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Abstract 

To provide high-level graphical support for 
developing message passing programs, an integrated 
programming environment (GRADE) is being 
developed. GRADE currently provides tools to 
construct, execute, debug, monitor and visualise 
message-passing based parallel programs. The paper 
describes the extension of GRADE with formal 
method support based on Petri nets composition. . 
We outline specification composition, directly 
associated with application composition as well as 
the integration of specification and implementation 
of program development.  

1 Introduction 

Parallel Processing has emerged as a means to 
cope with the computational power needed by the 
ever-increasing complexity of software applications. 
The most common paradigm of parallel processing is 
message passing (MP). Designing MP applications is 
a complex task and involves designing the combined 
behaviour of its processes, that is, their individual 
execution restricted by their communication and 
synchronisation interactions. Processes and their 
interactions (virtual communication channels) are 
modelled by virtual process topologies. 
Implementation of MP applications involves 
programming of sequential processes, as well as 
latent programming for management of processes and 

architecture resources. The emergence of Message 
Passing Environments (MPE), such as PVM [10] and 
MPI [21], provide a useful abstraction of the 
underlying architectures simplifying resource 
management.  

Although, different MPEs can simplify several 
aspects of parallel program development, the lack of 
real user-friendly software tools for such 
development prevents many potential users from 
dealing with concurrent programming at all. To cope 
with the extra complexity of parallel programs arising 
due to inter-process communication and 
synchronisation, we have designed an integrated 
visual programming environment called GRADE 
[16]. GRADE stands for Graphical Application 
Development Environment and its major goal is to 
provide an easy-to-use, integrated set of 
programming tools for development of general 
message-passing applications that can run either on 
supercomputers or on heterogeneous workstation 
clusters. GRADE has the following main benefits: 

?? Visual interface to define all parallel activities in the 
application (i.e. all process management and 
communication actions). Graphics help in better 
understanding the complex structure and run-time 
behaviour of the distributed program even for users 
not familiar with parallel programming. 

?? Programmers are not required to know the syntax of 
the underlying message-passing system. GRADE 
generates all message-passing library calls 
automatically on the basis of the visual code. As a 
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result, GRAPNEL programs are portable between 
different MPEs provided that GRADE is able to 
generate code for those MP systems. Currently, 
GRADE can generate code only for PVM but MPI is 
to be supported very soon.  

?? Compilation and distribution of the executables are 
performed automatically in the heterogeneous 
environment. 

?? Debugging and monitoring information is related 
directly back to the user's graphical code during on-
line debugging and post-mortem visualisation of the 
run-time behaviour of the application. 

GRADE provides the GRED graphical editor for 
the programmer to construct the code of his/her 
parallel application according to the syntax and 
semantics of GRAPNEL language [17]. Furthermore, 
the environment offers integrated tools for 
correctness and performance debugging of the 
GRAPNEL applications which use the same graphical 
representation of the parallel program as GRED does. 
(The distributed debugger integrated into GRADE is 
called DDBG [8] and it has been developed at 
University of Lisbon). As a result, the programmer 
has the same high-level visual view of his/her 
application during the whole program development 
cycle. A parallel architecture simulator developed at 
University of Barcelona has also been integrated into 
an early version of the system and it is to be adopted 
soon for the current version. Possible co-operation 
between GRADE and EDPEPPS [9] environments is 
currently under investigation to extend the simulation 
capabilities of the system. 

The GRED editor has originally supported only 
the top-down design of distributed applications, i.e. 
the programmer had to start his/her work by 
designing the topology of the program followed by 
elaborating more and more detailed codes of the 
processes. The visual code of the whole application 
could only be saved as one unit. However, this 
approach had the disadvantage that GRAPNEL code 
of processes could not be reused through different 
application. To overcome this problem, we have 
decided to follow the concept of re-usable program 
components similarly to that of Ensemble 
methodology [1][4][5]. In this way, the programmer 
can create and use processes individually as reusable 
program components which can be embedded into 
various applications using different inter connection 
schemes. 

Although, GRADE provides a productive 
framework for implementing and maintaining MP 
applications, it cannot guarantee absence of design 
errors. In addition, composition is prone to new types 

of errors, such as use of wrong components and 
unspecified or incompatible binding of 
communication channels. It was therefore desirable 
to validate, analyse or ideally verify the correct 
behaviour of the composed applications. To this end, 
we integrate into GRADE a specification composition 
technique [6][7][25], which is directly associated 
with program composition. We produce formal 
specifications of program components directly from 
GRADE’s process graphical components. We then 
generate formal process specifications and compose 
them, directed by GRADE’s application topologies, 
deriving formal specifications of applications. The 
topologies, which direct composition of applications, 
also direct the composition of formal specifications. 
We have used the Petri-net (PN) formalism [14] for 
expressing and composing specifications. PNs are 
well founded, have been widely used to specify 
parallel software systems and are supported by a 
number of tools. 

The direct association of formal specifications and 
implementations may improve the use of formal 
methods in the software engineering process, but only 
marginally. However, this direct association provides 
the basis for testing and debugging applications 
supported by formal methods, using specification and 
execution tools in synergy. This approach is in 
accordance with Agha [1] “... the better way to think 
of formal methods is as techniques that help identify 
bugs rather than prove programs correct...”. We also 
strongly believe that the acceptance of formal 
methods will be facilitated when they are integrated 
with software engineering tools. 

In the next section, we outline program 
composition in GRADE and discuss the requirements 
for associating specification composition with 
application composition. In section 3, we describe 
PN component specifications and present their 
composition followed by some conclusions.  

2 Program composition in GRADE and 
specification requirements 

In GRAPNEL programs there are three different 
design levels distinguished. Process topology related 
information (i.e. communication paths among 
processes) are defined at the application level as a 
graph (see Fig. 1). Nodes of this graph are processes 
and their codes are defined by graphical symbols at 
the process level of the program (see Fig. 2,3). 
However, not all instructions are described as 
individual icon. The point is that every send and 
receive operations must be defined graphically but 
arbitrary large and sophisticated code segments 
containing no send or receive operations are 
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represented by a single text block icon. The contents 
of graphical symbols can be defined as ordinary text 
program code at the lowest level of the program. The 
actual contents depend on the particular symbol. For 
example, in case of a receive icon the code must be 
simple the name of the program variable(s) where the 
data to be received are to be stored while, a text 
block icon may contain text code without any 
restrictions except the lack of inter-process 
communication. Detailed description of the GRED 
editor and that of different elements of the 
GRAPNEL language can be found in [18] and [17], 
respectively. 

We briefly outline the design and implementation 
of applications in GRADE on an example application 
Get Maximum. The requirement is simple: Selector 
processes, each getting an integer parameter, require 
the maximum of these integers. We shall implement a 
design, called Selector-Servers-in-Ring: Selectors are 
connected as client processes to associated Server 
processes. Each Selector sends (via port 1) its integer 
parameter to its Server and, eventually, receives (via 
port 0) the required maximum. Servers receive 
integer values from their client Selectors and find the 
local maximum. Servers are connected in a ring. 
They find the global maximum by sending their 
current maximum to their next neighbour in the ring, 
receiving the maximum of the previous server; they 
compare and select the maximum of these two values. 
Servers repeat the send-receive-select cycle M-1 
times, where M is the size of the ring. Finally, 
Servers send the global maximum to their client 
Selector processes.  

2.1 Process topologies in GRADE 

Figure 1 shows the Application window of the 
graphical editor GRED in which the process topology 
of this simple application is defined. We have three 
Server processes (named "Serv[1]", "Serv[2]" and 
"Serv[3]"). There can be seen six Selectors around 
the Servers. Three of them connected to "Serv[3]" 
(named "Selector[4]", "Selector[5]" and 
"Selector[6]"), two of them connected to "Serv[2]" 
(named "Selector[2]" and "Selector[3]") and only one 
of them connected to "Serv[1]". The application is 
executed directly from this environment. At the end 
each selector process will have acquired the 
maximum of all integers initially stored in the 
selector processes. The topology shown can easily be 
scaled by adding new selector or server processes, 
and connecting them to the existing processes. This is 
performed with some simple mouse clicks and drag 
and drop sequences. The result of this simplicity is 
that the programmer can easily and quickly design 

and test a variety of topologies and different 
behaviours imposed by them.  

2.2 The Reusable Components  

Process icons shown in Figure 1 represent reusable 
program components as they can be inserted into 
various applications with different connection 
schemes. We use only two components in our 
example: Server and Selector. Figure 2 and 3 depict 
the Process window of the GRED editor in which the 
visual code of components Server and Selector are 

defined, respectively. 
The GRADE components compute a result or 

provide a service and do not involve any process 
management or assume any topology in which they 
operate. Instead, they specify local ports for point-to-
point communication with any compatible port of any 
process in any application. All send and receive 
operations in processes are defined graphically (as 
boxes) and they refer to these local ports represented 
also by different boxes. Port symbols available inside 
a component are listed at left edge of the process 
window of the GRED editor and the user can assign 
them to various send or receive icons by a single 
mouse click. Each port icon has its own protocol 
(defined as text code belonging to that icon) and a 
port index for identification purpose.  

2.3 Program Generation in GRADE 

The GRED editor creates the so-called GRP files 
from the GRAPNEL program. Topology and 
components related information are separated: there 
is always one individual GRP file containing the 

 
Figure1: Process topology of the Get 

Maximum example program 
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description of the process topology while a separate 
GRP file is created to contain the code of each 
component.  

 

Components can also be saved to and retrieved 
from a GRP file individually. GRP files contain all 
the information necessary to restore the program 
graph for further editing and to compile the 
GRAPNEL program into a C+PVM code. The latter 
is the task of the GRP2C pre-compiler, which 
additionally creates other auxiliary files including 
makefiles used by the UNIX ‘make’ utility for 
building the executables. C code distribution and 
compilation is fully automated on every host of the 
heterogeneous cluster of workstations. Having 
obtained the executables, the parallel program can be 
executed either in normal, debugging or trace mode. 
In debugging mode, the DDBG distributed debugger 
controls the execution of the program by providing 
commands to create breakpoints, step-by-step 

execution, animation, etc. In trace mode, a trace file 
is generated containing all the trace events defined by 
the user. These events are visualised by the PROVE 
graphical visualisation tool assisting the user in 
spotting performance bottlenecks in the GRAPNEL 
programs. 

2.4 Requirements for specifications and their 
composition in GRADE 

The essential idea is to compose programs and 
specifications directed by the same GRAPNEL code. 
To reflect the GRAPNEL architecture of parallel 
applications we need to define reusable specification 
components, process specifications (instantiations of 
specification components) and their composition, 
corresponding to reusable program components, 
processes and the composed application (i.e. process 
topology), respectively. We should also test and 
validate each step of the composition.  

3 Composition of specifications 
supporting GRADE 

We have adopted the Petri net formalism for 
expressing and composing specifications. Petri nets 
have a well-founded theory, have been widely used to 
specify parallel software systems and are supported 
by a number of tools. Petri net semantics have been 
shown suitable for the composition of specifications 
of message passing applications [19]. In particular, 
we use Colored Petri nets (CPNs) which allow the 
modeler to create simple and easily manageable 
descriptions, without losing the ability of formal 
analysis [14]. Furthermore, CPNs have been extended 
with hierarchy constructs which resemble the notion 
of components in a composed system and are 
supported by a number of tools e.g. design/CPN [15], 
PEP [12], LOOPN [20], SYROCO [24]and others. 

3.1 Composition by place unification 

Heiner in [13] studies the association of the 
metanotions of a “reduced grammar for code 
statements” to PN constructs. We will use these 
associations in our specification components. As an 
example, figure 4 depicts the CPN Server component, 
satisfying the requirements posed in section 2.  

The doted rectangle surrounds the interface of the 
component. The remaining elements of the net are the 
static net structure, which corresponds to the internal 
actions of the component. In CPNs, communication 
operations are modelled by transitions connected to 
interface places, which model interface ports. 
Collective communication operations (e.g. gather and 

 
Figure2: Visual code of the Server 

component 

 
 

Figure 3: GRAPNEL code of the Selector 
component 
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multicast) are modelled by a single transition for 
conciseness. For example in figure 4, transitions 
GatherfromClients and MultiCastToClients, model 
receive and, respectively, send operations from and 
to all client processes.  

 

Cin

Pout

Pin

Cout

<expression>

<expression>

<expression>

Initial

SelectMax

<expression>
GatherFromClients

ExitLoopEnterLoop

MultiCastToClients

Terminated

SelectAndIter

RecvFromPeer

SendToPeer

Waiting

BeforeLoop

AfterLoop

BeforeLoopBody

AfterLoopBody

ReceivingCompleted

Interface

 
 

Figure 4: The CPN for the Server 
component 

 
In this paper, we follow the approach in [25] 

modelling ranges of ports within a communication 
type by maintaining a single interface place and 
replicating inscriptions on the connecting arc, as 
depicted on figure 6. Ports within a type are 
identified by the tokens in the inscriptions of the arcs 
connecting interface places. The tokens have the 
structure of <SendPort,data,ReceivePort>. The data 
field represents messages.  

The unified environment place resembles modeling 
the tuple space of Linda [11]. However, the tuple 
space in Linda does not define channels, whereas in 
the aforementioned approach point to point channels 
are implicitly defined. If we omit the SendPort and 
ReceivePort fields of the tokens, this approach will 
be very close to Linda’s paradigm.  

In the sequel, we define specification components 
and the specification composition. 

3.2 Specification Components: template CPN 

A specification can be modeled directly with CPNs 
when the interface of a component is fixed, as for 
example in the Selector component (it has one port of 
types In and Out), Parametric interfaces cannot be 
directly modelled using CPNs. We extend CPNs by 
template CPNs, which contain additional information 
to specify open scalable interfaces parametrically. 

Template CPNs are very close to the notion of 
pages in [14] and in the design/CPN tool [15]. They 
are also “flat” structures (pages are non-hierarchical 
CPNs). The template CPN is a parametric net-
structure having a unique name, from which process 
specifications, called composable CPNs, may be 
instantiated (as a page having several page 
instances). Instantiation of composable CPNs from 
templates involves structural modification of the net, 
whilst the page instances are exact copies of the 
original page. We identify composable CPNs by 
unique indexing of template names. 

We have defined a linguistic form for expressing 
template CPNs, because their mechanical 
composition is more manageable than that of 
graphical objects. Furthermore, by defining CPN 
templates closely to the new emerging standard, we 
remain independent of any actual Petri net tool, but 
also guarantee the possibility to use any of these 
tools. In figure 5 we give the textual description of 
template Selector of figure 3 as well as its graphical 
equivalent.  

The template of each component is generated from 
the respective component GRP file. A template 
generator parses the GRP file, recognises the 
correspondence between GRAPNEL semantics and 
CPN structure (according to the associations in [13]), 
and produces the template CPN for this component. 
These correspondences are quite clear to identify 
since GRAPNEL mainly describes the 
communicational behaviour of each component. 
Finally the template is stored in a template repository 
where it will be later accessed during the 
specifications composition process. 

3.3 Composition of Specifications 

We now outline the composition of specifications. 
Composition is performed in four steps.  

Step 1: Retrieve template CPNs. For each 
component in the application, we retrieve, from the 
template repository, the corresponding template CPN. 

Step 2: Create composable CPNs. For each 
process in the application, we create the 
corresponding composable CPN. We check the 
validity of port interface parameters. Actual values 
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for application parameters are provided. If the 
interface is valid, we create process specifications. 
For each communication type, the actual number of 
ports is created.  

Step 3: Merge composable CPNs. The individual 
composable CPNs will be merged (i.e. composed) 
into a single CPN. The composed CPN is constructed 
by merging the descriptions of composable CPNs into 
one, according to the application description. For 
example, the composed CPN, corresponding to 
application of figure 1 is illustrated in figure 6 using 
the environment unification place approach. Only 
Server[1] and Selector[1] are depicted analytically as 
composable CPNs. For brevity all other components 
are depicted in a “box” representation, where only 
the interface arcs and their inscriptions are visible.  

Step 4: Validate composition. We check if all 
ports are actually connected. 

The reader can easily observe the correspondences 
between figure 6 and the application graph as this is 
designed in GRADE (figures 1, 2, 3). A difference is 
the way interface ports are indexed. GRADE uses a 
global indexing schema for all ports of a single 
component, irrespective of its communication type 
(I1, O2 etc.), whereas in the CPN the indexing 
depends on the context. Thus port 0 of I1 in 
Server[3] corresponds to port I1[1] in server's 
specification, port 4 of O2 is O2[2] and so on. 

6 Related works 

A number of other visual programming 
environments have been developed for parallel 
applications (e.g. TRAPPER [23], EDPEPPS [9], 
HENCE [2], CODE [22]).  

Most of them (e.g. HENCE, CODE) are based 
upon the idea that nodes represent parallel 
computation and arcs represent interactions (of some 
form) among nodes. The problem with the HENCE 
and CODE approaches is that they force 
computations to be split into separate processes when 
communications occur or when branching decisions 
control communications (i.e. some kind of data-flow 
approach). This can result in complicated, awkward 
and large process communication graphs. 

This problem does not arise in TRAPPER and 
EDPEPPS which systems are very close to GRADE 
concerning both purpose and functionality. However, 
GRADE provides visual instructions to define 
communication operations while the others apply 
graphics only to define the process communication 
graph.  

Furthermore, none of the above mentioned tools 
tries to provide formal method support to aid the 
complex process of parallel program development.  

 

Out[1..1]

In[1..1]

<Out,v,?>

<!,v,In>

Initial

Terminated

Send

Receive

Wait

<v>

<?>

<?>

<v>

data

dot

msg

msg

data

value

type s=string;

val value=ival
var v:data;

Template Selector(#ports In:int,Out:int;design N:int;
application ival:int);

Declarations
type data = int; s = string; dot = {?};
type msg = structure(sendport : s, v : data, recvport : s);
val value := ival;
var  v: data;
Interface
Ctype In;

range : 1..1;
arc : input Receive inscription <In[portindex],v,?>;

End Ctype;
Ctype Out;

range : 1..1;
arc : output Send inscription <!,v,Out[portindex]>;

End Ctype;
Net Structure
Places

Initial(data),Wait(dot),Terminate(data);
Transitions

Send(), Receive();
Arcs

Initial>Send inscription v
Send>Wait inscription ?;
Wait>Receice inscription ?;
Receive>Terminate inscription v;

Marking
Initial(value);

End Template

type msg=s*data*s;

type data=int;

type dot=with ?;

 
Figure 5: The template CPN of selector component in textual and 

graphical form 
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7 Conclusions-Future Work 

In this paper we propose the integration of formal 
methods with software engineering methods, in order 
to improve testing and debugging of parallel 
applications. Due to the lack of space, works related 
to the GRADE environment and composition of Petri 
nets are omitted here but they are discussed in [18] 
and [25], respectively. The proposed methodology 
takes advantage of the direct association of 
specification and program components with GRADE 
components. They are both composed from reusable 
components and their composition is directed by the 
Topology part of GRADE. 

We have extended GRADE to permit the 
composition of message passing programs from 
generic process components. We have defined Petri 
net specification components directly associated with 
the process components. We have also defined the 
composition of specification components to derive 
the specification of the complete application. We 
may first test and verify that programs design are 
correct, and only then run parallel programs using 
valuable resources. Specifications cannot catch all 
errors, but they are useful anyway to identify the real 
cause of errors.  

We intend to further extend our methodology for 
performance evaluation of the MP applications. Our 
long-term aim is to create an integrated software 
engineering support tool for the development of 
reliable message passing applications. 
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