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Abstract

The memorization of events and situations (episodic memory) requires the rapid formation of a memory trace
consisting of several functional components. A computational model is described that demonstrates how a transient
pattern of activity representing an episode can lead to the rapid recruitment of appropriate circuits as a result of
long-term potentiation within structures whose architecture and circuitry match those of the hippocampal formation,
a neural structure known to play a critical role in the formation of such memories.

1 Introduction

We remember our experiences in terms of events and situations that record who did what to whom where and when, or
describe states of affairs wherein multiple entities occur in particular configurations. This form of memory is referred
to as episodic memory [23] and it is known that the hippocampal system (HS) serves a critical role in the formation of
such memories [10, 21, 4, 22].

A number of researchers have proposed models to explain how the HS subserves the episodic memory function.
These include macroscopic system-level models that attempt to describe the functional role of the HS as well as
more detailed computational models that attempt to explicate how the HS might realize its putative function (e.g.,
[11, 14, 22, 8, 13, 12]. While our understanding of the HS and its potential role in memory formation and retrieval
has been enhanced by this extensive body of work, several key representational problems associated with the encoding
of episodic memories have remained unresolved. In particular, most existing computational models view an item in
episodic memory as a feature vector or as a conjunction of features. But for reasons summarized below, such a view
of episodic memory is inadequate for encoding events and situations (also see [16, 18]).

First, events areeslational objectsand hence, cannot be encoded as a conjunction of features. Consider an event
E1 describedby “John gave Mary a book in the library on Tuesday”. This event cannot be encoded by simply associ-
ating “John”, “Mary”, “a Book”, “Library”, “Tuesday” and “give” since such an encoding would be indistinguishable
from that of the event “Mary gave John a book in the Library on Tuesday”. In order to make the necessary distinc-
tions, the memory trace of an event should specifyhiimelingsbetween thentitiesparticipating in the event and the
rolesthey play in the event. For example, the encodinduafshould specify the followingole-entity  bindings:
({giver=John ), (recipientMary }, (give-objecta-Book ), (temporal-locatiorTuesday ), (locatiorn=Library )).

Second, the memory trace of an event should be responsive to partial cues, but at the same time, it should be
capable of distinguishing between the memorized event and other highly similar events. For example, the memory
trace of E1 should respond positively to a partial cue “John gave Mary a book,” but not to a cue “John gave Susan a
book in the library on Tuesday” even though the latter event shares all, but one, bindindslwith

Third, during retrieval, the memory trace of an event should be capable of reactivating the bindings associated with
the event so as to recreate an active representation of the event. In particular, the memory trace of an event should
support the retrieval of specific components of the event. For example, the memory titstoduld be capable of
differentially activating John in response to the cue “Who gave Mary a book?”

It can be shown that in order to satifl} of the above representational requirements, the memory trace of an event
must incorporate functional units that serve as binding-detectors, binding-error-detectors, binding-error-integrators,
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Figure 1: Summary of major pathways interconnecting the components of the hippocampal system. Note the multiple
pathways from EC to CA1, CA2, CA3, and SC. Also note the backprojections from CA1 and SC to EC. The HS also
receives a wide array of subcortical inputs (not shown). The subicular complex (SC) has been depicted as a single
monolithic component for simplicity. See text for detail. Abbreviations: HS, hippocampal system; DG, dentate gyrus;
EC, entorhinal cortex; SC, subicular complex.

relational-instance-match-indicators, and binding-reinstators [18]. Moreover, as explained in [18], it is possible to
evoke an articulated representation of an event by reinstating the bindings describing the event and activating the
web of semantic and procedural knowledge with these bindings. Cortical circuits encoding sensorimotor schemas
and generic “knowledge” about actions suchgag and entities such gsersonsbooks libraries, andTuesdaycan
recreate the necessary gestalt and details about the event “John gave Mary a book on Tuesday in the library” upon
being activated with the small number of bindings associated with this event.

This article partially describes a computational modelRriTI, that demonstrates how a transient pattern of ac-
tivity representing an event can lead to the rapid formation of appropriate functional units as a result of long-term
potentiation (LTP) [2] within structures whose architecture and circuitry match those of the HS. The model shows that
the seemingly idiosyncratic architecture of the HS and the existence of different types of inhibitory interneurons, and
different types of local inhibitory circuits in the HS, are ideally suited for the recruitment of the necessary functional
units. A detailed description of the model appears in [18].

1.1 The hippocampal system

The hippocampal system (HS) refers to a heterogeneous collection of neural structures including the entorhinal cortex
(EC), the dentate gyrus (DG), Ammon’s horn (or the hippocampus proper), and the subicular complex (SC). Ammon’s
horn consists of fields CA1, CA2, and CA3, and the SC consists of the subiculum, presubiculum, and parasubiculum
regions. Note that CA2 is often merged with CA3 in the animal literature, but is a distinct field of Ammon’s horn,
especially in humans and other primates [5].

Fig. 1 depicts a schematic of the major pathways interconnecting the components of the HS. EC serves as the
principal portal between the HS and the rest of the cortex. Higher-order unimodal sensory areas as well as polymodal
association areas project to upper layers of EC (e.g., [24]). In turn, the upper layers of EC project to DG, CA3, CA2,
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CALl, and SC. Moreover, DG projects to CA3, CA3 projects to CA2 and CA1, CA2 projects to CA1, and CAl projects
to SC. CA1 and SC project back to the deeper layers of EC which in turn project back to the high-level cortical areas
that project to EC. Thus activity originating in high-level cortical regions converges on the HS via EC, courses through
the complex loop formed by the pathways of the HS, and returns back to high-level cortical regions from where it had
originated.

In addition to the forward pathways mentioned above, there also exist pathways from CA2 and CA3 to DG, and
recurrent connections within DG, CA3, CA2, and to a lesser extent, within CA1. Moreover, each region of the HS
contains a variety of inhibitory interneurons that in conjunction with principal cells give rise to well-defined feedback
and feedforward inhibitory local circuits. The HS also receives a rich set of afferents from subcortical areas that
mediate arousal and other autonomic, emotional, and motivational aspects of behavior. These inputs can communicate
the affective significance of an experience/stimulus to the HS.

1.2 Long-Term Potentiation

LTP refers to long-term activity dependent increase in synaptic strength and is believed to underlie memory formation
[2]. In particular, convergent activity at multiple synapses that share the same postsynaptic cell can lead to their
associative LTP. The proposed computational model uses a highly idealized, but computationally effective, form of
associative LTP. In brief, the occurrence of LTP in the model is governed by the following parametetetht@ation
thresholdd,,, theweight incremenfw:,, thewindow of synchrony, therepetition factors, and themaximum inter-

activity intervalr;,;. Consider a set of synapses. . ., s, sharing the same postsynaptic cell. Convergent presynaptic
activity ats;’s can lead to associative LTP of naivgs and increase their weights yw.,, if the following conditions

hold: (i) the total (convergent) activity arriving aj's exceedd,, (ii) this activity is synchronous, i.e., arrives with

a maximum lead/lag ab, (iii) such synchronous activity repeats at leagtmes, and (iv) the interval between two
successivarrivals of convergent activity is at mosg,;. It has been shown [17] that recruitment learning algorithms

[6, 15] proposed for one-shot learning in connectionist networks can be firmly grounded in LTP.

2 A System-level description of the model

At a macroscopic level, the functioning of the model may be described as follows. Our cognitive apparatus construes
our experiences as a stream of events and situations and these are expressed as transient and distributed patterns of
activity over high-level cortical circuits (HLCCs). HLCCs in turn project to EC and give rise to transient patterns of
activity. The resulting activity in EC can be viewed as the presentation of an event to the HS by HLCCs for possible
memorization. Alternately, HLCCs may present an event to the HS as a “query” and expect a certain type of response
from the HS if the query matches a previously memorized item, and a qualitatively different type of response if it
does not. At a macroscopic level of description, the cortico-hippocampal interaction envisioned here is similar to that
assumed by other models of the HS-based memory system (e.g., [11, 7, 4]).

The transient activity injected into EC propagates around the complex loop consisting of EC, DG, CA3, CA2, and
CAl, SC, and back to EC, and triggers a sequence of synaptic changes in these structures. The model demonstrates
that such synaptic changes can transform the transient pattern of activity into a persistent structural encoding (i.e., a
memory trace) composed of the requisite functional circuits mentioned in Section 1. The level of significance of a
presented event determines tnass i.e., the number of cells, recruited for encoding an event. The activity in EC
resulting from the activity arriving from CA1 and SC constitutes the response of the HS. The reentrant activity in EC
in turn propagates back to HLCCs and completes a cycle of cortico-hippocampal interaction.

Note that all entities and generic relations and their roles are expressed in various HLCCs. Only the functional
units listed in Section 1 that are required for the encoding of specific events involving these entities, generic relations,
and roles are encoded within the HS.

2.1 Functional architecture of SMRITI

The mapping between the functional units comprising each memory trace and the component regions of the HS is as
follows: (refer to Fig. 1).

e Linkingcellsin EC. These cells connectthe HLCC based representations of entities, generic relational structures
and their roles to the HS.
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Statistic DG CA3 CA2 CAl SC
binder bed bei remind | reinstate
Pfail <1078 | <1078 | <1078 | <1078 | < 10718
E(candidiates | 195.02 412.70 88.49 57.99 845.87
E( recruitg 195.02 17.64 13.48 52.45 137.29

Table 1:Pfail denotes the probability that suitable cells or circuits will not be found in a target region for recruitment as

a functional unit during the memorization of the event “John gave Mary a book in the library on Tues@tantiate

denotes the expected number of cells or circuits that receive adequate connections, and hence, are candidates for
recruitment as a functional unit.(Ecruits specifies the expected number of candidate cells or circuits that will be
recruited for each functional unit. This number indicates the expected number of “copies” of each functional unit in
the memory trace of E1 formed in the HS. The ratio of the number of candidate cells to the number of recruited cells is
governed by inhibition from Type-1 interneurons. Abbreviations: DG: dentate gyrus; SC: Subicular camudex;
binding-detector cellded binding-error-detector circuitsei binding-error-integrator cellsemind relation-match-

indicator circuitsyeinstate binding-reinstator cells.

Binding-detectocells in DG,

Binding-error-detectorcircuits in CA3,

Binding-error-integratorcells in CA2,

Relational-match-indicatazircuits in CA1 for detecting a match between a cue and the memorized event based
on the activity of the above cells and circuits, and

¢ Binding-reinstatorcells in SC.

Several “copies” of each functional cell and circuit are recruited during the memorization of an event leading to a
highly redundant encoding of the event. The recruitmemiding-detectocells andbinding-error-detectocircuits
is described in detail in [16]. The recruitment of other functional units is discussed in [18].

The transient encoding of an event or a situation

The model posits that the dynamic encoding of an event situation is a transient pattern of rhythmic activity. A role-
entity binding is expressed within this activity by the synchronous firing of cells associated with the bound role and
entity [19, 25, 20]). It is speculated that the dynamic expression of role-entity bindings may ipvbamd activity

(minor cycle) and blocks of repeated activity (major cycle) may correspofidbémd activity (cf. [3]).

3 Results

Simulations of the model containing 1000-1500 cells and 8,000-15,000 links have been performed to verify that the
functional units are recruited as prescribed by the model. However, these simulations do not reveal properties of the
model arising from its large scale. To explicate these properties, a detailed quantitative analysis of the model has been
carried out using plausible values of system parameters. The system specification involves over 75 parameters which
specify among other things, region and projective field sizes, the ratio of pyramidal cells to various types of inhibitory
interneurons, firing thresholds, time coursepépsrefractory periods, and the conditions governing the induction of

LTP. In particular, the calculations assume that DG, CA3, CA2, CA1, and SC contain 15 million, 2.7 million, 800,000,

15 million, and 1 million principal cells, respectively, the ratio of principal cells to inhibitory cells is about 10:1, and

the size of EC—~ DG and DG— CA3 projective fields are 17,000 and 14, respectively. These choices are based in
part on data provided in [1][26].

The results of the quantitative analysis show that extremely robust memory traces can be formed even if one
assumes an episodic memory capacity of 75,000 distinct events consisting of 300,000 bindings. Some of the results
of this quantitative analysis are displayed in Table 1. The memory traces formed in the model exhibit a strong form of
pattern separation and differentiate between two events even though they match along all but one dimension. This can
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Figure 2: The response oémind(E1)circuits in CAl as a function of the match between the retrieval cue and the
memorized evenE1. Condition X refers to a retrieval cue involving a different type of event (e.d@ lifs an event
involving the act of “buying”, then a cue involving acts other than “buying” (say walking) would correspond to a cue
involving a different type of event).

be seen from the data presented in Fig. 2 which shows the respamsatioin-match-indicato(remind cells in CA1

to cues containing different numbers of binding-errors. The firingofindcells in response to a cue signals a match
between the cue and the encoded event. Ideally these cells should fire if and only if a cue has zero binding-errors with
respect to the event encoded by the memory trace. In keeping with the desired behavior, the resporiad cdlls

is sharply lower in all the binding-error conditions compared to that in the match condition. rBmowlcells lie at

the apex of the memory trace of an event, their response is affected by cross-talk and errors in all preceding functional
units. Consequently, the robust responseeafindcells is significant.

4 Predictions

The model predicts that significant damage to EC will lead to a catastrophic failure in the formation and retrieval of
episodic memories. Damage to DG granule cells will lead to erroneous “don’t know” responses (forgetting). Large
scale loss of CA3 pyramids or loss of perforant path inputs to CA3 will lead to false positive responses (spurious
memories). Large scale loss of mossy fiber inputs or loss of CA3 interneurons will lead to erroneous “don’t know”
responses (forgetting). Loss of CAL1 pyramidal cells will lead to catastrophic forgetting, but loss of CAL inhibitory
interneurons will lead to false positive responses. Subjects with damage to SC will have good recognition memory, but
impaired recall, and will have difficulty responding to wh-questions. Finally, subjects with damage to CA1, but with
intact EC, DG and CA3 regions will continue to generate binding-error signals, and hence, continue to detect novelty
[9] even though they may be amnesic.



Lokendra Shastri Episodic Memory Formation in the Hippocampal System 6

5 Conclusion

The proposed computational model explains how a transient pattern of activity representing an event can lead to the
formation of afunctionally adequatenemory trace in the HS. The memory traces capture the relational aspects of
events and situations. They can differentiate between highly similar events and respond to partial cues. The model
accounts for the idiosyncratic architecture and local circuitry of the HS and provides a rationale for its components
and projections. It suggests specific and significantly different functional roles for regions CA3, CA2, CAl, and SC
than those suggested by existing models. While most models of the HS view CA3 as an associative memory, this work
suggests that (i) a key representational role of CA3 may be the detection of binding errors and (ii) CA3 interneurons
may play a critical role in the formation of binding-error detector circuits critical to the proper functioning of episodic
memory and novelty detection.
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