mi
i
−

pi−1⋃

k=0

(
∏

j 6∈S

Z
p
mi−1
i

×
∏

j∈S

bkiZp
mi−1
i

)
,

where Z
p
mi−1
i

is the subgroup of Zp
mi
i

generated by bpii . It implies that

for any nonempty subset S of {1, 2, . . . , r},

|G[S]| =
∏̀

i=1

(
pmir
i − p

(mi−1)|S|
i · pi · p

(mi−1)(r−|S|)
i

)

=
∏̀

i=1

p
(mi−1)r+1
i

(
pr−1i − 1

)
,

which does not depend on the set S. Now, the cardinality |G(Dn; r)| of
the set G(Dn; r) is

∑

S(6=∅)⊂{1,2,...,r}

|G[S]| = (2r − 1)
∏̀

i=1

p
(mi−1)r+1
i

(
pr−1i − 1

)
.

Now, the next theorem follows from Theorem 10 and Lemma 12.
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Theorem 14 ([22]) For any n ≥ 3, the number of nonisomorphic con-
nected Dn-coverings of G is

Isoc (G;Dn) =
(
2β(G) − 1

) ∏̀

i=1

p
(mi−1)(β(G)−2)
i

p
β(G)−1
i − 1

pi − 1
,

where pm1
1 · · · pm`

` is the prime decomposition of n.

For any edge e in the cotree G− T , we have β(G− e) = β(G)− 1.
By Example 2, Theorems 13 and 14, we have

Isoc (G;Dn) = (2β(G) − 1)Isoc (G− e;Zn)

for any n ≥ 3. Thus, if n is odd, then

∑

m|n

Isoc (G;Dm) =
(
2β(G) − 1

)∑

m|n

Isoc (G− e;Zm)

=
(
2β(G) − 1

)
Iso (G− e;Zn).

If n is even, then

∑

m|n,m6=1

Isoc (G;Dm)

=
∑

m|n,m≥3

Isoc (G;Dm) + Isoc (G;D2)

=
(
2β(G) − 1

)


∑

m|n

Isoc (G− e;Zm)− [1 + Isoc (G− e;Z2)]




+ Isoc (G;D2)

=
(
2β(G) − 1

)
Iso (G− e;Zn)−

(
2β(G) − 1

)
2β(G)−1

+
1

3

(
2β(G) − 1

) (
2β(G)−1 − 1

)

=
(
2β(G) − 1

)
Iso (G− e;Zn)−

1

3

(
4β(G) − 1

)
.

We summarize our discussion as follows.
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β n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11
1 0 0 0 0 0 0 0 0 0
2 3 3 3 3 3 3 3 3 3
3 28 42 42 84 56 84 84 126 84
4 195 420 465 1365 855 1680 1755 3255 1995
5 1240 3720 4836 18600 12400 29760 33480 72540 45384

Table 5.1: The number Isoc (G;Dn) for small n and small β(G)

β n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11
1 3 3 3 4 3 4 4 4 3
2 11 14 13 27 15 29 26 35 19
3 49 85 81 231 121 281 250 431 225
4 251 591 637 2251 1271 3231 3086 6267 3475
5 1393 4403 5649 23899 15233 42099 44674 102555 61521

Table 5.2: The number Iso (G;Dn) for small n and small β(G)

Theorem 15 ([16], [22]) For any n ≥ 3, the number of nonisomorphic
Dn-coverings of G is

Iso (G;Dn)

=





Iso (G;Zn) +
(
2β(G) − 1

)
Iso (G− e;Zn) if n is odd,

Iso (G;Zn) +
(
2β(G) − 1

)
Iso (G− e;Zn)

−
4β(G) − 1

3
if n is even,

where e is an edge in the cotree G− T .

Recall that the number Iso (G;Zn) was computed in Theorem 12.
The numbers Isoc (G;Dn) and Iso (G;Dn) for small n and β(G) are
listed in tables 5.1 and 5.2.

Let p be a prime number. Then every group of order p or p2 is
abelian. Hence, there is only one group of order p up to isomorphism;
it is the cyclic group Zp, and there are only two groups of order p2 up to
isomorphism; they are Zp2 and Zp⊕Zp. Let p and q are distinct primes.
If p < q, p 6 | (q − 1), then there are only one nonisomorphic group of
order pq; it is the cyclic group Zpq which is isomorphic to Zp ⊕ Zq. If
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p < q, p | (q−1), then there are only two nonisomorphic groups of order
pq; one of them is the cyclic group Zpq and the other is a nonabelian
group K generated by two elements a and b such that

| < a > | = p; | < b > | = q; ab = bsa,

where s 6= 1 and sp ≡ 1 (mod q). More on the classification of finite
groups that needed in this manuscript can be found in [44, 45].

The following come from the classification of finite groups and The-
orem 11 (2). For a prime p, the numbers of p-, p2-, pq- or p3-fold
nonisomorphic connected regular coverings of G are

IsocR(G; p) =
pβ(G) − 1

p− 1
,

IsocR(G; p2) =
(pβ(G) − 1)(pβ(G)−1 − 1)

(p2 − 1)(p− 1)
+ p(β(G)−1)

pβ(G) − 1

p− 1
,

IsocR(G; pq) =





pβ(G) − 1

p− 1

qβ(G) − 1

q − 1
if p < q, p 6 | (q − 1),

(
pβ(G) − 1

) (
qβ(G)−1 − 1

)

q − 1

+
pβ(G) − 1

p− 1

qβ(G) − 1

q − 1
if p < q, p | (q − 1),

IsocR(G; p3) =
(pβ(G) − 1)(pβ(G)−1 − 1)(pβ(G)−2 − 1)

(p3 − 1)(p2 − 1)(p− 1)

+ pβ(G)−2
(pβ(G) − 1)(pβ(G)−1 − 1)

(p2 − 1)(p− 1)
(p+ 2)

+ pβ(G)−1
pβ(G) − 1

2(p− 1)

(
3pβ(G)−1 − 1

)
.

Now, by using Theorem 11 (1), we have

IsoR(G; p) =
pβ(G) − 1

p− 1
+ 1,

IsoR(G; p2) =
(pβ(G) − 1)(pβ(G)−1 − 1)

(p2 − 1)(p− 1)
+
pβ(G) − 1

p− 1
(pβ(G)−1 + 1) + 1,
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β n = 1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 1 1 1 1 1 1 1 1
2 1 3 4 7 6 15 8 19 13 21 12
3 1 7 13 35 31 119 57 211 130 259 133
4 1 15 40 155 156 795 400 1955 1210 2805 1464
5 1 31 121 651 781 4991 2801 16771 11011 29047 16105

Table 5.3: The number IsocR(G;n) for small n and small β(G)

β n = 1 2 3 4 5 6 7 8 9 10 11
1 1 2 2 3 2 4 2 4 3 4 2
2 1 4 5 11 7 23 9 30 18 31 13
3 1 8 14 43 32 140 58 254 144 298 134
4 1 16 41 171 157 851 401 2126 1251 2977 1465
5 1 32 122 683 782 5144 2802 17452 11133 29860 16106

Table 5.4: The number IsoR(G;n) for small n and small β(G)

IsoR(G; pq) =





pβ(G) + p− 2

p− 1

qβ(G) + q − 2

q − 1
if p < q, p6 | (q − 1),

pβ(G) + p− 2

p− 1

qβ(G) + q − 2

q − 1

+

(
pβ(G) − 1

) (
qβ(G)−1 − 1

)

q − 1
if p < q, p | (q − 1),

IsoR(G; p3)

=
(pβ(G) − 1)(pβ(G)−1 − 1)(pβ(G)−2 − 1)

(p3 − 1)(p2 − 1)(p− 1)

+
(pβ(G) − 1)(pβ(G)−1 − 1)

2(p2 − 1)(p− 1)

(
pβ(G)+1 + pβ(G)−1 + 4 · pβ(G)−2 + 2

)

+
pβ(G) − 1

p− 1

(
p2(β(G)−1) + pβ(G)−1 + 1

)
+ 1.

Remark More enumerations of graph coverings satisfying some prop-
erties like concrete or bipartite coverings were studied in the sequel.
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Hofmeister ([11], [13]) introduced the notion of a concrete (resp. con-
crete regular) covering of a graph G and gave formulas for enumerating
the isomorphism classes of concrete (resp. concrete regular) coverings

of G. An n-fold covering p : G̃ → G is said to be concrete if it is
accompanied by an explicit partition P = {P1, . . . , Pn} of V (G̃) such
that every partition set Pi meets every vertex fiber exactly once. The
partition sets Pi are the sheets of the covering p. A concrete regular
covering is a concrete covering p : G̃ → G which is regular and every
covering transformation of G̃ preserves the sheets. Later, R. Feng et
al [3] showed that the number of nonisomorphic n-fold concrete (resp.
concrete regular) coverings of G is equal to that of nonisomorphic n-fold
(resp. regular) coverings of the join G +∞ of G and an extra vertex
∞. As a consequence, the isomorphism classes of concrete (resp. con-
crete regular) coverings of a graph can be enumerated by using known
formulas for enumerating the isomorphism classes of coverings (resp.
regular coverings) of a graph. It also gives a new formula to compute
the number of the isomorphism classes of graphs with n vertices be-
cause the number of nonisomorphic concrete double coverings of the
complete graph on n vertices is equal to the number of nonisomorphic
graphs with n vertices. For enumeration of bipartite coverings, see [2]
and [17].



Chapter 6

Regular coverings; A general
case

In this chapter, we introduce a general formula to enumerateA-coverings
of a graph G for any finite group A in terms of the Möbius function
defined on the subgroup lattice of A by P. Hall in [6]. G. Jones [20]
[21] used such Möbius function to find a method for counting normal
subgroups of a surface group or a crystallographic group, and applied
it to count some covering surfaces. To apply the Jones’ method to
a graph covering case, first recall that the set C1

T (G;A) of A-voltage
assignments of G can be identified as

C1
T (G;A) = A×A× · · · × A, (β(G) times),

from which every A-covering of the graph G can be derived. Let Fβ
denote the free group generated by β elements, where β = β(G). Then,
the A-voltage assignments in C1

T (G;A) correspond bijectively to ho-
momorphisms from the free group Fβ to the voltage group A, thus
|C1

T (G;A)| = |Hom(Fβ,A)| = |A|
β. Also, it can be written as

|C1
T (G;A)| = |Hom(Fβ,A)| =

∑

K≤A

|Epi(Fβ, K)|

the sum of the numbers of epimorphisms from the free group Fβ onto
subgroups K of the group A, and such epimorphisms correspond bijec-
tively to transitive K-voltage assignments in G(K; β). It follows that

45
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|Epi(Fβ, K)| = |G(K; β)|. Now, one can invert the equation

|Hom(Fβ,A)| =
∑

K≤A

|Epi(Fβ, K)|,

to count epimorphisms in terms of homomorphisms, by introducing the
Möbius funtion for A. This assigns an integer µ(K) to each subgroup
K of A by the recursive formula

∑

H≥K

µ(H) = δK,A =

{
1 if K = A,

0 if K < A.

The equation

|Epi(Fβ,A)| =
∑

K≤A

µ(K)|Hom(Fβ, K)|

is then easily deduced, and Theorem 10 gives

Isoc (G;A) =
1

|Aut (A)|

∑

K≤A

µ(K)|Hom(Fβ, K)|

=
1

|Aut (A)|

∑

K≤A

µ(K)|K|β.

Example 3 (1) The cyclic group A = Zn has a unique subgroup Zm

for each m dividing n, and has no other subgroups. The Möbius func-
tion on the subgroup is µ(Zm) = µ(n/m) (the Möbius function of the el-
ementary number theory) and |Aut (Zn)| = phi(n) (Euler phi-function),
so it implies that

Isoc (G;Zn) =
1

phi(n)

∑

m|n

µ
( n
m

)
mβ.

This coincides with the formula given in Theorem 12.
(2) Let A = Dn = 〈a, b : a2 = 1 = bn, aba = b−1〉 be the dihedral group

of order 2n. For convenience, let Zm =< b
n
m > and let D(i)

m = Zm ∪
a(Zmb

i) for i = 0, . . . , n
m
− 1. Then each subgroup of Dn is one of Zm
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or D(i)
m for each m dividing n. Now, consider the lattice induced by the

subgroups of Dn. Then, for each subgroup S of Dn, we have

µ(S) =





µ
( n
m

)
if S = D(i)

m for each i = 0, . . . , n
m
− 1,

−
n

m
µ
( n
m

)
if S = Zm.

Since |Aut (Dn)| = n · phi(n) for n ≥ 3, we have

Isoc (G;Dn) =
1

n · phi(n)



∑

m|n

n

m
µ
( n
m

)
(2m)β −

∑

m|n

n

m
µ
( n
m

)
mβ




=
2β − 1

phi(n)

∑

m|n

µ
( n
m

)
mβ−1

for n ≥ 3. This coincides with the formula given in Theorem 14.
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Chapter 7

New classifications of
branched coverings and the
number of subgroups of a
surface group

A surface S is a compact connected 2-manifold without boundary. By
the classification of surfaces, a surface S is homeomorphic to one of the
following:

Sk =





the orientable surface with k handles if k > 0,
the sphere S2 if k = 0,
the nonorientable surface with −k crosscaps if k < 0.

A continuous surjective map p : S̃ → S is a branched covering if
p|S̃−p−1(B) : S̃ − p−1(B) → S − B is a covering for a finite subset

B of S. The branch set B of a branched covering p : S̃ → S is the
collection of points x ∈ S which have the property that x has no neigh-
borhood Nx such that each component of p−1(Nx) is mapped homeo-
morphically onto Nx by p. A branched covering p : S̃ → S is regular
(or A-covering) if p|S̃−p−1(B) : S̃− p−1(B)→ S−B is a regular covering
(with the covering transformation group A). Two branched coverings
pi : S̃i → S (i = 1, 2) are isomorphic (or equivalent) if there exists a
homeomorphism h̃ : S̃1 → S̃2 such that p2 ◦ h̃ = p1.

49
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A (branched) covering of a surface is closely related to a graph
covering which is embeddable into it. To see such a kind of relation,
we first review a graph emdedding.

An embedding of a graph G into a surface S is a homeomorphism
ı : G→ S of G into S. If every component of S−ı(G), called a region, is
homeomorphic to an open disk, then the embedding ı : G→ S is called
a 2-cell embedding, and the regions are called faces of the embedding.
When a graph G is 2-cell embedded into a surface, every boundary walk
of a face induces a walk in the graph G of the same length. A face of
a 2-cell embedding of a graph G into a surface is said to be n-sided if
its boundary walk is of length n. Note that if G is disconnected, no
embedding of G into a surface S will be a 2-cell embedding.

An embedding scheme (ρ, λ) for a graph G consists of a rotation
scheme ρ which assigns a cyclic permutation ρv onN(v) = { e ∈ D(G) :
ie = v } to each v ∈ V (G) and a voltage assignment λ which assigns a
value λ(e) in Z2 = {1,−1} to each e ∈ E(G).

Stahl [43] showed that every embedding scheme for a graph G de-
termines a 2-cell embedding of G into a surface S, and every 2-cell
embedding of G into a surface S is determined by such a scheme. To
see the relation between an embedding scheme for a graph and its 2-cell
embedding to a surface, we give the following example.

Example 4 Let G be a figure eight having a vertex v and two loops
`1 and `2, and let (ρ, λ) be an embedding scheme defined by ρv =
(`1`2`

−1
1 `−12 ), λ(`1) = 1 and λ(`2) = −1. In a geometric presentation

of G in R3 with directed loops initiating at v in counterclockwise order
according to the rotation scheme ρv as in Figure 7.1 (b), we attach a
closed disk at the vertex v and 1-bands along loops `1 and `2, where
a 1-band is twisted if λ(`i) = −1 and untwisted if λ(`i) = 1 as in
Figure 7.1 (c). Finally, we attach a closed disk along each boundary of
the graph with 1-bands. Note that there exists only one component of
the boundary of the graph with 1-bands in this example, and we get a
2-cell embedding of the figure eight into the Klein bottle with only one
face as in Figure 7.1 (d). Conversely, if there exists such an embedding
as in Figure 7.1 (d), it induces an embedding scheme (ρ, λ) as described
above.

The orientability of the surface S can be detected by looking at
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v

v

(c)(d)

v

−1

1

v

(a) (b)

`1 `2

λ(`1) = 1, λ(`2) = −1

`1

`2

`1`2
`1

`2`2

`1

ρv = (`1`2`
−1
1 `−1

2 )

Figure 7.1: An embedding scheme for a figure eight embedded to the
Klein bottle

the voltage assignments of cycles of G. In fact, S is orientable if and
only if every cycle of G is λ-trivial, that is, the number of edges e
with λ(e) = −1 is even in every cycle of G. In particular, every 2-cell
embedding of G into an orientable surface can be determined by an
embedding scheme (ρ, λ) with λ(e) = 1 for each e ∈ E(G).

Let ı : G → S be a 2-cell embedding and (ρ, λ) the associated em-
bedding scheme. Let φ be either an ordinary or a permutation voltage
assignment. The derived graph Gφ has the derived embedding scheme
(ρφ, λφ), which is defined by (ρφ)vg(eg) = (ρv(e))g and λ

φ(eg) = λ(e) for
each eg ∈ D(Gφ). Then (ρφ, λφ) induces a 2-cell embedding of Gφ into
a surface, say ı̃ : Gφ → Sφ, such that the following diagram

Gφ Sφ

G S

-

-

ı̃

ı
?

pφ
?̃
pφ

commutes. Moreover, if Gφ is connected, then Sφ is also connected.
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Gross and Tucker [4] showed the following relation between branched
coverings of a surface and coverings of a graph.

Theorem 16 Let (ρ, λ) be an embedding scheme for a graph G which
induces a 2-cell embedding ı : G→ S.

(1) Let φ : D(G) → Sn be a permutation voltage assignment. Then
the natural covering projection pφ : Gφ → G can be extended to a
branched n-fold covering p̃φ : Sφ → S that has at most one branch
point inside each face. If the net voltage on a face R has cycle
structure (c1, c2, . . . , cn), then the projection p̃φ has a branch point
inside face R with exactly cj prebranch points of order j (i.e.,
locally j to 1 map) for j = 1, 2, . . . , n.

Conversely, if p : S̃ → S is an n-fold branched covering such that
each face of the embedding ı : G → S has at most one branch
point interior of it, and no branch points in G, then there exists
a permutation voltage assignment φ : D(G) → Sn such that the
branched covering p̃φ : Sφ → S is isomorphic to the given branched
covering p : S̃ → S.

(2) Let A be a finite group and let φ : D(G) → A be an A-voltage
assignment. Then the natural covering projection pφ : G×φ A →
G can be extended to a branched A-covering p̃φ : Sφ → S that
has at most one branch point inside each face. If the net voltage
on an n-sided face R is g in the voltage group A, then (p̃φ)

−1(R)
consists of |A|/o(g) numbers of n · o(g)-sided faces, where o(g) is
the order of g in A.

Conversely, if p : S̃ → S is a branched A-covering such that
each face of the embedding ı : G → S has at most one branch
point interior of it, and no branch points in G, then there exists
an A-voltage assignment φ : D(G) → A such that the branched
A-covering p̃φ : Sφ → S is isomorphic to the given branched A-
covering p : S̃ → S.

It follows from Theorem 16 that any (regular) branched surface
covering of a surface S can be derived from a suitable 2-cell embedding
ı : G → S of a graph G and a voltage assignment φ. We call Sφ the
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branched covering surface of S induced by a 2-cell embedding ı : G→ S
and a voltage assignment φ.

Notice that a 2-cell embedding of a graph G into a surface S deter-
mines a cell decomposition of the surface having the graph G as its 1-
skeleton. Let φ be a voltage assignment of G and let G be 2-cell embed-
ded in a surface S. Then the lifted embedding scheme determines the
cell decomposition of the surface Sφ having the covering graph Gφ as its
1-skeleton. Moreover, the branched covering map p̃φ : Sφ → S preserves
cells, that is, it assigns i-cell to i-cell for each i = 0, 1, 2 and the restric-
tion of p̃φ to its 1-skeleton is just the covering pφ : Gφ → G. It implies
that if two branched coverings p̃φ : Sφ → S and p̃ψ : Sψ → S are iso-
morphic, then the two coverings pφ : Gφ → G and pψ : Gψ → G are iso-
morphic as graph coverings. Conversely, if two coverings pφ : Gφ → G
and pψ : Gψ → G are isomorphic, then, by Theorem 4, there exists
a function f : V (G) → Sn such that ψ(uv) = f(v)φ(uv)f(u)−1 for
each uv in D(G). Notice that the map Φ : Gφ → Gψ defined by
Φ(ug) = uf(u)(g) is a covering isomorphism. Let (uv)g = ugvφ(uv)(g)
maps to (uw)g = ugwφ(uw)(g) by the induced rotation system (ρφ)ug . By
the definition of Φ, Φ((uv)g) = uf(u)(g)vf(v)φ(uv)(g) = uf(u)(g)vψ(uv)f(u)(g)
and Φ((uw)g) = uf(u)(g)wψ(uw)f(u)(g). So, Φ ρφ = ρψ Φ. Now, by com-
bining this fact with λψ(Φ(eg)) = λ(e) = λφ(eg), we can show that Φ
is extended to a cell preserving homeomorphism h̃ from Sφ to Sψ such
that p̃ψ ◦ h̃ = p̃φ, that is, two branched coverings p̃φ : Sφ → S and
p̃ψ : Sψ → S are isomorphic. We proved the following.

Theorem 17 Let G be a graph 2-cell embedded in S and let φ and ψ be
two voltage assignments of G. Then two branched coverings p̃φ : Sφ → S
p̃ψ : Sψ → S are isomorphic as surface branched coverings if and only
if the two coverings pφ : Gφ → G and pψ : Gψ → G are isomorphic as
graph coverings.

Let Bm be the graph consisting of one vertex and m self loops,
say `1, . . . , `m. We call it the bouquet of m circles or simply, a bouquet .
Clearly, Bm is irreducible (i.e., having no vertices of degree 2) if m ≥ 2.
A surface Sk can be represented by a 4k-gon with identification data∏k

s=1 asbsa
−1
s b−1s on its boundary if k > 0; −2k-gon with identification

data
∏−k

s=1 asas on its boundary if k < 0; and bigon with identification
data aa−1 on its boundary if k = 0.
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Let B be a finite set of points in Sk. For our purpose, we assume
that |B| > 0 when k = 0. If ∗ ∈ Sk − B, then the fundamental group
π1(Sk−B, ∗) of the punctured surface Sk−B with base point ∗ can be
presented as follows:

〈
a1, . . . , ak, b1, . . . , bk, c1, . . . , c|B| ;

k∏

s=1

asbsa
−1
s b−1s

|B|∏

t=1

ct = 1

〉
if k > 0;

〈
a1, . . . , a−k, c1, . . . , c|B| ;

−k∏

s=1

asas

|B|∏

t=1

ct = 1

〉
if k < 0;

〈
c1, . . . , c|B| ;

|B|∏

t=1

ct = 1

〉
if k = 0.

We call this the standard presentation of the fundamental group π1(Sk−
B, ∗). For each t = 1, 2, . . . , |B|, we take a simple closed curve based at
∗ lying in the face determined by the polygonal representation of the
surface Sk so that it represents the homotopy class of the generator ct.
Then, it induces a 2-cell embedding of a bouquet of m circles into the
surface Sk such that the embedding has |B| 1-sided regions and one
(|B|+4k)-sided region if k > 0; |B| 1-sided regions and one (|B|− 2k)-
sided region if k < 0; and |B| 1-sided regions and one |B|-sided region
if k = 0, where m is the number of the generators of the corresponding
fundamental group. We call this embedding ı : Bm → Sk the standard
embedding, denoted by Bm ↪→ Sk −B.

For example, Figure 7.2 illustrates the standard embeddings of bou-
quets with |B| = 3. Figure 7.2 (a) represents the standard embedding
B7 ↪→ S2 −B and (b) does the standard embedding B6 ↪→ S−3 −B.

For convenience, let ak = 2k if k ≥ 0, and ak = −k if k < 0. Let
C1(Bak+|B| ↪→ Sk − B;n) (resp. C1(Bak+|B| ↪→ Sk − B;A)) denote the
subset of (Sn)

ak+|B| (resp. of (A)ak+|B|) consisting of all (ak+|B|)-tuples
(σ1, . . . , σak+|B|) which satisfy the following three conditions:

(C1) The subgroup < σ1, . . . , σak+|B| > generated by {σ1, . . . , σak+|B|}
is transitive on {1, 2, . . . , n} (resp. is the full group A), and
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Figure 7.2: Two examples of standard embeddings

(C2) (i) if k ≥ 0, then

k∏

i=1

σiσk+iσ
−1
i σ−1k+i

|B|∏

i=1

σ2k+i = 1,

(ii) if k < 0, then
−k∏

i=1

σiσi

|B|∏

i=1

σ−k+i = 1,

(C3) σi 6= 1 for each i = ak + 1, . . . , ak + |B|.

Note that condition (C1) guarantees that the surface Sφ is con-
nected, and conditions (C2) and (C3) do that the set B is the same
as the branch set of the branched covering p̃φ : Sφ → S. By using a
similar method as in [23], we can obtain the following theorem.

Theorem 18 (Existence and classification of branched coverings) Ev-
ery permutation voltage assignment in C1(Bak+|B| ↪→ Sk−B;n) induces
a connected branched n-fold covering of Sk with branch set B. Con-
versely, every connected branched n-fold covering of Sk with branch
set B can be derived from a voltage assignment in C1(Bak+|B| ↪→ Sk −
B;n). Moreover, for any given two permutation voltage assignments
φ, ψ ∈ C1(Bak+|B| ↪→ S − B;n), two branched n-fold surface coverings
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p̃φ : Sφ → S and p̃ψ : Sψ → S are isomorphic if and only if two graph

coverings pφ : B
φ

ak+|B|
→ Bak+|B| and pψ : B

ψ

ak+|B|
→ Bak+|B| are iso-

morphic. It is also equivalent to say that there exists a permutation
σ ∈ Sn such that

ψ(`i) = σφ(`i)σ
−1

for all `i ∈ D(Bak+|B|), where ak = 2k if k ≥ 0, and ak = −k if k < 0.

For a finite group A, let SA denote the symmetric group on the
group elements of A. It gives the (left) regular representation A →
SA of A via g → L(g), the left translation by g on A. Clearly, this
representation is faithful and the group A can be identified with the
group of left transformations L(g)’s: A ≡ {L(g) | g ∈ A} (Cayley
Theorem). Notice that a permutation voltage assignment φ : D(G)→
SA having its images inA can be considered as anA-voltage assignment
of G, and for such a voltage assignment φ, the permutation derived
graph Gφ is nothing but the ordinary derived graph G×φ A. By using
this fact, Kwak et al. showed the following.

Theorem 19 [23](Existence and classification of regular branched cov-
erings) Every ordinary voltage assignment in C1(Bak+|B| ↪→ Sk−B;A)
induces a connected branched A-covering of Sk with branch set B. Con-
versely, every connected branched A-covering of Sk with branch set B
can be derived from a voltage assignment in C1(Bak+|B| ↪→ Sk −B;A).
Moreover, for any given two voltage assignments φ, ψ ∈ C1(Bak+|B| ↪→
S − B;A), two branched A-coverings p̃φ : Sφ → S and p̃ψ : Sψ → S
are isomorphic if and only if two graph coverings pφ : Bak+|B| ×φ A →
Bak+|B| and pψ : Bak+|B| ×ψ A → Bak+|B| are isomorphic. It is also
equivalent to say that there exists a group automorphism σ of A such
that

ψ(`i) = σ (φ(`i))

for all `i ∈ D(Bak+|B|), where ak = 2k if k ≥ 0, and ak = −k if k < 0.

There are two classical Hurwitz theorems: the existence and the
classification theorems of surface branched coverings. Let p : S̃ → S be
an n-fold surface branched covering, where S̃ is possibly disconnected.
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Hurwitz [18] introduced a system, called Hurwitz system, for p as fol-
lows: Consider the associated covering p|S̃−p−1(B) : S̃− p−1(B)→ S−B
of p. A Hurwitz system is a representation Hp : π1(S − B, ∗) → Sn,
which is determined by choosing a one-to-one correspondence p−1(∗)↔
{1, 2, . . . , n} and assigning to a loop α in S−B based at ∗ the permu-
tation of {1, 2, . . . , n} induced by the liftings of α. For any finite set
B of points in S and a representation H : π1(S − B, ∗) → Sn, there
exists an n-fold branched covering p : S̃ → S, where S̃ is perhaps not
connected, with branch set contained in B and Hp = H (Hurwitz ex-
istence theorem). Two n-fold branched coverings pi : S̃i → S, i = 1, 2,
are isomorphic if and only if Hp2 = Hp1 modulo inner automorphisms
of Sn. (Hurwitz classification theorem).

Every group homomorphism from π1(S − B, ∗) to Sn is uniquely
determined by its values on the generator set {as, bs, ct} of π1(S−B, ∗)
which preserves the corresponding relation in the standard presentation
of π1(S−B, ∗). Hence, a Hurwitz system Hp : π1(S−B, ∗)→ Sn for a
branched n-fold covering p : S̃ → S is nothing but a voltage assignment
in C1(Bm;n) which satisfies the conditions (C2) and (C3), and that of
a connected branched n-fold covering p : S̃ → S is nothing but a voltage
assignment in C1(Bm ↪→ S − B;n). So, Theorems 18 and 19 are new
combinatorial statements of the Hurwitz existence and classification
theorems for branched coverings and for branched regular coverings,
respectively.

Remark Let p : S̃ → S be an n-fold connected unbranched covering
and let ∗ ∈ S. The monodromy representation of π1(S, ∗) is a homo-
morphism Hp : π1(S, ∗) → Sn determined by choosing a one-to-one
correspondence p−1(∗) ↔ {1, 2, . . . , n} and assigning to a loop α in
π1(S, ∗) the permutation of {1, 2, . . . , n} induced by the liftings of α.
This permutation maps ∗̃ ∈ p−1(∗) to the terminal point of the lifting
α having ∗̃ as an initial point, i.e., Hp(α)(∗̃) = α̃(1). The image of the
monodromy representation is a subgroup of Sn and is called the mon-
odromy group. Its element is called a monodromy map. Notice that the
monodromy representation for a surface covering is equal to the Hur-
witz system for a surface covering and hence it can be identified with
a voltage assignment φ in C1(Bm ↪→ Sk;n). For a voltage assignment
φ in C1(Bm ↪→ Sk;n), the monodromy group of the corresponding cov-
ering is nothing but the subgroup < φ > of Sn generated by the image
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of φ. Obviously, we have {α ∈ π1(S, ∗) |Hp(α)(∗̃) = ∗̃} = p]π1(S̃, ∗̃). It
implies that the index [π1(S, x) : p]π1(S̃, ∗̃)] = n equals the fold number
of the covering.

To derive some formulas for enumerating the isomorphism classes of
surface branched coverings, we define an Sn-action on the set C1(Bm;n)
by a simultaneously coordinatewise conjugation, that is, for any g ∈ Sn
and any (σ1, . . . , σm) ∈ C

1(Bm;n),

g · (σ1, . . . , σm) = (gσ1g
−1, . . . , gσmg

−1).

It follows from Theorem 18 that two voltage assignments in C1(Bak+|B|

↪→ Sk −B;n) derive isomorphic branched coverings of Sk if and only if
they belong to the same orbit under the Sn-action. Hence we have the
following.

Lemma 13 Let k be any integer and let B be a finite subset of the
surface Sk. Then the number of isomorphism classes of connected n-
fold branched coverings of the surface Sk with branch set B is

Isoc (Sk, B;n) =
∣∣C1(Bak+|B| ↪→ Sk −B;n)/Sn

∣∣ .

Now, we aim to express the number Isoc (Sk, B;n) in terms of
known parameters.

Let C(Bm;n) denote the set of all m-tuples (σ1, . . . , σm) in (Sn)
m

such that the group <σ1, . . . , σm> generated by {σ1, . . . , σm} is tran-
sitive on {1, 2, . . . , n}, that is,

C(Bm;n) = {(σ1, σ2, . . . , σm) ∈ (Sn)
m :<σ1, σ2, . . . , σm> is
transitive on {1, 2, . . . , n}}.

Then C(Bm;n) contains all representatives of connected n-fold cover-
ings of the bouquet of m-circles Bm and the number Isoc (Bm;n) of
isomorphism classes of connected n-fold coverings of Bm is equal to
|C(Bm;n)/Sn|, where the Sn-action on C(Bm;n) is also defined by the
simultaneously coordinatewise conjugation.
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Lemma 14 Let k be an integer and b a nonnegative integer. For each
0 ≤ t ≤ b, let

S(k, b, t) =
{
φ ∈ (Sn)

ak+b : φ satisfies (C1), (C2)
and σi = 1, ∀i = ak + 1, . . . , ak + t

}
,

where φ = (σ1, σ2, . . . , σak+b). If t = b, then the set S(k, b, b) is equal to
the set C1(Bak ↪→ Sk;n), and if t 6= b, then there is a one-to-one cor-
respondence between the sets S(k, b, t) and C(Bak+b−t−1;n). Moreover,
the correspondence preserves the Sn-action on the both sets which are
defined by simultaneously coordinatewise conjugacy.

Proof: The case of t = b is clear. Assume that t 6= b. Then every ele-
ment in S(k, b, t) is of the form (σ1, . . . , σak , 1, . . . , 1, σak+t+1, . . . , σak+b).
It comes from conditions (C1)-(C2) that the function f : S(k, b, t) →
C(Bak+b−t−1;n) defined by

f(σ1, . . . , σak , 1, . . . , 1, σak+t+1, . . . , σak+b)
= (σ1, . . . , σak , σak+t+1, . . . , σak+b−1)

is well-defined and bijective (Note that the function f is defined by
deleting 1’s and the last coordinate). This completes the proof.

Theorem 20 Let k be any integer and let B be a b-subset of the surface
Sk. Then the number of connected n-fold branched coverings of the
surface Sk with branch set B is

Isoc (Sk, B;n) = (−1)bIsoc (Sk, ∅;n)+
b−1∑

t=0

(−1)t
(
b
t

)
Isoc (Bak+b−t−1;n),

where Bm is a bouquet of m circles, ak = 2k if k ≥ 0, and ak = −k if
k < 0.

Proof: For each i = ak + 1, . . . , ak + b, let Pi be the property that the
i-th coordinate of an element of (Sn)

ak+b is the identity. For each subset
S of {ak + 1, . . . , ak + b}, let N(PS) be the number of elements in the
product (Sn)

ak+b which satisfy conditions (C1), (C2) and the properties
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Pi for all i ∈ S. Notice that N(P∅) is the number of all elements in the
product (Sn)

ak+b which satisfy conditions (C1) and (C2), and that the
set C1(Bak+b ↪→ Sk − B;n) is equal to the set of elements of (Sn)

ak+b

which satisfy conditions (C1) and (C2), but not any other property Pi
for i = ak + 1, . . . , ak + b. It comes from the principle of inclusion and
exclusion that

∣∣C1(Bak+b ↪→ Sk −B;n)
∣∣ =

b∑

t=0

(−1)t




∑

S⊂{ak+1,...,ak+b}

|S|=t

N(PS)


 .

Since N(PS) = N(PS′) for any two subsets S, S ′ of {ak +1, . . . , ak + b}
with the same cardinality, we have

∑

S⊂{ak+1,...,ak+b}

|S|=t

N(PS)

=

(
b
t

) ∣∣{φ ∈ (Sn)
ak+b : φ satisfies (C1), (C2)

and σi = 1, ∀i = ak + 1, . . . , ak + t }
∣∣ .

Now, it comes from Lemma 14 that

|C1(Bak+b ↪→ Sk −B;n)|

=
b−1∑

t=0

(−1)t
(
b
t

)
|C(Bak+b−t−1;n)|+ (−1)b

∣∣C1(Bak ↪→ Sk;n)
∣∣ .

By taking the Sn-action on the underlying sets of the both sides of this
equation, we have

Isoc (Sk, B;n) = (−1)bIsoc (Sk, ∅;n)+
b−1∑

t=0

(−1)t
(
b
t

)
Isoc (Bak+b−t−1;n).

By using Burnside’s Lemma, Mednykh ([37], [38]) counted the num-
ber of subgroups in the fundamental group π1(Sk, ∗) of an orientable
surface Sk and the number of conjugacy classes of subgroups in π1(Sk, ∗).
The same problem for a nonorientable surface was done by A. Mednykh
and G. Pozdnyakova in [40].
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Theorem 21 ([37], [38], [40])

(1) The number of subgroups of index n in the fundamental group
π1(Sk, ∗) of a (orientable or nonorientable) surface Sk of genus
k is

Sk(n) ≡ Sπ1(Sk,∗)(n) = n
n∑

s=1

(−1)s+1

s

∑

i1 + i2 + · · · + is = n

i1, i2, . . . , is ≥ 1

βi1βi2 · · · βis ,

where

βh =
∑

λ∈Dh

(
h!

f (λ)

)t
, t =

{
2k − 2 if k ≥ 0,

k − 2 if k < 0,

Dh is the set of all irreducible representation of the group Sh, and
f (λ) is the degree of the representation λ.

(2) The number of nonisomorphic connected n-fold unbranched cov-
erings of a surface Sk of genus k is

Isoc (Sk, ∅;n)

=





1

n

∑

m|n

Sk(m)
∑

d| n
m

µ
( n

md

)
d(2k−2)m+2 if k ≥ 0,

1

n

∑

m|n

∑

d| n
m

µ
( n

md

)
d(−k−2)m+1[(2, d)S−k (m) + dS+k (m)]

if k < 0,

where µ(m) is the Möbius function, S+k (m) = 0 if m is odd, and
S+k (m) = Sk(

m
2
) if m is even, S−k (m) = Sk(m) − S+k (m), and

(2, d) denotes the greatest common divisor of 2 and d.

Next, we aim to compute the number IsocR(Sk, B;n) of noniso-
morphic connected regular n-fold branched coverings of the surface Sk
with branch set B. Clearly, any two connected regular branched cover-
ings are not isomorphic if their covering transformation group (or volt-
age groups) are not isomorphic. Since every connected regular n-fold
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(|B|, n) k = −4 k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 k = 4
(0, 2) 15 7 3 1 0 3 15 63 255
(0, 3) 90 18 4 1 0 4 100 2884 96104
(1, 2) 0 0 0 0 0 0 0 0 0
(1, 3) 145 23 3 0 0 3 135 5103 185895
(2, 2) 16 8 4 2 1 4 16 64 256
(2, 3) 981 171 31 6 1 31 991 34231 1218031

Table 7.1: The number Isoc (Sk, B;n) for small k, n and small |B|

branched covering is isomorphic to a connected branched A-covering
for some group A of order n, we have

IsocR(Sk, B;n) =
∑

A

∣∣C1(Bak+|B| ↪→ Sk −B;A)
∣∣

|Aut (A)|
=
∑

A

Isoc (Sk, B;A),

where A runs over all representatives of isomorphism classes of groups
of order n. Recall that the number Isoc (Sk, B;A) of nonisomorphic
connected A-coverings of the surface Sk with branch set B is equal to
number of the orbits of the coordinatewise Aut (A)-action on the set
G(k,B;A) . Note that this Aut (A)-action on the set G(k,B;A) is free
because σ1, . . . , σm generates A. Now, by the Burnside Lemma, we
have

Isoc (Sk, B;A) =
|G(k,B;A)|

|Aut (A)|
=
|C1(Bm ↪→ Sk −B;A)|

|Aut (A)|
,

where m = 2k + |B| if k ≥ 0; and m = −k + |B| if k < 0.
We summarize our discussion as follows.

Theorem 22 Let k be any integer and let B be a b-subset of the surface
Sk. Then we have

(1) the number of nonisomorphic connected regular n-fold branched
coverings of the surface Sk with branch set B is

IsocR(Sk, B;n) =
∑

A

Isoc (Sk, B;A),

where A runs over all representatives of isomorphism classes of
groups of order n, and
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(2) the number of nonisomorphic connected regular A-coverings of
the surface Sk with branch set B is

Isoc (Sk, B;A) =
|G(k,B;A)|

|Aut (A)|
=
|C1(Bm ↪→ Sk −B;n)|

|Aut (A)|
,

where m = 2k + |B| if k ≥ 0; and m = −k + |B| if k < 0.

By Theorem 22, we now need to compute the number Isoc (Sk, B;A)
for each finite group A of order n. By using a method similar to the
proof of Theorem 20, we can have the following theorem.

Theorem 23 Let k be any integer and let B be a b-subset of the surface
Sk. Then, for any finite group A, the number of branched connected A-
coverings of the surface Sk with branch set B is

Isoc (Sk, B;A) = (−1)bIsoc (Sk, ∅;A) +

b−1∑

t=0

(−1)t
(
b
t

)
Isoc (Bak+b−t−1;A),

where Bm is bouquet of m circles, ak = 2k if k ≥ 0, and ak = −k if
k < 0.

Recall that an explicit computing of the number Isoc (Bm;A) was
done for any m and any finite abelian group A or dihedral groups Dn of
order 2n (See chapters 4-6). But the number Isoc (Sk, ∅;A) is known
if A is Zp or Dp (see [23, 29] or see next chapter 8).

As a final discussion of this chapter, we aim to introduce a formula
for computing the number Isoc (Sk, ∅;A) when A is abelian. If A is
an abelian group and Sk is an orientable surface, then the number
Isoc (Sk, ∅;A) of connected A-coverings of the surface Sk is equal to
the number Isoc (B2k;A) of connected A-coverings of the bouquet of
2k circles B2k. In this case, we computed this number in chapter 4.
By the classification theorem of finite abelian groups, we can express a
finite abelian group A as follows.

A = Ao ⊕Ae =

(
⊕s
i=1 ⊕

ti
j=1 mijZ

p
`ij
i

)⊕(
⊕`
µ=1mµZ2γµ

)
,

where pi are odd primes and pi 6= pi′ if i 6= i′. Let θ(A) denote the
number of direct summands of A whose order is a multiple of 4 and
ω(A) denote the number of direct summands of A whose order is 2. For
example, Z6 ⊕Z8 = Z3 ⊕Z2 ⊕Z8, θ(Z6 ⊕Z8) = 1 and ω(Z6 ⊕Z8) = 1.
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(|B|, p) k = −4 k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 k = 4
(0, 2) 15 7 3 1 0 3 15 63 255
(0, 3) 13 4 1 0 0 4 40 364 3280
(1, 2) 0 0 0 0 0 0 0 0 0
(1, 3) 27 9 3 1 0 0 0 0 0
(2, 2) 16 8 4 2 1 4 16 64 256
(2, 3) 54 18 6 2 1 9 81 729 6561

Table 7.2: The number Isoc (Sk, B;Zp) for small k, p and small |B|

Lemma 15 Let k be any integer and let B be a b-subset of the surface
Sk. Let A be an abelian group. Then we have the following.

(1) If k ≥ 0, then Isoc (Sk, ∅;A) = Isoc (B2k;A),

(2) If k < 0, then

Isoc (Sk, ∅;A)

=





2θ(A)
(
2−k−θ(A) − 1

)

2−k−(θ(A)+ω(A)) − 1
Isoc (B−k−1;A)

if θ(A) + ω(A) < −k,

2θ(A)
(
2−k−θ(A) − 1

)

(2−k − 1)2
∑`
µ=1mµ(γµ−1)

Isoc (B−k−1;Ao)Isoc (B−k;Ae)

if θ(A) + ω(A) = −k and θ(A) 6= −k,

0 otherwise,

where A = Ao ⊕Ae =

(
⊕s
i=1 ⊕

ti
j=1 mijZ

p
`ij
i

)⊕(
⊕`
µ=1mµZ2γµ

)
.

As an illustration, we compute IsocR(Sk, B; p) for any prime p.
Recall that Isoc (Bm;Zp) = pm−1

p−1
for a prime number p. Since every

group of order p is isomorphic to the cyclic group Zp, it comes from
Theorem 22 that IsocR(Sk, B; p) = Isoc (Sk, B;Zp) for any k and any
B ⊂ Sk. Now, by applying Theorem 23 and Lemma 15, we have the
following.
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Theorem 24 Let B be a b-subset of the surface Sk and let p a prime.
Then the number IsocR(Sk, B; p) of nonisomorphic regular connected
branched p-fold coverings of Sk with branch set B is

IsocR(Sk, B; p)

=





p2k − 1

p− 1
if k ≥ 0 and b = 0,

p2k−1
(
(p− 1)b−1 + (−1)b

)
if k ≥ 0 and b 6= 0,

2−k − 1 if k < 0, b = 0 and p = 2,

2−k−1
(
1 + (−1)b

)
if k < 0, b 6= 0 and p = 2,

p−k−1 − 1

p− 1
if k < 0, b = 0 and p 6= 2,

p−k−1(p− 1)b−1 if k < 0, b 6= 0 and p 6= 2.

In fact, IsocR(Sk, B; p) for k ≥ 0 was computed by Mednykh in
[36], [37]. In [30], we can also found an explicit formula for computing
the numbers IsocR(Sk, B; 2p) and IsocR(Sk, B; p2) when p is a prime
number.

This kind of enumeration of regular coverings will be continued in
the next chapter.
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Chapter 8

Distributions of branched
surface coverings

A well-known theorem of Alexander ([1]) says that every orientable
surface is a branched covering of the sphere S2, and every nonorientable
surface is a branched covering of the projective plane. In the study of
surface branched coverings, we can ask naturally as a generalization of
Alexander’s theorem: In how many different ways can a given surface
be a branched covering of another given surface? To give a systematic
answer of this question, we define two polynomials, called branched
covering distribution polynomials.

(i) For each i ∈ Z, let ai(S, B;n) denote the number of equivalence
classes of branched n-fold coverings p : Si → S with branch set B, and
let

R(S,B;n)(x) =
∞∑

i=−∞

ai(S, B;n)xi.

(ii) For each i ∈ Z, let ai(S, B;A) denote the number of equivalence
classes of branched A-coverings p : Si → S with branch set B, and let

R(S,B;A)(x) =
∞∑

i=−∞

ai(S, B;A)xi.

These two polynomials can have at most finitely many nonzero terms
by the Riemann-Hurwitz equation: χ(S̃) = nχ(S)−

∑
b∈B def(b), where

67
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def(b) = n − |p−1(b)| and χ denotes the Euler characteristic. (Here,
n = |A| for an A covering.)

Remark From the covering distribution polynomials, we see that the
number

R(S,B;n)(1) =
∞∑

i=−∞

ai(S, B;n)

is equal to the total number Isoc (S, B;n) of nonequivalent branched n-
fold coverings of the (orientable or nonorientable) surface S with branch
set B. In particular, the total number R(S,∅;n)(1) of nonequivalent un-
branched n-fold coverings of the surface S is equal to the number of
the conjugacy classes of the subgroups of index n of the fundamental
group π1(S, ∗). Also, for the regular coverings, the number

R(S,B;A)(1) =
∞∑

i=−∞

ai(S, B;A)

is equal to the total number Isoc (S, B;A) of nonequivalent branched
A-coverings of the surface S with branch set B. The total number
Isoc (S, ∅;A) = R(S,∅;A)(1) of nonequivalent unbranched A-coverings of
the surface S is equal to the number of the normal subgroups H of the
fundamental group π1(S, ∗) such that the quotient group π1(S, ∗)/H is
isomorphic to A.

Now, we are interest in the numberR(S,B;A)(1) and in the polynomial
R(S,B;A)(x). In chapter 7, the number R(S,B;A)(1) was discussed and
computed when A is an abelian group. Notice that the computation
of the polynomial R(S,B;A)(x) is harder than the computation of the
number R(S,B;A)(1). The polynomial R(S,B;A)(x) is known for the case
when A is the cyclic group Zp of prime order p or the dihedral group
Dp of order 2p. (See [23, 29].)

By Theorem 24 and the Riemann-Hurwitz equation, we can obtain
the following which also can be found in [23] .

Theorem 25 ([23]) Let A = Zp and p be a prime.
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|B| p = 2 3 5 7 11 13 17
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1
3 0 x 3x2 5x3 9x5 11x6 15x8

4 x 3x2 13x4 31x6 91x10 133x12 241x16

5 0 5x3 51x6 185x9 909x15 1595x18 3855x24

6 x2 11x4 205x8 1111x12 9091x20 19141x24 61681x32

7 0 21x5 819x10 6665x15 90909x25 229691x30 986895x40

8 x3 43x6 3277x12 39991x18 909091x30 2756293x36 15790321x48

9 0 85x7 13107x14 239945x21 9090909x35 33075515x42 252645135x56

Table 8.1: The polynomial R(S,B,Zp)(x) for the sphere S0

(1) Let B be a finite set of points in an orientable surface Sk (k ≥ 0)
and let b = |B|. Then we have

ai(Sk, B;Zp)

=





p2k − 1

p− 1
if i = 1 + p(k − 1), b = 0,

p2k−1
(
(p− 1)b−1 + (−1)b

)
if i = pk +

p− 1

2
(b− 2)

and b 6= 0,

0 otherwise.

(2) Let B be a finite set of points in a nonorientable surface Sk (k < 0)
and let b = |B|. Then we have

ai(Sk, B;Z2)

=





1 if i = −k − 1, b = 0,

2−k − 2 if i = 2(k + 1), k 6= −1, b = 0,

2−k if i = 2(k + 1)− b, b 6= 0, b = even,

0 otherwise.

(3) Let B be a finite set of points in a nonorientable surface Sk (k < 0)
and let b = |B|. Then, for each odd prime p, we have
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|B| p = 2 p = 3 p = 5 p = 7 p = 11 p = 13
0 3x 4x 6x 8x 12x 14x
1 0 0 0 0 0 0
2 4x2 9x3 25x5 49x7 121x11 169x13

3 0 9x4 75x7 245x10 1089x16 1859x19

4 4x3 27x5 325x9 1519x13 11011x21 22477x25

5 0 45x6 1275x11 9065x16 109989x26 269555x31

6 4x4 99x7 5125x13 54439x19 1100011x31 3234829x37

7 0 189x8 20475x15 326585x22 10999989x36 38817779x43

8 4x5 387x9 81925x17 1959559x25 110000011x41 465813517x49

9 0 765x10 327675x19 11757305x28 1099999989x46 2147483647x55

Table 8.2: The polynomial R(S,B,Zp)(x) for the torus S1

|B| p = 2 p = 3 p = 5 p = 7 p = 11 p = 13
0 1 0 0 0 0 0
1 0 x−1 x−1 x−1 x−1 x−1

2 2x−2 2x−3 4x−5 6x−7 10x−11 12x−13

3 0 4x−5 16x−9 36x−13 100x−21 144x−25

4 2x−4 8x−7 64x−13 216x−19 1000x−31 1728x−37

5 0 16x−9 256x−17 1296x−25 10000x−41 20736x−49

6 2x−6 32x−11 1024x−21 7776x−31 100000x−51 248832x−61

7 0 64x−13 4096x−25 46656x−37 1000000x−61 2985984x−73

8 2x−8 128x−15 16384x−29 279936x−43 10000000x−71 35831808x−85

9 0 256x−17 65536x−33 1679616x−49 100000000x−81 429981696x−97

Table 8.3: The polynomial R(S,B,Zp)(x) for the projective plane S−1

ai(Sk, B;Zp)

=





p−k−1 − 1

p− 1
if i = p(k + 2)− 2, b = 0,

p−k−1(p− 1)b−1 if i = p(k + 2)− b(p− 1)− 2, b 6= 0,

0 otherwise.

The following can be found in [29].

Theorem 26 ([29]) Let A = Dp and p be an odd prime.

(1) Let B be a finite subset of the sphere S0 and let b = |B|. Then
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we have

ai(S0, B;Dp)

=





(
b
2s

)
p2s−2(p− 1)b−2s−1 if i = b(p− 1) + 1− s(p− 2)− 2p

for 1 ≤ s ≤
⌊
b−1
2

⌋
, b ≥ 3,

pb−2 − 1

p− 1
if i = p

(
b−4
2

)
+ 1, b(≥ 3) is even,

0 otherwise.

(2) Let B be a finite subset of an orientable surface Sk (k > 0) and
let b = |B|. Then we have

ai(Sk, B;Dp)

=





(
4k − 1

) p2k−2 − 1

p− 1
if i = 2p(k − 1) + 1, b = 0,

(
4k − 1

)
p2k−2(p− 1)b−1 if i = 2p(k − 1) + b(p− 1) + 1,

b 6= 0,
(
b
2s

)
4kp2k+2s−2 if i = 2p(k − 1) + b(p− 1)

×(p− 1)b−2s−1 +1− s(p− 2)
for 1 ≤ s ≤

⌊
b−1
2

⌋
, b 6= 0,

4k
(
p2k+b−2 − 1

p− 1

)
if i = p

(
2(k − 1) + b

2

)
+ 1,

b(6= 0) is even,

0 otherwise,

(3) Let B be a finite set of points in a nonorientable surface Sk (k < 0)
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and let b = |B|. Then we have

ai(Sk, B;Dp)

=





p−k−1 − 1

p− 1
if i = 1 + p(−k − 2), b = 0,

(
2−k − 2

) p−k−2 − 1

p− 1
if i = 2p(k + 2)− 2, b = 0,

p−k−2
(
(p− 1)b−1 + (−1)b

)
if i = p(−k − 2) + b(p− 1) + 1,

b 6= 0,

(2−k − 2)p−k−2(p− 1)b−1 if i = 2p(k + 2)− 2b(p− 1)− 2,
b 6= 0,(

b
2s

)
2−kp−k+2s−2 if i = 2p(k + 2)− 2b(p− 1)

×(p− 1)b−2s−1 +2s(p− 2)− 2,

for 1 ≤ s ≤
⌊
β−1
2

⌋
, b 6= 0,

2−k
(
p−k+b−2 − 1

p− 1

)
if i = p(2k + 4− b)− 2,

b(6= 0) is even,
0 otherwise,

From Theorem 26, we have the following.

Corollary 3 Let A = Dp and p be an odd prime.

(1) Let B be a finite set of points in the sphere S0 and let b = |B|.
Then

Isoc (S0, B;Dp)

=





b b−1
2 c∑

s=1

(
b
2s

)
p2s−2(p− 1)b−2s−1 if b ≥ 3,

+
pb−2 − 1

p− 1

(
1 + (−1)b

)

2

0 otherwise.
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|B| p = 3 p = 5
0 0 0
1 0 0
2 0 0
3 3 3
4 4x+ 12x2 6x+ 24x4

5 45x3 + 40x4 125x5 + 160x8

6 40x4 + 270x5 + 120x6 156x6 + 1500x9 + 960x12

7 567x6 + 1260x7 + 336x8 4375x10 + 14000x13 + 5376x16

8 364x7 + 4536x8 + 5040x9 + 896x10 3906x11 + 70000x14 + 112000x17 + 28672x20

|B| p = 7 p = 11
0 0 0
1 0 0
2 0 0
3 3 3
4 8x+ 36x6 12x+ 60x10

5 245x7 + 360x12 605x11 + 1000x20

6 400x8 + 4410x13 + 3240x18 1464x12 + 18150x21 + 15000x30

7 16807x14 + 61740x19 + 27216x24 102487x22 + 423500x31 + 210000x40

8 19608x15 + 403368x20 + 740880x25 + 217728x30

Table 8.4: The polynomial R(S,B,Dp)(x) for the sphere S0

|B| p = 3 p = 5
0 0 0
1 3x3 3x5

2 16x4 + 6x5 24x6 + 12x9

3 108x6 + 12x7 300x10 + 48x13

4 160x7 + 432x8 + 24x9 624x11 + 2400x14 + 192x17

5 1620x9 + 1440x10 + 48x11 12500x15 + 16000x18 + 768x21

6 1456x10 + 9720x11 + 4320x12 + 96x13 15624x16 + 150000x19 + 96000x22 + 3072x25

|B| p = 7 p = 11
0 0 0
1 3x7 3x11

2 32x8 + 18x13 48x12 + 30x21

3 588x14 + 108x19 1452x22 + 300x31

4 1600x15 + 7056x20 + 648x25 5856x23 + 29040x32 + 3000x41

5 48020x21 + 70560x26 + 3888x31 292820x33 + 484000x42 + 30000x51

6 78432x22 + 864360x27 + 635040x32 + 23328x37

Table 8.5: The polynomial R(S,B,Dp)(x) for the torus S1
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|B| p = 3 p = 5
0 0 0
1 0 0
2 2x−2 + x2 2x−2 + x4

3 18x−6 + x4 30x−10 + 3x8

4 72x−10 + 26x−8 + 3x6 240x−18 + 62x−12 + 13x12

5 240x−14 + 270x−12 + 5x8 1600x−26 + 1250x−20 + 51x16

6 720x−18 + 1620x−16 + 242x−14 + 11x10 9600x−34 + 15000x−28 + 1562x−22 + 205x20

|B| p = 7 p = 11
0 0 0
1 0 0
2 2x−2 + x6 2x−2 + x10

3 42x−14 + 5x12 66x−22 + 9x20

4 504x−26 + 114x−16 + 31x18 1320x−42 + 266x−24 + 91x30

5 5040x−38 + 3430x−28 + 185x24 22000x−62 + 13310x−44 + 909x40

6 45360x−50 + 61740x−40 + 5602x−30 + 1111x30

Table 8.6: The polynomial R(S,B,Dp)(x) for the projective plane S−1

(2) Let B be a finite set of points in an orientable surface Sk (k > 0)
and let b = |B|. Then we have

Isoc (Sk, B;Dp)

=





(
4k − 1

) p2k−2 − 1

p− 1
if b = 0,

(
4k − 1

)
p2k−2(p− 1)b−1 if b 6= 0.

+

b b−1
2 c∑

s=1

(
b
2s

)
4kp2k+2s−2(p− 1)b−2s−1

+4k
p2k+b−2 − 1

p− 1

(
1 + (−1)b

)

2

(3) Let B be a finite set of points in a nonorientable surface Sk (k < 0)
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(|B|, p) k = −4 k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 k = 4
(0, 2) 69 10 1 0 0 0 60 2520 92820
(0, 3) 115 12 1 0 0 0 90 9828 996030
(1, 2) 0 0 0 0 0 3 135 5103 185898
(1, 3) 0 0 0 0 0 3 375 39375 3984375
(2, 2) 919 149 23 3 0 22 910 33502 1211470
(2, 3) 4021 393 37 3 0 36 3996 407484 40937436

Table 8.7: The number Isoc (Sk, B;Dp) for small k, p and small |B|

and let b = |B|. Then we have

Isoc (Sk, B;Dp)

=





p−k−1 − 1

p− 1
+ (2−k − 2)

p−k−2 − 1

p− 1
if b = 0,

p−k−2
(
(p− 1)b−1 + (−1)b

)
if b 6= 0.

+p−k−2(2−k − 2)(p− 1)b−1

+

b b−1
2 c∑

s=1

(
b
2s

)
2−kp−k+2s−2(p− 1)b−2s−1

+ 2−k
p−k+b−2 − 1

p− 1

(
1 + (−1)b

)

2

From Theorems 25 and 26, we can make tables 8.1-8.6, and derive
many interesting topological properties of branched regular surface cov-
erings. We list some of them in the following.

A group A action on a surface S is pseudofree if the number of fixed
points of the action is finite, i.e., the cardinality of the set {x ∈ S |
gx = x for some g 6= id in A} is finite. A group action on a surface is
spherical if the quotient surface of the action is homeomorphic to the
sphere.

1. For any k ≥ 0, there are exactly 4k − 1 nonequivalent connected
unbranched double coverings of Sk, and all of their covering surfaces
are S2k−1.
2. For any surface S, there does not exist a connected branched double
covering of S with odd number of branch points.



76 Distributions of branched surface coverings

3. For any k ≥ 0 and even number 2b, b ≥ 1, there are exactly 4k

nonequivalent connected branched double coverings of Sk having given
2b branch points, and all of their covering surfaces are S2k+b−1.
4. There exists a unique connected unbranched double covering of the
projective plain S−1 up to equivalence, and its covering surface is the
sphere. For any k ≤ −2, there exist 2−k − 1 connected unbranched
double coverings of Sk up to equivalence, and one of their covering sur-
faces is the orientable surface S−k−1 and all others are the nonorientable
surface S2(k+1).
5. For any k ≤ −1 and even number 2b, b ≥ 1, there are exactly 2−k

nonequivalent connected branched double coverings of Sk having given
2b branch points, and all of their covering surfaces are the nonorientable
surface S2(k−b+1).
6. Every orientable surface is a branched double covering of the sphere
S2. Every nonorientable surface is a branched double or triple covering
of the projective plane S−1 (This is Alexander’s theorem).
7. Let p be prime ≥ 2. Then the dihedral group Dp can act freely on
the surface Sk if and only if either k ≥ 1 and k − 1 ≡ 0 (mod p) or
k ≤ −3 and k + 2 ≡ 0 (mod 2p). Moreover,

i. if k ≥ 1, k − 1 ≡ 0 (mod p) and k − 1 6≡ 0 (mod 2p), then
Sk/Dp is the nonorientable surface S 1−k

p
−2;

ii. if k ≥ 2 and k − 1 ≡ 0 (mod 2p), then Sk/Dp is either the ori-
entable surface S k−1

2p
+1 or the nonorientable surface S 1−k

p
−2;

iii. if k ≤ −3 and k + 2 ≡ 0 (mod 2p), then Sk/Dp is the nonori-
entable surface S k+2

2p
−2.

8. For any prime p ≥ 2, a surface Sk has a spherical pseudofree Dp-
action if and only if k = (p− 1)m+ n, where m,n ≥ 0 and m+ 1 ≥ n.
Moreover, for such a k = (p− 1)m+ n, the number of branch points of
the Dp-covering p : Sk → Sk/Dp = S0 is m+ n+ 3.
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