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Abstract. We propose a new fast facial-feature extraction technique for
embedded face-recognition applications. A deformable feature model is
adopted, of which the parameters are optimized to match with an input
face image in two steps. First, we use a cascade of parameter predictors
to directly estimate the pose (translation, scale and rotation) parame-
ters of the facial feature. Each predictor is trained using Support Vector
Regression, giving more robustness than a linear approach as used by
AAM. Second, we use the generic Simplex algorithm to refine the fit-
ting results in a constrained parameter space, in which both the pose
and the shape deformation parameters are optimized. Experiments show
that both the convergence and the accuracy improve significantly (dou-
bled convergence area compared with AAM). Moreover, the algorithm is
computationally efficient.

1 Introduction

Accurate facial feature extraction is an important step in face recognition. Our
aim is to build a feature-extraction system that can be used for face recognition
in embedded and/or consumer applications. This application field imposes addi-
tional requirements in addition to feature extraction accuracy, such as real-time
performance under varying lighting conditions, etc.

One promising technique for facial feature extraction is to use a deformable
model [5], which can adapt itself to optimally fit to individual images while
satisfying certain model constraints. The constraints can be derived from the
prior knowledge about the object properties (e.g. shape and texture). The feature
extraction process can then be seen as an optimization process, where the model
parameters are adjusted to minimize a cost function for fitting.

In earlier research [1], a parameterized deformable template is used for facial
feature extraction. However, it is computationally expensive and the conver-
gence is not guaranteed. Recently, the Active Shape Model (ASM) and Active
Appearance Model (AAM) [2] have been proposed as two promising techniques
for feature extraction. The ASM fits a shape model to a real image by using a
local deformation process, constrained by a global variance model. However, the
ASM searches for the ‘best-fit’ for each landmark independently, which some-
times leads to unstable results. The global constraints can maintain a plausible
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shape, but they cannot ‘correct’ the wrong local adjustments. The AAM incor-
porates global texture modelling giving more matching robustness, but we have
found that the linear model parameter prediction used by AAM only works well
for very limited ranges.

The deformable model fitting can also be solved by applying a general opti-
mization algorithm, which gives accurate fitting results, provided that the cost
function is appropriately defined and its global minimum is found. However, the
crude use of such a technique either leads to erroneous local minima (when a
local optimization algorithm such as the gradient-descent algorithm is applied)
or takes too much computation cost (when a global stochastic optimization al-
gorithm such as the genetic algorithm is applied).

In this paper, we propose a novel model-based facial feature extraction tech-
nique, employing both fast parameter prediction and direct optimization for each
individual image. The used feature model is a variant of the statistical model in
[2]. The fitting of the model to a real image is performed in two steps. First, a
cascade of parameter predictors are used to estimate in a single step the ‘correct’
pose parameters (translation, scale and rotation). Second, a general optimiza-
tion algorithm is used to further improve the extraction accuracy. In our case, a
Simplex algorithm [8] is adopted to jointly optimize the pose and the shape de-
formation parameters. The aim is to obtain fast and accurate feature extraction
results, which may enable re-usage in the face-recognition stage.

2 Statistical feature model

2.1 Feature model with extended shape and texture structure

Motivated by ASM and AAM, we build our statistical feature model by incor-
porating both shape and texture information. The geometrical shape of a facialInner feature pointOuter feature point(a) Extended feature point set (c) Shape-free texture patch(b) Feature model mesh

Fig. 1. The feature model.

feature (e.g. an eye) can be represented by a set of discrete feature points FP =
{Pi = (xi, yi)|1 ≤ i ≤ N}, where N is the number of the feature points. In con-
trast with ASM/AAM, where only corners and/or contour points are selected,
we use an extended set of feature points covering a larger texture region. To
this end, we introduce a set of auxiliary outer feature points (Fig. 1(a)), which
can be derived from the original feature points FP (inner feature points) by ex-
tending each Pi to a neighboring point P ′i in the direction perpendicular to the
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contour curvature. The extension range is proportional to the size of the feature.
Although the outer feature points depend on the inner points and provide no
new shape information, they encapsulate a larger texture region and incorporate
more information (both inner texture and the surrounding texture).

Based on the extended set of feature points, a Delaunay Triangularization is
performed to construct a mesh over the feature region (see Fig. 1(b)). The trian-
gular mesh is used for the texture warping to a standard shape (see Section 2.2).

2.2 Generic PCA-based feature model

To obtain a feature model that can adapt to individual shape variations, we
adopt Principal Component Analysis (PCA) from ASM/AAM to model the
shape variations. Suppose matrix Φ contains L largest eigenvalues after the
PCA decomposition, then any normalized (w.r.t position, scale and rotation)
shape vector xn can be approximated by

xn ≈ x + Φ · b, (1)

where x is the mean normalized shape, and vector b defines a set of deforma-
tion parameters for the given class of features. If the geometric transformation
(translation, scale and rotation) is incorporated, any feature shape vector x (not
normalized) can be modelled using the normalized mean shape and a parameter
set including both pose (x, y, s, θ) and deformation parameter b by

x = Tx,y,s,θ(x + Φ · b). (2)

In Equation (2), Tx,y,s,θ denotes the geometric transformation by translation
(x, y), scaling s and rotation θ. Based on the shape information, the texture
overlayed by the shape can be sampled and warped to a mean shape by piece-
wise affine warping (Fig. 1(b) and (c)). The texture samples are then scanned
on line basis and reordered into one vector t, which is normalized by mean and
standard deviation.

Given the feature model, the feature extraction in a new image can be for-
mulated as a parameter estimation problem. The optimal shape parameters
(x, y, s, θ,b) need to be located, so that the texture region covered by the es-
timated shape has the minimum matching error with a normalized template
texture xt.

3 Model fitting by prediction and optimization

3.1 Overview of model fitting

We search for an optimal set of model parameters for a new image by taking the
following two steps: pose parameter prediction and direct local optimization.

Motivated by AAM, we utilize the prior knowledge of the properties of the
feature and its neighboring areas. A set of learning-based predictors are trained,
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which are able to directly predict the pose parameters given the incorrectly
placed shape. Our prediction scheme has two distinct features.

1) We use Support Vector Regression (SVR) [3] to train the parameter pre-
dictors. Due to its nonlinearity, the SVR prediction is more reliable and robust
than the limited linear prediction used by AAM. We have found in our experi-
ments that the SVR is able to predict the model parameters correctly, even for
very large pose deviations.

2) We use a cascade of SVR predictors to boost the prediction accuracy. We
have found that the SVR predictors trained with varying pose variation ranges
lead to different prediction errors. The cascading of these predictors can ‘pull’
the parameters to the correct position in a step-wise manner.

Parameter prediction quickly finds the approximately correct pose parame-
ters. At the second stage, we use a direct image optimization of both the pose
and deformation parameters within a small constrained area, based on the SVR
prediction statistics.

X-profile

Y-profile

X-profile

Y-profile

Overlayed shape Overlayed shapeSampled texture Sampled texture

Expected prediction
parameters:
xt = 21 pixels
yt = 4 pixels
scale = 1+23%
rotation = 0 rad

Expected prediction
parameters:
xt = 0 pixels
yt = 0 pixels
scale = 1+0%
rotation = 0 rad

Fig. 2. Feature vector for SVR.

3.2 Cascaded prediction by Support Vector Regression

The cascaded prediction involves the following aspects.

Feature vector preparation. A reduction of the dimensionality of the texture
vector decreases the training efforts and the computation complexity. Therefore,
we extract the vertical and horizontal profiles from the normalized texture region
and use the combined profile vector v for texture representation. In our exper-
iments with eye extraction, the dimensionality of the feature space is reduced
from 1700 to 100, giving more reliable training results and faster processing.

Parameter prediction using Support Vector Regression (SVR). Given
an initial shape vector x and its associated profile vector v, a geometric trans-
formation correction δp = (δx, δy, δs, δθ)T can be applied to x for an optimal fit
to the image. We try to build a prediction function f for the geometrical trans-
formation δp to deform the shape towards the actual feature, thus, f(v) ' δp.

We obtain prediction function f by support vector regression. The SVR uses
kernel functions to map data to a higher dimensional space and thus achieves
nonlinear mapping. For each training image, we randomly displace each vector
element of p from the manually annotated known optimal value p to pi and
obtain the displaced shape xi and its corresponding profile vector vi. We then
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use the training set {(vi, δpi)|i = 1, 2, ...} to train an ε-SVR function [4], where
δpi = pi − p.
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Fig. 3. SVR-based prediction vs. the actual parameter deviation. The total length of
each vertical error bar corresponds with two standard deviations.

Experiments for the prediction. In our experiment, we used a face set
composed of 37 labelled face images [7]. We randomly selected 27 images for
training and the remaining 10 images were used for testing. For each training
image, we randomly perturbed all the pose parameters and collected 100 data
samples. The perturbation range is shown in Table 1.

For ε-SVR, we used the Radial Basis Function kernel, and all the SVR param-
eters were selected by cross-validation. We tested the learned prediction function
on the test set. The experimental results are shown in Fig. 3. It can be seen that
the SVR-based prediction gives good results even for very large parameter de-
viations. The prediction error is distributed uniformly for various parameter
displacements. For comparison, the prediction accuracy of the linear prediction
scheme as used by AAM deteriorates sharply when the parameter displacement
exceeds a small value, e.g. a horizontal (x) displacement of only ±20% of the
shape width. Our system performs better because the SVM-based approaches
are more flexible and can learn and adapt to the complexity of the problem.

Cascaded prediction scheme. Although the use of SVR yields robust pre-
diction results for large parameter perturbations, the prediction accuracy with
small parameter displacements is still not satisfactory. The use of an iterative
approach [2] will not give much gain, since the prediction error over different
parameter displacements mostly remains the same. However, if a second predic-
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Table 1. Perturbation range for parameter prediction.

Parameter Perturbation

x ±50% of the width of the ground-truth shape
y ±50% of the height of the ground-truth shape
scale ±30%
rotation ±0.2 rad

tion function is applied with smaller capture range but higher accuracy, then the
error of the final prediction can be significantly reduced.

To this end, we propose a cascaded prediction approach in which a set of SVR
functions are trained over varying data perturbation ranges. These cascaded
functions form a prediction chain. The initial functions in the chain are trained
with large parameter displacements but only have coarse prediction accuracy.
On the other hand, the succeeding functions are trained with smaller parameter
displacements but have approximately double accuracy. With this prediction
chain, the incorrectly displaced model parameters can be gradually ‘pulled’ to
the correct position. In practice, the prediction chain only contains a few SVR
functions. In our case, three SVR functions are used (more does not improve),
each of which is trained over a training set by halving the perturbation range of
the previous one. Fig. 4 shows the prediction performance of the second and third
functions for horizontal (x) prediction. In Section 4, we provide experimental
results that demonstrate the effectiveness of the cascaded prediction scheme.
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Fig. 4. The horizontal(x)-prediction performance trained over halved perturbation
ranges (left: the 2nd function, right: the 3rd function).

3.3 Improving accuracy using direct local optimization

The prediction results achieved in the previous section largely depend on the
feature appearance in the training set. The use of prior knowledge leads to a
fast and robust ‘jump’ to the right position. However, it is not well adapted
to individual features. Therefore, we apply a general optimization technique to
refine the matching result. The procedure minimizes the fitting cost function
w.r.t. both the pose and the deformation parameters. Based on the prediction
statistics in the previous section, the optimization needs only to perform a con-
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strained search over a small parameter subspace. We have used the following
optimization techniques in our experiments.

1) Gradient-descent: Although gradient-based algorithms are fast, they fail
to yield satisfactory results in our case. Since the target function can have many
local minima, the gradient-descent-based search can easily converge to local min-
ima. Moreover, the computation of function derivatives is time-consuming.

2) Simulated annealing: Simulated annealing is a ‘global’ optimization
technique, which makes use of random sampling in the parameter space. How-
ever, the tuning of the annealing parameters is difficult (e.g. the cooling rate and
the sampling step). Preliminary experiments showed that the use of simulated
annealing is much more computationally expensive than the Simplex method
(illustrated below) and yields no better results.

3) Simplex algorithm: Although still a local optimization technique, the
Simplex method allows occasional ‘jumps’ out of local minima. In our experi-
ments, it gives the best trade-off between fitting accuracy and computation cost.

4 Experimental results

In this section, we give the experimental results for eye extraction, using the
same data set as given in Section 3.2.

Pose parameter prediction. To measure the robustness and accuracy of the
parameter prediction, we randomly perturb the pose parameters in the test set
within the range specified in Table 1. The predicted parameters are compared
with the ground-truth parameters, and the results are given in Table 2. It can
be seen that the cascaded SVR prediction generally yields higher prediction
accuracy, especially in x/y prediction.

Table 2. The pixel accuracy of the pose parameter prediction.

Prediction scheme Pose parameter Mean error Std. Deviation

One-stage/Cascaded x 2.20/0.94 (pixels) 2.21/1.60 (pixels)
SVR y 1.48/0.94 1.23/0.90

scale 0.09/0.09 0.08/0.08
rotation 0.08/0.06 0.06/0.05

Feature extraction accuracy. To measure the feature extraction accuracy,
we randomly position a mean shape near the ground-truth position in the test
image and perform the model fitting. The average point-to-point error between
the fitted shape and the manually labelled shape is measured (see Table 3). It
can be seen that the use of the Simplex optimization effectively improves the
extraction accuracy. Fig. 5 gives two examples of the eye extraction. A typical

execution takes approximately 40-60 ms on a Pentium-IV PC (3 GHz), in which
the SVR prediction takes one-third and the Simplex optimization takes two-
third of the total execution time. This is much more efficient than using a direct
optimization alone, which takes 300-400 ms under the same conditions.
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Table 3. Feature extraction accuracy for cascaded SVR with/without Simplex.

Applied technique Mean pt-pt error (pixels) One std. dev. (pixels)

Cascaded SVR prediction 2.56 1.67
Casc. SVR + Simplex 2.14 1.43

(a) Initial (b) After 
     prediction

(c) After local 
     optimization

(a) Initial (b) After 
     prediction

(c) After local 
     optimization

Fig. 5. Stages of the eye extraction for the complete algorithm.

5 Conclusions

In this paper, we have proposed a fast facial feature extraction technique for face
recognition applications. The proposal contains three major contributions. First,
we use support vector regression to train a parameter predictor for the feature
model (Section 2), which is used to estimate the correct parameter displacements
in a single step. Second, we use a cascade of SVR-based predictors with increasing
convergence accuracy. The predictors are trained over data sampled with varying
perturbation ranges, to give a performance that exchanges capture range with
prediction accuracy. The cascading of these predictors thus combines a large
capture range with a high prediction accuracy. Finally, a direct individual image
optimization by the Simplex algorithm gives improved model parameters. The
experimental results show an at least doubled convergence area compared to
AAM with a higher accuracy. We are now applying the technique to a larger-scale
database and insert it into an embedded/consumer face-recognition application.
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