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Abstract Hence, it is typically difficult to quantify the balance
To minimize the time to market and cost of new sub between performance and manufacturing yield. More-
0.25um process technologies and products, PDF Solutionover, it is difficult to know which in-line measure-
Inc., has developed a new comprehensive approach based ments affect performance and yield the most. Finally,
the use of predictive simulation tools combined with highly discerning between the signatures of random and Sys-
efficient experimental design techniques and special test struematic problems is complex. Hence, it is often diffi-
tures. This paper focuses on our approach for concurreny i+ to know where to focus yield improvement
clievellopment of new tEChn9logieS and optimization of Ce”ef'forts. These traditional barriers slow the rate at
libraries for these technologies. We present a software syster | . . .
which manufacturers can achieve economically

calledCircuit Surferwhich performs this library optimization i ;
in a highly automated fashion and with guaranteed correctnes2CCeptable yields for leading edge products.

in silicon. We demonstrate several example£aotuit Surfer
applications to cell library design to optimize such objective
functions as performance, cell area or yield.

2. Holistic Yield Improvement Methodology

To resolve these problems, PDF Solutions, Inc.,
has developed a holistic yield ramp methodology that
1. Introduction leverages simulation and hypothesis-driven statistical

With each new generation of technology and prod-analysis to overcome the barriers between traditional
ucts, semiconductor manufacturing becomes more conrengineering groups. This approach uses a combina-
plex. The increase in IC functionality has been madetion of yield and performance prediction as well as
possible by a continuous drive towards smaller featurestatistically based data analysis to isolate gaps where
sizes. This decrease in dimensions of semiconductcactual and predicted yields are inconsistent, thereby
structures has given rise to a new set of problems aidentifying a potential systematic yield loss mecha-
manufacturing sensitivity to critical design and process-nism. After isolating that mechanism, solutions are
ing parameters has risen dramatically. While IC manu-proposed and evaluated via simulation until an opti-
facturing becomes more complex, market windows formal engineering solution is found that maximizes
new products are shrinking. Success in today’s marketyield while achieving performance targets.
place requires effective technology integration as dic- Predicting defect limited yield is an indispensable
tated by consumer demand. Against the backdrop ocapability during the yield learning phase, especially
changing market conditions, the overall design cyclewhen multiple diverse yield loss mechanisms may be
time and yield ramp have become the key drivers forpresent such as random defects, pattern-dependent
product profitability. Technology independent designeffects, within-die process variations and parametric
methodology, popularized by Mead and Conway[14]process mis-centering. To help isolate the effects of
and used ever since to address the growing complexitindividual root causes on final product yield, we have
problem, no longer applies to deep submicron designsdeveloped a methodology and a software system
Unfortunately, this failure is happening at a time when itcalled pdEx in which limited-yield prediction[1] is
is more crucial than ever to design products concur-used to provide microscopic observability of physical
rently with new technology development and its transferfailure mechanisms. Furthermore, we have demon-
to high volume manufacturing strated in a number of joint projects with our indus-

These changes require a redefinition of the inter-trial partners, several successful applications of this
faces between design, test and manufacturing. In the fomethodology during technology or product develop-
lowing section, we present a comprehensive view of thement which allowed designers to anticipate certain
yield problem and a “holistic” yield improvement meth- types of yield loss and employ appropriate design and
odology specifically designed to overcome yield detrac-even test (in-line and sort) optimizations.
tors in state-of-the-art technologies. While elimination Another key component of our yield/performance
of systematic and design/process matching issues is criimprovement methodology is the employment of sta-
ical to yield ramp, and hence profitability, there exist tistical device and process simulation (TCAD) to pre-
organizational barriers that reinforce traditional dict the distributions of electrical test values and
approaches. One barrier present in virtually all compa-SPICE parameters based on the distributions in the
nies, even vertically integrated manufacturers (IDMs),manufacturing equipment parameters. PDF Solutions
exists between the design and manufacturing groupshas developed a new comprehensive approach based



on the use of predictive simulation tools combined with overall approach to statistical circuit design. Section 4
highly efficient experimental design techniques and spepresents th@dFabsystem and Section 5 describés-

cial test structures. The predictive simulation is achieveccuit Surfer Section 6 outlines the application of these
via statistical calibration of state-of-the-art process anctools for concurrent technology and library develop-
device simulation tools which allows for correct processment. Section 7 presents several examples of applying
integration decisions to be made. These calibrated mocCircuit Surfer for optimizing digital and analog cell
els serve as a virtual fabrication line and, in conjunctionlibraries.

with short flow and test structure experiments, reduce L , L

the development cycle by several months. This papeS: Statistical Design and Optimization

will describe a software system, callgdiFah which . Manufacturmg vanguons result in a d|str|k_)ut|(_)n of
can be applied for process integration and transfer tcircuit performances. Since _state-of-t_hg-art circuits are
volume manufacturing. This holistic approach is quite ©ften designed very aggressively, statistical variations in
unique and has already been successfully applied tperformances can result in violations of specification

shorten the development cycle in several leading edg!IMits, i-e., parametric yield loss. The goal of statistical
semiconductor companies. design is to maximize parametric yield by making a cir-

cuit robust to random variations inherent in VLSI fabri-

The development of cell libraries for these .4iion processes.

advanced technologies presents an equally challengin = -0 mon approach to robust design is to ensure
problem. Typically, these libraries are characterized Nt the circuit performances are acceptable under
optimized only after the technology is frozen. With the ., ot case” conditions. These worst case conditions
proven predictive capabilities of the statistically cali- ;.o jerived by analyzing the model parameter values

bratedpdFabtool suite, it is possible to change this sce- that would result in maximum deviation of each circuit

hario to a concurrent development of technology anc,e formance from its nominal value. The process corner

cell libraries. We will present a comprehensive devicegp|cE models are then generated by combining the
mo_de_l Cr?at'on Kit base_d o_deab,and a _ceII library worst case model parameters. There are at least two
optimization kit calledCircuit Surfer We will demon-

strate practical examples of cell library design to opti-
mize such objective functions as performance, cell areil. Unrealistic worst case conditions. Combining the
and yield. worst case value of each model parameter does not
capture the correlations between the SPICE model
parameter values necessary to accurately reflect the

problems with this approach:

Yield Ramp Consulting manufacturing variations. Thus, designers simulate
worst case corners that have a very low probability
pdEx pdFab | Circuit of occurring in a real fab.
Surfer 2. Different worst case conditions for different circuit

types. Typically, worst case SPICE models are devel-
oped once for a technology using a subset of circuits.
Issues
Often these worst case models do not accurately
reflect the worst case process variation for the entire
family of circuits that will be designed for this tech-
nology. This is especially true for analog and mixed-

Defect
Issues
Library
Performance
signal designs where the worst case condition could

Test Structures and Short flows be product specific.
In order to alleviate these problems a number of

techniques for statistical design have been pro-
Figure 1: Holistic Yield Improvemehf! posed[3][4][5][8]. These approaches estimate the com-
plete distribution of circuit performances based on
statistical SPICE models. Use of statistical SPICE mod-
els instead of the worst case models has two advantages:

Systematic
Issues

Parametric

Components that make up the Holistic Yield
Improvement methodology are shown in Figure 1. Our
methodology for limited-yield prediction and thpelEx
tool suite have been described previously[1][2] andl. Identification of realistic worst cases. Since the use
therefore, will not be presented here. Instead, this pape of statistical SPICE models allows the estimation of
will focus on the use opdFabfor predictive statistical complete circuit performance distributions, the worst
process and device simulation af@ircuit Surfer for case conditions can be circuit specific and are not
optimization of cell libraries. Section 3 describes our  overly pessimistic.



2. Optimization of statistical criteria. In addition to For cell library optimization, the key requirement is
allowing realistic worst case conditions for perfor-  a set of statistical SPICE models for all the device types
mance optimization, statistical SPICE models allow in a given technology. For this purpose, a modified Prin-
the optimization of statistical criteria like variance cipal Component Analysis (PCA) algorithm is used to
and parametric yield. create statistical BSIM3v3 SPICE models that can be

The next two sections describe how we implementused inCircuit Surfer The algorithm identifies statisti-
the statistical design methodology outlined in this sec-cally independent “factors”, thus determining the mini-
tion. The statistical TCAD framework implemented in mum number of basis vectors that can be used to
pdFabresults in statistical SPICE models that are usecdescribe the statistical SPICE model.

by Circuit Surferfor statistical circuit design. To assure the accurate prediction of the effects of

process and layout changes on the SPICE models, we

i use commercial, two-dimensional process and device

_An important part of concurrent technology and gimylators backed by a robust in-house calibration

I|brary optimization is the need to predict the device a”dmethodologydeabcan incorporate process and device

interconnect behavior before the technology developgjmyjators from multiple vendors, thus permitting best-

ment is completed in the actual fabrication line. This ot preed application of simulators to suit the nuances of
necessitates a framework for predictive TCAD simula-ihe particular technology to be modelegdFab can
tion that can generate statistical SPICE models based Cincorporate analytic and semi-empirical models as well.

process and layout changes. The simulation environa nified “Chip Database” allows multiple simulators to
ment must have three properties: the ability to be calinhyt ypdate, and store simulation results in the data-

brated to existing technologies, the ability o mappage The use of physically based models, coupled with
process and layout variabilities into parameters and corg ropust calibration methodology, allows for high confi-

relations of the SPICE models, and the ability to predictyance in predicting SPICE parameters for a technology
technology changes accurately based on prior calibra;,qer development.

tions. These changes are caused by technology fine-tul

ing or the development of t.echnology derlyatlves. parts: a nominal calibration, preferably for multiple pro-
The pdFabframework is such an environment for ;qsq gpjits, and a statistical calibration[11][12][13]. The
predictive statistical process and device simulation[10]. nominal calibration is carried out with the statistical

variations in the simulator set to zero. Ideally, multiple
process splits (e.g., varying temperatures, doses, ener-
Y gies, etc.) and device splits (e.g., Lpoly, Tox, etc.) are
used to constrain the tuning parameters to values that
Set Process model

coefficients ensure accurate prediction. The calibration is decoupled
into two parts: profile and layer thickness tuning, using

r Equipment L o ! process simulation; and device parameter tuning, such
. . n-line . . . . . .
> I as \; and entire I-V characteristics, using device simula-
v |

I
| tion. Dopant profiles and in-line measurements, such as
I

| layer thicknesses and sheet resistances, are used to cali-
- brate the wafer state. The calibration procedure is also
| Statistical I
I

4. pdFabDevice Modeling Kit

The robust calibration methodology comprises two

| Simulation Physically based SPICE decoupled by tuning progressively for transistors of dif-

model extraction

Loop ferent channel lengths, both in the saturation and linear
L= === W - === regimes. The procedure starts by tuning the longest
channel length where the transistor behavior is domi-
Statistical nated by channel characteristics, and is not as affected
Modified PCA analysis otors by the LDD and halo implants (e.g., a 20m long
device). Once the channel characteristics are deter-
Figure 2;pdFabflow mined, the calibration is performed for progressively

shorter gate length devices. Sensitivity analysis is used
pdFabtakes as inputs process flow, device layout,to determine the effect of model coefficients on long and
and statistical variations associated with the process anshort channel physical and performance parameters to
equipment. Using this informatiopdFabgenerates the determine the order in which coefficients need to be
physical wafer state (e.g., layer thicknesses and dopinmanipulated for calibration. Capacitance-Voltage (CV)
profiles), device performance parameters, and physianalysis, in conjunction with I-V’s, are used to deter-
cally extracted SPICE model parameters. mine parameters relating to device simulation such as



poly-depletion, interface charge, polysilicon work func-
tion, etc. Once the desired nominal calibration is| statistical

achieved, sensitivity analysis, together with measurec model g
data, is used to calibrate the variability associated witt cards

cell library netlist

the process and equipment. optimized cell library netlist
5. Circuit Surfer Cell Library Optimization Kit | layout compactor
Concurrent technology and cell library develop- optimized cell library layouts

ment requires that the cell library optimization proce-
dure be fully automated. This is because market driver
schedule pressures do not allow designers the luxury c
manually resizing the cell library for every significant Monte-Carlo SimulationT——
process change. The situation is further complicated du v
to the larger number of circuit simulation runs necessary —
to explore the statistical design space. Rather than rur

ning simulations for the typical, worst case and best cas
corner process conditions, the optimization loop must
run many more simulations in order to generate statisti-
cally valid samples from the statistical model cards.

Figure 3:Circuit SurferCell Optimization Flow

' N

To address the issues of statistical cell library opti- Process Sensitivity
mization, we develope®ircuit Surfer a software sys-
tem that quantifies the effect of process variations or *

-

cell performances and automates the selection of ce
transistor sizes to maximize yield and performance v
within product constraintsCircuit Surferperforms this Analysis of Design Parameter Changg
task by applying design of experiment (DOE)[6] tech-

nigues to explore the interplay of transistor sizing with
the fabrication process variations, and by providing ar Figure 4:Circuit Surferinternal Flow
efficient response surface methodology (RSM) bases —
method of evaluating the effects of transistor size®-1 Statistical Model Cards o

changes on the performance statistics[3][4][6]rcuit Circuit Surfe_rrequweg access to statistical SPICE
Surferutilizes these RSM models for its multi-objective M0del cards which are different from the usual SPICE
optimization algorithms which allow for the fully auto- M0del cards in that some of the model parameters
matic sizing of the cell transistors. The optimization 2PP€ar as functions of process factors. Itis throughthe;e
objectives include such metrics as propagation delayProcess factors that the SPICE model parameters main-
dynamic maximum current, and setup time require-ta'n their correct correlations with each other. Figure 5
ments. shows an example where K1 and TOX for a BSIM3v3
model track each other, and thus changing these model

Circuit Surfer accepts statistical SPICE model 5.ameters independently is not correct. Typically, the
cards, the cell library netlist along with layout parasitics, o\ mper of process factors is much smaller than the

and design specifications such as cell area and cell pe,, \mber of model card parameters. For example, we

formance specifications (see Figure 3). In tircuit  paye found that 7-10 process factors account for more

Surfer automatically generates optimal device sizeSy,an 90 of the variations in each of the approximately
which can then be sent to a layout compaction system tgq g5iM3v3 model parameters.

adjust the cell areas. This entire process can OCCUr ic 5 process Sensitivity
batch mode without any user intervention. The internal

Circuit Surferflow is shown in Figure 4.

Circuit Surferautomatically performs all the opera-
tions required to generate the simulation data such as

In addition to the set of new device siz&Sircuit  writing out the simulation files, running the circuit simu-
Surfercan generate information about the sensitivitieslation, and collating the simulation results. The process
of cell performances to the process inputs. With thissensitivity step generates information about the sensitiv-
capability, it become straightforward to identify which ity of cell performances to the process factors. Figure 6
cell performances will be affected by process changesshows the Process Sensitivity information where the line
Further information about this capability will be dis- graphs contain the sensitivity of performance values to
cussed in Section 6. changes in the process factor values.



for designers to find manually due to the complex inter-
action of process variations and transistor sizings.

transistor widths
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Figure 5: BSIM3v3 TOX vs. K1 /
The process sensitivity information can be used ta c [ [ ri
reduce the number of process parameters which have 1 _ [~ { e
be considered inPerformance Statistical Sensitivity | ™™ ﬁ s

Analysis.This is because the number of circuit simula-
tion runs is directly proportional to the number of pro-
cess factors. Another use for the process sensitivity
information is to identify the cells that need to be re-
optimized when a process factor changes.

mean effecr variance effeq
Figure 7: Performance Sensitivity

5.4 Exploration

During the exploration phase, RSM models of the
various performances are generated and used within an
optimization loop. The RSM models are used to evalu-
ate the effects of different transistor sizes on the perfor-
mance statistics. The straightforward approach of
running Monte Carlo circuit simulation experiments to
gauge the change in performance statistics is too com-
putationally intensive to be practical.

The cost function for the optimization algorithm
considers all the circuit performances in addition to

process factors

HBCH

i

i

performances

wan L awnl

other considerations such as the cell area and power
consumption. Each circuit performance can be assigned
a weight to reflect its relative importance. In addition,

- each performance can have low, high, or both limits, as

well as target values, in order to influence the optimiza-

Figure 6: Process Sensitivity \ :
tion algorithm.

5.3 Performance Statistical Sensitivity Analysis
In this step, simulation data for the sensitivities of 6. Concurrent Technology and Library Development
the performance statistics to the changes in the desig A methodology for concurrent technology and cell
parameters is automatically generated and analyzed klibrary development should support two classes of
Circuit Surfer The simulation data generation algorithm changes in technology: (1) the development of technol-
uses the Taguchi approach[7]. This implementatiorogy derivatives like front-end and back-end shrinks, and
bypasses the necessity of running the Monte Carlo sim(2) technology fine-tuning in the later stages of develop-
ulation experiments at each unique setting of design valment and transfer to volume manufacturing.
ues. Robust calibration of TCAD simulators and the
Associated with each performance are the sensitivipdFab framework allows for the prediction of the per-
ties of the mean and variance to changes in cell transisformance of technology derivatives and the generation
tor sizes (see Figure 7). This information can be used tof SPICE models to update cell-libraries in response to
identify the set of design parameters with the most sig-these changes. The impact of technology fine-tuning on
nificant impact on the performance statistics. The identi-the library optimization is minimized by developing a
fication of these design parameters is especially difficulnumber of indicators that monitor the state of the tech-



nology and its impact on the cell performances. Ideally,SPICE models results in a 10% smaller area, while
these indicators are associated with the in-line and Emeeting the 100 psec rise and fall time specifications.

test data, as it is not possible to directly measure the TABLE 1. NOR gate Optimization

SPICE model parameters via electrical test. Moreover Traditional worst Circuit Surfer

the SPICE parameters are often strongly correlated case

making it difficult to relate the SPICE model parameters|  Objective: Ln,p =0.25um Ln,p =0.2m

to the performance objectives for the cells. To alleviate Area Wn=0.6pm, Wn =0.54um,
L . Wp= 2.7um Wp = 2.4um

these problems, a principal component analysis (PCA : :

and pattern recognition is performed on the simulateq F?;f::::;e <100 o and| <100 o and

distributions of the SPICE model parameters, E-tests

and in-lines to determine the following[13]: Table 2 compares the result of optimization using

e The E-test and in-lines that can be used to track theWorst case corner SPICE models and the statistical opti-

mization usingCircuit Surfer for an AND-OR multi-

plexer. Figure 5 illustrates the use Gfrcuit Surferto
TABLE 2. AND-OR Optimization

statistical SPICE parameters, and hence be the ind
cator of the changes in technology, and

* Nonlinear, empirical relationships from the E-tests

o Yield Wn,p Max Curr
and in-lines to the SPICE parameters and perfor- (avg)
mance parameters of different cells. Traditional 96% 11.4um, 279.5uA

. . worst case 15.6pm
This enhanced PCA algorithm has two advantages——— i
First. it all . le E-test and in-line b d tracki Circuit Surf. 100% 9.13um, 223.5pA
irst, it allows a simple E-test and in-line based tracking "o imizeq 15.13um

of the technology changes and their effects on the
SPICE models. The E-tests and in-lines identified in thEoptlmlze statistical criteria: minimization of the stan-
PCA analysis serve as technology monitors indicatingyarq deviation of maximum current and centering the
the “vectors” along which the technology has signifi- gesign to be below the 3QE\ spec.

cantly changed. Second, the nonlinear relationships t
the cell objectives provide a method for determining if a
technology iteration along a given vector affects the

objective functions for a given cell. Only those technol- : S|oeC limit
ogy changes that result in large changes in performanc gﬂrgﬁ)t(
of the library cells would require re-characterization and
re-optimization of the library cells. Moreover, only
those cells for which the impact is significant would
need to be updated. I I
b i

7. Examples SR

Our cell optimization methodology allows optimi- a) traditional worst case optimization

zation of both cell performance and yield. In addition, ,
cells can be rapidly optimized for different applications |
by choosing application specific objectives and specifi- | Spec limit
cation limits for the optimization. This section illustrates [

- on max
these capabilities via three examples. The first twc current
examples are a NOR gate and a AND-OR multiplexer
from a digital library, the third example is a simple oper- II

ll.- ]

ational transconductance amplifier, which represents .
cell in an analog/mixed-signal library. T

Table 1 shows the results of usi@ircuit Surferto
optimize the performance of a NOR gate. The use of
realistic worst case conditions provided by the statistica

b) statistical optimization usin@ircuit Surfer

Figure 8: Variance Minimization




Figure 9 shows the schematic of an analog cell: arronment, the IP core and cell-library based approaches
operational transconductance amplifier. Figure 10 showare indispensable. This paper presented a new and com-
+5 Vpe prehensive approach to simultaneous development of

new technologies and products. This approach enables
the efficient re-use of the existing libraries, by optimiz-
ing them for a given technology even before the technol-
ogy development is frozen.
l We have demonstrated the feasibility of our
RL]: C. approach by developing a highly automated library opti-

o Vour

mization system calledCircuit Surfer This system
= = employs a comprehensive set of calibrated statistical
- -5 Vpc process/device simulation models which serve as a vir-
Figure 9: OTA Schematic tual fabrication line. Thus, th@ircuit Surferstatistically
optimized cells maximize the utilization of technology
that the worst case SPICE models derived for digital cir-capabilities. We have presented several examples of
cuits are inappropriate for analog designs and that thautomatic cell optimization for multiple objectives such
ability of Circuit Surferto use statistical SPICE models as performance, area or yield. We believe that this
to optimize yield. tightly coupled process-design methodology developed
Corner Card by PDF Solutions is absolutely necessary for high per-
Lower Performance Limit Worst and Best Case formance, low cost system-on-a-chip designs
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