
1

Associating Composition of Petri Net Specifications with Application Designs
in GRADE

Z. Tsiatsoulis1, G. Dózsa2, J.Y. Cotronis3 and P. Kacsuk4

1,3Department of Informatics, University of Athens, Panepistimiopolis,
157 71 Athens, Greece, Tel.: +301 7275223, fax: +301 7219561

E-mail: {zack, cotronis}@di.uoa.gr

2,4 Computer and Automation Research Institute, Hungarian Academy of Sciences
H1518 Budapest, P.O.Box 63. Hungary, Tel/Fax: +361 1297864

E-mail: {dozsa2, kacsuk4}@sztaki.hu

Abstract

To provide high-level graphical support for
developing message passing programs, an integrated
programming environment (GRADE) is being
developed. GRADE currently provides tools to
construct, execute, debug, monitor and visualise
message-passing based parallel programs. The paper
describes the extension of GRADE with formal
method support based on Petri nets composition. .
We outline specification composition, directly
associated with application composition as well as
the integration of specification and implementation
of program development.

1 Introduction

Parallel Processing has emerged as a means to
cope with the computational power needed by the
ever-increasing complexity of software applications.
The most common paradigm of parallel processing is
message passing (MP). Designing MP applications is
a complex task and involves designing the combined
behaviour of its processes, that is, their individual
execution restricted by their communication and
synchronisation interactions. Processes and their
interactions (virtual communication channels) are
modelled by virtual process topologies.
Implementation of MP applications involves
programming of sequential processes, as well as
latent programming for management of processes and

architecture resources. The emergence of Message
Passing Environments (MPE), such as PVM [10] and
MPI [21], provide a useful abstraction of the
underlying architectures simplifying resource
management.

Although, different MPEs can simplify several
aspects of parallel program development, the lack of
real user-friendly software tools for such
development prevents many potential users from
dealing with concurrent programming at all. To cope
with the extra complexity of parallel programs arising
due to inter-process communication and
synchronisation, we have designed an integrated
visual programming environment called GRADE
[16]. GRADE stands for Graphical Application
Development Environment and its major goal is to
provide an easy-to-use, integrated set of
programming tools for development of general
message-passing applications that can run either on
supercomputers or on heterogeneous workstation
clusters. GRADE has the following main benefits:

?? Visual interface to define all parallel activities in the
application (i.e. all process management and
communication actions). Graphics help in better
understanding the complex structure and run-time
behaviour of the distributed program even for users
not familiar with parallel programming.

?? Programmers are not required to know the syntax of
the underlying message-passing system. GRADE
generates all message-passing library calls
automatically on the basis of the visual code. As a

george
Proc. of the Seventh Euromicro Workshop on Parallel and Distributed Processing, Funchal, Portugal, 1999, pp. 204-211

2

result, GRAPNEL programs are portable between
different MPEs provided that GRADE is able to
generate code for those MP systems. Currently,
GRADE can generate code only for PVM but MPI is
to be supported very soon.

?? Compilation and distribution of the executables are
performed automatically in the heterogeneous
environment.

?? Debugging and monitoring information is related
directly back to the user's graphical code during on-
line debugging and post-mortem visualisation of the
run-time behaviour of the application.

GRADE provides the GRED graphical editor for
the programmer to construct the code of his/her
parallel application according to the syntax and
semantics of GRAPNEL language [17]. Furthermore,
the environment offers integrated tools for
correctness and performance debugging of the
GRAPNEL applications which use the same graphical
representation of the parallel program as GRED does.
(The distributed debugger integrated into GRADE is
called DDBG [8] and it has been developed at
University of Lisbon). As a result, the programmer
has the same high-level visual view of his/her
application during the whole program development
cycle. A parallel architecture simulator developed at
University of Barcelona has also been integrated into
an early version of the system and it is to be adopted
soon for the current version. Possible co-operation
between GRADE and EDPEPPS [9] environments is
currently under investigation to extend the simulation
capabilities of the system.

The GRED editor has originally supported only
the top-down design of distributed applications, i.e.
the programmer had to start his/her work by
designing the topology of the program followed by
elaborating more and more detailed codes of the
processes. The visual code of the whole application
could only be saved as one unit. However, this
approach had the disadvantage that GRAPNEL code
of processes could not be reused through different
application. To overcome this problem, we have
decided to follow the concept of re-usable program
components similarly to that of Ensemble
methodology [1][4][5]. In this way, the programmer
can create and use processes individually as reusable
program components which can be embedded into
various applications using different inter connection
schemes.

Although, GRADE provides a productive
framework for implementing and maintaining MP
applications, it cannot guarantee absence of design
errors. In addition, composition is prone to new types

of errors, such as use of wrong components and
unspecified or incompatible binding of
communication channels. It was therefore desirable
to validate, analyse or ideally verify the correct
behaviour of the composed applications. To this end,
we integrate into GRADE a specification composition
technique [6][7][25], which is directly associated
with program composition. We produce formal
specifications of program components directly from
GRADE’s process graphical components. We then
generate formal process specifications and compose
them, directed by GRADE’s application topologies,
deriving formal specifications of applications. The
topologies, which direct composition of applications,
also direct the composition of formal specifications.
We have used the Petri-net (PN) formalism [14] for
expressing and composing specifications. PNs are
well founded, have been widely used to specify
parallel software systems and are supported by a
number of tools.

The direct association of formal specifications and
implementations may improve the use of formal
methods in the software engineering process, but only
marginally. However, this direct association provides
the basis for testing and debugging applications
supported by formal methods, using specification and
execution tools in synergy. This approach is in
accordance with Agha [1] “... the better way to think
of formal methods is as techniques that help identify
bugs rather than prove programs correct...”. We also
strongly believe that the acceptance of formal
methods will be facilitated when they are integrated
with software engineering tools.

In the next section, we outline program
composition in GRADE and discuss the requirements
for associating specification composition with
application composition. In section 3, we describe
PN component specifications and present their
composition followed by some conclusions.

2 Program composition in GRADE and
specification requirements

In GRAPNEL programs there are three different
design levels distinguished. Process topology related
information (i.e. communication paths among
processes) are defined at the application level as a
graph (see Fig. 1). Nodes of this graph are processes
and their codes are defined by graphical symbols at
the process level of the program (see Fig. 2,3).
However, not all instructions are described as
individual icon. The point is that every send and
receive operations must be defined graphically but
arbitrary large and sophisticated code segments
containing no send or receive operations are

3

represented by a single text block icon. The contents
of graphical symbols can be defined as ordinary text
program code at the lowest level of the program. The
actual contents depend on the particular symbol. For
example, in case of a receive icon the code must be
simple the name of the program variable(s) where the
data to be received are to be stored while, a text
block icon may contain text code without any
restrictions except the lack of inter-process
communication. Detailed description of the GRED
editor and that of different elements of the
GRAPNEL language can be found in [18] and [17],
respectively.

We briefly outline the design and implementation
of applications in GRADE on an example application
Get Maximum. The requirement is simple: Selector
processes, each getting an integer parameter, require
the maximum of these integers. We shall implement a
design, called Selector-Servers-in-Ring: Selectors are
connected as client processes to associated Server
processes. Each Selector sends (via port 1) its integer
parameter to its Server and, eventually, receives (via
port 0) the required maximum. Servers receive
integer values from their client Selectors and find the
local maximum. Servers are connected in a ring.
They find the global maximum by sending their
current maximum to their next neighbour in the ring,
receiving the maximum of the previous server; they
compare and select the maximum of these two values.
Servers repeat the send-receive-select cycle M-1
times, where M is the size of the ring. Finally,
Servers send the global maximum to their client
Selector processes.

2.1 Process topologies in GRADE

Figure 1 shows the Application window of the
graphical editor GRED in which the process topology
of this simple application is defined. We have three
Server processes (named "Serv[1]", "Serv[2]" and
"Serv[3]"). There can be seen six Selectors around
the Servers. Three of them connected to "Serv[3]"
(named "Selector[4]", "Selector[5]" and
"Selector[6]"), two of them connected to "Serv[2]"
(named "Selector[2]" and "Selector[3]") and only one
of them connected to "Serv[1]". The application is
executed directly from this environment. At the end
each selector process will have acquired the
maximum of all integers initially stored in the
selector processes. The topology shown can easily be
scaled by adding new selector or server processes,
and connecting them to the existing processes. This is
performed with some simple mouse clicks and drag
and drop sequences. The result of this simplicity is
that the programmer can easily and quickly design

and test a variety of topologies and different
behaviours imposed by them.

2.2 The Reusable Components

Process icons shown in Figure 1 represent reusable
program components as they can be inserted into
various applications with different connection
schemes. We use only two components in our
example: Server and Selector. Figure 2 and 3 depict
the Process window of the GRED editor in which the
visual code of components Server and Selector are

defined, respectively.
The GRADE components compute a result or

provide a service and do not involve any process
management or assume any topology in which they
operate. Instead, they specify local ports for point-to-
point communication with any compatible port of any
process in any application. All send and receive
operations in processes are defined graphically (as
boxes) and they refer to these local ports represented
also by different boxes. Port symbols available inside
a component are listed at left edge of the process
window of the GRED editor and the user can assign
them to various send or receive icons by a single
mouse click. Each port icon has its own protocol
(defined as text code belonging to that icon) and a
port index for identification purpose.

2.3 Program Generation in GRADE

The GRED editor creates the so-called GRP files
from the GRAPNEL program. Topology and
components related information are separated: there
is always one individual GRP file containing the

Figure1: Process topology of the Get

Maximum example program

4

description of the process topology while a separate
GRP file is created to contain the code of each
component.

Components can also be saved to and retrieved
from a GRP file individually. GRP files contain all
the information necessary to restore the program
graph for further editing and to compile the
GRAPNEL program into a C+PVM code. The latter
is the task of the GRP2C pre-compiler, which
additionally creates other auxiliary files including
makefiles used by the UNIX ‘make’ utility for
building the executables. C code distribution and
compilation is fully automated on every host of the
heterogeneous cluster of workstations. Having
obtained the executables, the parallel program can be
executed either in normal, debugging or trace mode.
In debugging mode, the DDBG distributed debugger
controls the execution of the program by providing
commands to create breakpoints, step-by-step

execution, animation, etc. In trace mode, a trace file
is generated containing all the trace events defined by
the user. These events are visualised by the PROVE
graphical visualisation tool assisting the user in
spotting performance bottlenecks in the GRAPNEL
programs.

2.4 Requirements for specifications and their
composition in GRADE

The essential idea is to compose programs and
specifications directed by the same GRAPNEL code.
To reflect the GRAPNEL architecture of parallel
applications we need to define reusable specification
components, process specifications (instantiations of
specification components) and their composition,
corresponding to reusable program components,
processes and the composed application (i.e. process
topology), respectively. We should also test and
validate each step of the composition.

3 Composition of specifications
supporting GRADE

We have adopted the Petri net formalism for
expressing and composing specifications. Petri nets
have a well-founded theory, have been widely used to
specify parallel software systems and are supported
by a number of tools. Petri net semantics have been
shown suitable for the composition of specifications
of message passing applications [19]. In particular,
we use Colored Petri nets (CPNs) which allow the
modeler to create simple and easily manageable
descriptions, without losing the ability of formal
analysis [14]. Furthermore, CPNs have been extended
with hierarchy constructs which resemble the notion
of components in a composed system and are
supported by a number of tools e.g. design/CPN [15],
PEP [12], LOOPN [20], SYROCO [24]and others.

3.1 Composition by place unification

Heiner in [13] studies the association of the
metanotions of a “reduced grammar for code
statements” to PN constructs. We will use these
associations in our specification components. As an
example, figure 4 depicts the CPN Server component,
satisfying the requirements posed in section 2.

The doted rectangle surrounds the interface of the
component. The remaining elements of the net are the
static net structure, which corresponds to the internal
actions of the component. In CPNs, communication
operations are modelled by transitions connected to
interface places, which model interface ports.
Collective communication operations (e.g. gather and

Figure2: Visual code of the Server

component

Figure 3: GRAPNEL code of the Selector
component

5

multicast) are modelled by a single transition for
conciseness. For example in figure 4, transitions
GatherfromClients and MultiCastToClients, model
receive and, respectively, send operations from and
to all client processes.

Cin

Pout

Pin

Cout

<expression>

<expression>

<expression>

Initial

SelectMax

<expression>
GatherFromClients

ExitLoopEnterLoop

MultiCastToClients

Terminated

SelectAndIter

RecvFromPeer

SendToPeer

Waiting

BeforeLoop

AfterLoop

BeforeLoopBody

AfterLoopBody

ReceivingCompleted

Interface

Figure 4: The CPN for the Server
component

In this paper, we follow the approach in [25]

modelling ranges of ports within a communication
type by maintaining a single interface place and
replicating inscriptions on the connecting arc, as
depicted on figure 6. Ports within a type are
identified by the tokens in the inscriptions of the arcs
connecting interface places. The tokens have the
structure of <SendPort,data,ReceivePort>. The data
field represents messages.

The unified environment place resembles modeling
the tuple space of Linda [11]. However, the tuple
space in Linda does not define channels, whereas in
the aforementioned approach point to point channels
are implicitly defined. If we omit the SendPort and
ReceivePort fields of the tokens, this approach will
be very close to Linda’s paradigm.

In the sequel, we define specification components
and the specification composition.

3.2 Specification Components: template CPN

A specification can be modeled directly with CPNs
when the interface of a component is fixed, as for
example in the Selector component (it has one port of
types In and Out), Parametric interfaces cannot be
directly modelled using CPNs. We extend CPNs by
template CPNs, which contain additional information
to specify open scalable interfaces parametrically.

Template CPNs are very close to the notion of
pages in [14] and in the design/CPN tool [15]. They
are also “flat” structures (pages are non-hierarchical
CPNs). The template CPN is a parametric net-
structure having a unique name, from which process
specifications, called composable CPNs, may be
instantiated (as a page having several page
instances). Instantiation of composable CPNs from
templates involves structural modification of the net,
whilst the page instances are exact copies of the
original page. We identify composable CPNs by
unique indexing of template names.

We have defined a linguistic form for expressing
template CPNs, because their mechanical
composition is more manageable than that of
graphical objects. Furthermore, by defining CPN
templates closely to the new emerging standard, we
remain independent of any actual Petri net tool, but
also guarantee the possibility to use any of these
tools. In figure 5 we give the textual description of
template Selector of figure 3 as well as its graphical
equivalent.

The template of each component is generated from
the respective component GRP file. A template
generator parses the GRP file, recognises the
correspondence between GRAPNEL semantics and
CPN structure (according to the associations in [13]),
and produces the template CPN for this component.
These correspondences are quite clear to identify
since GRAPNEL mainly describes the
communicational behaviour of each component.
Finally the template is stored in a template repository
where it will be later accessed during the
specifications composition process.

3.3 Composition of Specifications

We now outline the composition of specifications.
Composition is performed in four steps.

Step 1: Retrieve template CPNs. For each
component in the application, we retrieve, from the
template repository, the corresponding template CPN.

Step 2: Create composable CPNs. For each
process in the application, we create the
corresponding composable CPN. We check the
validity of port interface parameters. Actual values

6

for application parameters are provided. If the
interface is valid, we create process specifications.
For each communication type, the actual number of
ports is created.

Step 3: Merge composable CPNs. The individual
composable CPNs will be merged (i.e. composed)
into a single CPN. The composed CPN is constructed
by merging the descriptions of composable CPNs into
one, according to the application description. For
example, the composed CPN, corresponding to
application of figure 1 is illustrated in figure 6 using
the environment unification place approach. Only
Server[1] and Selector[1] are depicted analytically as
composable CPNs. For brevity all other components
are depicted in a “box” representation, where only
the interface arcs and their inscriptions are visible.

Step 4: Validate composition. We check if all
ports are actually connected.

The reader can easily observe the correspondences
between figure 6 and the application graph as this is
designed in GRADE (figures 1, 2, 3). A difference is
the way interface ports are indexed. GRADE uses a
global indexing schema for all ports of a single
component, irrespective of its communication type
(I1, O2 etc.), whereas in the CPN the indexing
depends on the context. Thus port 0 of I1 in
Server[3] corresponds to port I1[1] in server's
specification, port 4 of O2 is O2[2] and so on.

6 Related works

A number of other visual programming
environments have been developed for parallel
applications (e.g. TRAPPER [23], EDPEPPS [9],
HENCE [2], CODE [22]).

Most of them (e.g. HENCE, CODE) are based
upon the idea that nodes represent parallel
computation and arcs represent interactions (of some
form) among nodes. The problem with the HENCE
and CODE approaches is that they force
computations to be split into separate processes when
communications occur or when branching decisions
control communications (i.e. some kind of data-flow
approach). This can result in complicated, awkward
and large process communication graphs.

This problem does not arise in TRAPPER and
EDPEPPS which systems are very close to GRADE
concerning both purpose and functionality. However,
GRADE provides visual instructions to define
communication operations while the others apply
graphics only to define the process communication
graph.

Furthermore, none of the above mentioned tools
tries to provide formal method support to aid the
complex process of parallel program development.

Out[1..1]

In[1..1]

<Out,v,?>

<!,v,In>

Initial

Terminated

Send

Receive

Wait

<v>

<?>

<?>

<v>

data

dot

msg

msg

data

value

type s=string;

val value=ival
var v:data;

Template Selector(#ports In:int,Out:int;design N:int;
application ival:int);

Declarations
type data = int; s = string; dot = {?};
type msg = structure(sendport : s, v : data, recvport : s);
val value := ival;
var v: data;
Interface
Ctype In;

range : 1..1;
arc : input Receive inscription <In[portindex],v,?>;

End Ctype;
Ctype Out;

range : 1..1;
arc : output Send inscription <!,v,Out[portindex]>;

End Ctype;
Net Structure
Places

Initial(data),Wait(dot),Terminate(data);
Transitions

Send(), Receive();
Arcs

Initial>Send inscription v
Send>Wait inscription ?;
Wait>Receice inscription ?;
Receive>Terminate inscription v;

Marking
Initial(value);

End Template

type msg=s*data*s;

type data=int;

type dot=with ?;

Figure 5: The template CPN of selector component in textual and

graphical form

7

7 Conclusions-Future Work

In this paper we propose the integration of formal
methods with software engineering methods, in order
to improve testing and debugging of parallel
applications. Due to the lack of space, works related
to the GRADE environment and composition of Petri
nets are omitted here but they are discussed in [18]
and [25], respectively. The proposed methodology
takes advantage of the direct association of
specification and program components with GRADE
components. They are both composed from reusable
components and their composition is directed by the
Topology part of GRADE.

We have extended GRADE to permit the
composition of message passing programs from
generic process components. We have defined Petri
net specification components directly associated with
the process components. We have also defined the
composition of specification components to derive
the specification of the complete application. We
may first test and verify that programs design are
correct, and only then run parallel programs using
valuable resources. Specifications cannot catch all
errors, but they are useful anyway to identify the real
cause of errors.

We intend to further extend our methodology for
performance evaluation of the MP applications. Our
long-term aim is to create an integrated software
engineering support tool for the development of
reliable message passing applications.

8 Acknowledgements

The work described in this paper is funded by the
Hungarian Technological Development Committee
(OMFB) in the framework of Hungarian-Greek TéT
Project GR-25/96.and partly by the Hungarian
National Science Research Fund (OTKA) Contract
Num: F022105. It is also partly funded by the Greek
Ministry of Development, General Secretariat of
Research and Technology.

9 Bibliography

[1] Agha, G.A. (1997) The Emerging Tapestry of
Software Engineering, IEEE Concurrency, 5(3), 2-4.

[2] Beguelin, A., Dongarra, J., Geist, G. and Sunderam,
V. (1993) Visualization and debugging in a
heterogeneous environment, IEEE Computer, Vol.
26(6).

[3] Cotronis, J.Y. (1996) Efficient Composition and
Automatic Initialization of Arbitrarily Structured
PVM Programs, in Proc. of 1st IFIP International

E
N
V
I
R
O
N
M
E
N
T

<Selector[1].O1[1],v,Server[1].I1[1]>

<Server[1].O2[1],v,Selector[1].I1[1]>

Initial

Terminated

Send

Receive

Wait

<v>

<?>

<?>

<v>

data

dot

data

6

<Server[1].O1[1],lmax,Server[2].I2[1]>

<Server[3].O1[1],lmax,Server[1].I2[1]>

<Server[1].O2[1],gmax,Selector[1].I1[1]>

Selector[1] Server[1]

Selector[2]

Selector[3]

Selector[4]

Selector[5] Selector[6]

Server[2]

Server[3]

<Selector[2].O1[1],v,Server[2].I1[1]>

<Selector[3].O1[1],v,Server[2].I1[2]>

<Selector[4].O1[1],v,Server[3].I1[1]>

<Selector[5].O1[1],v,Server[3].I1[2]> <Selector[6].O1[1],v,Server[3].I1[3]>

<Server[2].O2[1],v,Selector[2].I1[1]>

<Server[2].O2[2],v,Selector[3].I1[1]>

<Server[3].O2[1],v,Selector[4].I1[1]>

<Server[3].O2[2],v,Selector[5].I1[1]> <Server[3].O2[3],v,Selector[6].I1[1]>

<Server[3].O2[1],gmax,Selector[4].I1[1]>,
<Server[3].O2[2],gmax,Selector[5].I1[1]>,
<Server[3].O2[3],gmax,Selector[6].I1[1]>

<Server[2].O2[1],gmax,Selector[2].I1[1]>,
<Server[2].O2[2],gmax,Selector[3].I1[1]>

<Server[3].O1[1],lmax,Server[1].I2[1]>
<Server[1].O1[1],lmax,Server[2].I2[1]>

<Server[2].O1[1],lmax,Server[3].I2[1]>

<Server[2].O1[1],lmax,Server[3].I2[1]>

<Selector[1].O1[1],v[1],Server[1].I1[1]>

<Selector[4].O1[1],v[1],Server[3].I1[1]>,
<Selector[5].O1[1],v[2],Server[3].I1[2]>,
<Selector[6].O1[1],v[3],Server[3].I1[3]>

<Selector[2].O1[1],v[1],Server[2].I1[1]>,
<Selector[3].O1[1],v[2],Server[2].I1[2]>,

Figure 6: The composed CPN of Get Maximum Selector Servers in ring

8

Workshop on Parallel and Distributed Software
Engineering, Berlin, 74-85, Chapman & Hall.

[4] Cotronis, J.Y. (1996) Efficient Program Composition
on Parix by the Ensemble Methodology, in Proc. of
Euromicro Conference’96, Prague, IEEE Computer
Society Press.

[5] Cotronis, J.Y. (1997) Message Passing Program
Development by Ensemble, in Proc. of PVM/MPI’97,
Cracow, LNCS 1332, 242-249, Springer.

[6] Cotronis, J.Y. and Tsiatsoulis, Z. (1997)
Specification Composition for the Verification of
Message Passing Program Composition, in Proc. of
3rd IFIP International Conference on Reliability,
Quality and Safety of Software Intensive Systems,
Athens, 95-106, Chapman & Hall.

[7] Cotronis, J.Y. and Tsiatsoulis, Z. (1997) Composition
of Specifications of Message Passing Applications
Composed by the Ensemble Methodology, in Proc. of
6th Hellenic Conference on Informatics, Athens,
volume I, 299-312, Ekdoseis Neon Technologion.

[8] Cunha, J.C., Lourenco, J., and Antao, T. (1996) A
Debugging Engine for Parallel and Distributed
Environment, in Proc. Of 1st Austrian-Hungarian
Workshop on Distributed and Parallel Systems,
Miskolc, Hungary, 111-118.

[9] Delaitre, T., Ribeiro-Justo, G., Spies, F. and Winter
S. (1997) A graphical toolset for simulation
modelling of parallel systems, Parallel Computing,
22(13), 1823-1836.

[10] Geist, A., Beguelin, A., Dongarra, J., Jiang, W.,
Manchek, R. and Sunderam, V. (1994) PVM 3 User’s
guide and Reference Manual, ORNL/TM-12187.

[11] Gelernter, D. and Carriero, N. (1992) Coordination
Languages and their Significance, Communications
of the ACM, 35(2), 97-107.

[12] Grahlmann, B. (1997) The PEP Tool, in Proc. of
Application and Theory of Petri Nets’97, Toulouse,
LNCS 1248, Springer.

[13] Heiner, M. (1992) Petri Net Based Software
Validation, International Computer Science Institute
ICSI TR-92-022, Berkeley, California.

[14] Jensen, K. (1990) Coloured Petri Nets: A High Level
Language for System Design and Analysis, in
Advances in Petri nets 1990, LNCS 483, 342-416,
Springer.

[15] Jensen, K. (1996) Design/CPN Reference Manual,
Aarhus University-Metasoft.

[16] Kacsuk, P., Cunha, J.C., Dózsa, G., Lourenco, J.,
Fadgyas, T. and Antao T. (1997) A Graphical
Development and Debugging Environment for
Parallel Programs, Parallel Computing, 22,1747-
1770.

[17] Kacsuk, P., Dózsa, G. and Fadgyas, T. (1996)
Designing Parallel Programs by the Graphical
Language GRAPNEL, Microprocessing and
Microprogramming, 41, 625-643.

[18] Kacsuk, P., Dózsa, G., Fadgyas, T. and Lovas, R.
(1998) The GRED Graphical Editor for the GRADE
Parallel Program Development Environment, in Proc.
of HPCN98, International Conference on High-

Performance Computing and Networking,
Amsterdam, The Netherlands, 728-737.

[19] Kindler, E. (1997) A Compositional Partial Order
Semantics for Petri Net Components, in Proc. of
Application and Theory of petri Nets’97, Toulouse,
LNCS 1248, Springer.

[20] Lakos, C.A. (1996) LOOPN++ User Manual,
University of Tasmania, Department of Computer
Science.

[21] Message Passing Interface Forum (1994) MPI: A
Message Passing Interface Standard.

[22] Newton, P. and Browne, J. (1992) The code 2.0
graphical parallel programming language, in Proc. of
ACM International Conference on Supercomputing.

[23] Scheidler, C. and Schafers, L. (1993) Trapper: A
graphical programming environment for industrial
high-performance applications, in Proc. of
PARLE'93: Parallel Architectures and Languages
Europe, Munich, Germany.

[24] Sibertin-Blanc, C., Hameurlain, N. and Touzeau, P.
(1995) SYROCO: A C++ Implementation of
Cooperative Objects, in Proc. of Workshop on
Object-Oriented Programming and Models of
Concurrency, Torino.

[25] Tsiatsoulis, Z. and Cotronis, J.Y. (1997) Associating
Composition of Petri Net Specifications with
Composition of Message Passing Applications,
Report, Available from URL
http://www.di.uoa.gr/~ensemble.

