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Abstract. We discuss the modelling of FAST TCP and prove four stability results.
Using the traditional continuous-time flow model, we prove, for general networks, that
FAST TCP is globally asymptotically stable when there is no feedback delay and that
it is locally asymptotically stable in the presence of feedback delay provided a local
stability condition is satisfied. We present an experiment on an emulated network in
which the local stability condition is violated. While the theory predicts instability,
the experiment shows otherwise. We believe this is because the continuous-time model
ignores the stabilizing effect of self-clocking. Using a discrete-time model that captures
this effect, we show that FAST TCP is locally asymptotically stable for general networks
if all flows have the same feedback delay, no matter how large the delay is. We also prove
global asymptotic stability for a single bottleneck link in the absence of feedback delay.
The techniques developed here are new and applicable to other protocols.
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1. Introduction. Congestion control is a distributed feedback algo-
rithm to allocate network resources among competing users. The algo-
rithms in the current Internet, TCP Reno, have prevented severe congestion
while the Internet underwent explosive growth during the last decade. It is
well known however that TCP Reno’s performance degrades steadily as net-
works continue to scale up in capacity and size [5, 12]. This has motivated
several recent proposals for congestion control of high-speed networks, in-
cluding HSTCP [4], Scalable TCP [10], FAST TCP [7, 8], and BIC TCP
[19] (see [7, 8] for extensive references). The details of the architecture,
algorithms, experimental evaluations of FAST TCP can be found in [7, 8].
A new discrete-time model of congestion control is also introduced in [7, 8]
and a sufficient condition for the local asymptotic stability of FAST TCP
is proved using the new model for the case of a single link in the absence
of feedback delay. In this paper, we extend the analysis and prove four
stability results.

Most of the stability analysis in the literature is based on the fluid
model introduced in [5] (see surveys in [11, 9, 15] for extensions and related
models). Two key features of these models are that a source controls its
sending rate directly1 and that the queueing delay at a link is proportional
to the integral of the excess demand for its bandwidth.

∗Partial and preliminary results have appeared in [17].
†California Institute of Technology, Pasadena, CA 91125 ({jiantao, weixl, slow}

@caltech.edu).
‡Pusan National University, KOREA (jyc@pusan.ac.kr).
1Even when the congestion window size is used as the control variable, sending rate

is often taken to be the window normalized by a constant round-trip time, and hence a
source still controls its rate directly.
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In reality, a source dynamically sets its congestion window rather than
its sending rate. These models do not adequately capture the self-clocking
effect where a packet is sent only when an old one is acknowledged, except
briefly and immediately after the congestion window is changed. This au-
tomatically constrains the input rate at a link to its link capacity, after a
brief transient, no matter how large the congestion windows are set. The
new discrete-time link model proposed in [7, 8] captures this effect. While
the traditional continuous-time link model does not consider self-clocking,
the new discrete-time link model ignores the fast dynamics at the links. We
present both models of FAST TCP in Section 2. Experimental results are
provided to show that, despite errors in these models, both of them seem
to track the queue process reasonably well. Then we prove two stability
results in each of these models.

In Section 3, we prove that FAST TCP is globally asymptotically
stable in general networks when there is no feedback delay using the
continuous-time model. We also derive a sufficient condition for local
asymptotic stability in general networks with feedback delay, using the
techniques developed in [13, 16].

This local stability condition becomes necessary when the network con-
sists of a single link and the sources are homogeneous. We then present an
experiment on an emulated network (Dummynet) in which the local stabil-
ity condition is violated. While the theory, and the numerical simulation
of the continuous-time model, predict instability, the experiment suggest
that FAST TCP is stable. We believe that this discrepancy is due to the
self-clocking effect that helps stability but is ignored in the continuous-time
model.

In Sections 4, we analyze the stability of FAST TCP using the discrete-
time model. First, we prove that a general network of FAST TCP is locally
asymptotically stable if all sources have the same delay, no matter how large
the delay is. Then we restrict ourselves to a single link without feedback
delay and prove the global asymptotic stability of FAST TCP. The analysis
technique developed for the discrete-time model is new and applicable to
analyzing other protocols.

Finally, we conclude in Section 5 with limitations of this work.

2. Model.

2.1. Notation. A network consists of a set of L links indexed by l
with finite capacity cl. It is shared by a set of N flows identified by their
sources indexed by i. Let R be the routing matrix where Rli = 1 if source
i uses link l, and 0 otherwise.

We use t for time in the continuous-time model, and for time step in
the discrete-time model. The meaning of t should be clear from the context.
FAST TCP updates its congestion window every fixed time period, which
is used as the time unit.
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Let di denote the round-trip propagation delay of source i, and qi(t)
denote the round-trip queueing delay. The round-trip time is given by
Ti(t) := di + qi(t). We denote the forward feedback delay from source i to

link l by τfli and the backward feedback delay from link l to source i as τ bli.
The sum of forward delay from source i to any link l and the backward delay
from link l to source i is fixed, i.e., τi := τfli + τ bli for any link l on the path
of source i. We make a subtle assumption here. In reality, the feedback
delays τfli , τ

b
li include queueing delay and are time-varying. We assume for

simplicity that they are constant, and mathematically unrelated to Ti(t).
Later, when we analyze linear stability around the network equilibrium in
the presence of feedback delay, we will interpret τi as the equilibrium value
of Ti(t).

Let wi(t) be source i’s congestion window at time t (discrete or
continuous-time). The sending rate of source i at time t is defined as

xi(t) :=
wi(t)

Ti(t)
(2.1)

where Ti(t) = di + qi(t). The aggregate rate at link l is

yl(t) :=
∑

i

Rlixi(t− τfli). (2.2)

Let pl(t) be the queueing delay at link l. The end-to-end queueing delay
qi(t) observed by source i is

qi(t) =
∑

l

Rlipl(t− τ bli). (2.3)

A model of FAST TCP amounts to specifying how wi(t) and pl(t) evolve.

2.2. Discrete and continuous-time models. A FAST TCP source
periodically updates its congestion window based on the average RTT and
estimated queueing delay. The pseudo-code is

w← (1− γ)w + γ

(

baseRTT

RTT
w + α

)

where γ ∈ (0, 1], baseRTT is the minimum RTT observed, and α is a con-
stant. We model this by the following discrete-time equation

wi(t+ 1) = γ

(

diwi(t)

di + qi(t)
+ αi

)

+ (1− γ)wi(t) (2.4)

where wi(t) is the congestion window of source i, γ ∈ (0, 1], and αi is
a constant that depends on source i. The corresponding continuous-time
model is

ẇi(t) = γ

(

αi −
qi(t)wi(t)

di + qi(t)

)

(2.5)



4 JIANTAO WANG ET AL.

where the time is measured in the unit of update period in FAST TCP.
For the continuous-time model, queueing delay has been traditionally

modelled by (e.g., [11])

ṗl(t) =
1

cl
(yl(t)− cl). (2.6)

In reality, TCP uses self-clocking to match the number of packets-in-
flight to the congestion window size wi(t). When the congestion window
is fixed, the source sends a new packet exactly after it receives an ACK
packet. When the congestion window is increased, the source may send
out more than one packet on the receipt of an ACK packet for the packet-
in-flight to catch up with the new window size. When the congestion
window is decreased, the source sends no packet for a short while for the
packet-in-flight to drop. Therefore, one round-trip time after a congestion
window is changed, packet transmission will be clocked at the same rate as
the throughput the flow receives. We assume that the disturbance in the
queues due to congestion window changes settles down quickly compared
with the update period of the discrete-time model. A consequence of this
assumption is that the link queueing delay vector, p(t) = (pl(t), for all l), is
determined implicitly by sources’ congestion windows in a static manner:

∑

i

Rli
wi(t− τfli)

di + qi(t− τfli)

{

= cl if pl(t) > 0
≤ cl if pl(t) = 0

(2.7)

where qi is the end-to-end queueing delay given by (2.3).
In summary, the continuous-time model is specified by (2.5) and (2.6),

and the discrete-time model is specified by (2.4) and (2.7), where the source
rates and aggregate rates at links are given by (2.1) and (2.2), and the end-
to-end delays are given by (2.3). While the continuous-time model does
not take self-clocking into full account, the discrete-time model ignores the
fast dynamics at the links. Before comparing these models, we clarify their
common equilibrium structure by the following theorem cited from [7, 8].

Theorem 2.1. Suppose that the routing matrix R has full row rank.
A unique equilibrium (x∗, p∗) of the network exists. Moreover, x∗ is the
unique maximizer of

max
x≥0

∑

i

αi logxi subject to Rx ≤ c (2.8)

and p∗ is the unique minimizer of the Lagrangian dual problem. This im-
plies in particular that the equilibrium rate x∗ is αi-weighted proportion-
ally fair.

2.3. Validation. The continuous-time link model implies that the
queue takes an infinite amount of time to converge after a window change.
On the other extreme, the discrete-time link model assumes that the queue
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Fig. 1. Model validation–closed loop.

settles down in one sampling time. Neither is perfect, but we now present
experimental results that suggest both track the queue dynamics well.

All the experiments reported in this paper are carried out on a Dum-
mynet Testbed [14]. A FreeBSD machine is configured as a Dummynet
router that provides different propagation delays for different sources. It
can be configured with different capacities and buffer sizes. In our experi-
ments, the bottleneck link capacity is 800Mbps, and the buffer size is 4000
packets with a fixed packet length of 1500 bytes. A Dummynet monitor
records the queue size every 0.4 second. The congestion window size and
RTT are recorded at the host every 50ms. TCP traffic is generated us-
ing iperf. The publicly released code of FAST is used in all experiments
involving FAST. We present two experiments to validate the model, one
closed-loop and one open-loop.

In the first (closed-loop) experiment, there are 3 FAST TCP sources
sharing a Dummynet router with a common propagation delay of 100ms.
The measured and predicted queue sizes are given in Figure 1. At the
beginning of the experiment (before time < 4 seconds), the FAST sources
are in the slow-start phase, and neither model gives accurate prediction.
After the source enters the congestion avoidance phase, both models track
the queue size well.

To eliminate the modelling error in the congestion window adjustment
algorithm itself while validating the link models, we decouple the TCP and
queue dynamics by using open-loop window control. The second exper-
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iment involves three sources with propagation delays 50ms, 100ms, and
150ms sharing the same Dummynet router.

We changed the Linux 2.4.19 kernel so that the sources vary their win-
dow sizes according to the schedules shown in Figure 2(a). The sequences of
congestion window sizes are then used in (2.1)–(2.2) and (2.6) to compute
the queueing delay predicted by the continuous-time model. We also use
them in (2.1)–(2.2) and (2.7) to compute the predictions of the discrete-
time model. The queueing delay measured from the Dummynet and those
predicted by these two models are shown in Figure 2(b), which indicates
that both models track the queue size well. We next analyze the stability
properties of these two models.

3. Stability analysis with the continuous-time model. We
present the stability analysis of the continuous model in general networks
with and without feedback delays.

3.1. Global stability without feedback delay. In this subsection,
we show that FAST is globally asymptotically stable for general networks
by designing a Lyapunov function. When there is no feedback delay, the
equations (2.2) and (2.3) can be simplified as

yl(t) =
∑

i

Rlixi(t) and qi(t) =
∑

l

Rlipl(t). (3.1)

Suppose that R is full row rank, and the system has unique equilibrium
source rates and link prices. Let wi, pl, qi, . . . be the equilibrium quantities,
and denote δwi(t) := wi(t)− wi, δpl(t) = pl(t) − pl, δqi(t) = qi(t) − qi, . . . .
From (2.5) the equilibrium window is given by

wi =
αiTi
qi

(3.2)

where Ti = di + qi is the equilibrium round-trip delay.
We can then rewrite (2.5) as

1

γ
ẇi(t) = αi −

qi(t)wi(t)

Ti(t)

= αi −
qi(t)

Ti(t)
(wi + δwi(t))

= − qi(t)
Ti(t)

δwi(t) + αi
Ti(t)qi − qi(t)Ti

Ti(t)qi

= − qi(t)
Ti(t)

δwi(t)−
αidi
Ti(t)qi

δqi(t).

Therefore, we have

1

γ
δẇi(t) = − qi(t)

Ti(t)
δwi(t)−

αidi
Ti(t)qi

δqi(t). (3.3)
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Based on (2.1) and (3.2) we have

δxi(t) =
wi + δwi(t)

Ti(t)
− wi
Ti

=
δwi(t)

Ti(t)
− (

1

Ti
− 1

Ti(t)
)wi

=
δwi(t)

Ti(t)
− δqi(t)

Ti(t)Ti

αiTi
qi

.

Therefore, we have

δxi(t) =
1

Ti(t)
δwi(t)−

αi
Ti(t)qi

δqi(t). (3.4)

Based on (3.4) and (3.1), the derivative of link price is (from (2.6))

ṗl(t) =
1

cl

(

∑

i

Rlixi(t)− cl
)

=
1

cl

∑

i

Rliδxi(t). (3.5)

From (3.4) and (3.5), we have

δṗl(t) =
1

cl

∑

i

Rli

(

1

Ti(t)
δwi(t)−

αi
Ti(t)qi

δqi(t)

)

. (3.6)

With these preliminary results, we prove the following theorem.

Theorem 3.1. The continues-time model of FAST TCP is glob-
ally asymptotically stable when there is no feedback delay and R has full
row rank.

Proof: Considering the function V (ŵ, p̂) defined as

V (ŵ, p̂) =
1

2γ

∑

i

qi
αidi

(ŵi − wi)2 +
1

2

∑

l

cl(p̂− pl)2 (3.7)

where (w, p) is unique equilibrium point, which exists according to Theorem
2.1. Clearly, the function V (ŵ, p̂) is non-negative for all (ŵ, p̂) and zero if
and only if ŵ = w and p̂ = p. Taking time derivative of V (w(t), p(t)) along
the solution trajectory of (3.6) and (3.3) yields
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V̇ (w(t), p(t)) =
∑

i

qi
γαidi

δwi(t)δẇi(t) +
∑

l

clδpl(t)δṗl(t)

=
∑

i

qi
αidi

δwi(t)

(

− qi(t)
Ti(t)

δwi(t)−
αidi
Ti(t)qi

δqi(t)

)

+
∑

l

∑

i

Rli

(

1

Ti(t)
δwi(t)−

αi
Ti(t)qi

δqi(t)

)

δpl(t)

= −
∑

i

qiqi(t)

Ti(t)αidi
δwi(t)

2 −
∑

i

1

Ti(t)
δwi(t)δqi(t)

+
∑

i

1

Ti(t)
δwi(t)

∑

l

Rliδpl(t)

−
∑

i

αi
Ti(t)qi

δqi(t)
∑

l

Rliδpl(t)

= −
∑

i

qiqi(t)

Ti(t)αidi
δwi(t)

2 −
∑

i

αi
Ti(t)qi

δqi(t)
2

where we have used δqi(t) =
∑

lRliδpl(t). Hence V > 0 and V̇ < 0 at all

(ŵ, p̂) that is not the equilibrium (w, p), and V = V̇ = 0 at the equilibrium
(w, p). Moreover, V (ŵ, p̂) → ∞ as ‖(ŵ, p̂)‖ → ∞. This implies that the
system specified by (3.6) and (3.3) is globally asymptotically stable.

Note that the windows w(t) and the end-to-end queueing delays q(t)
converge globally to their equilibrium values regardless of whether R has
full row rank. The link queueing delays p(t) may not, unless R has full row
rank, in which case p(t) = (RRT )−1Rq(t) is uniquely defined and must also
converge globally.

3.2. Local stability with feedback delay. When there are feed-
back delays, the global stability analysis for FAST TCP in general networks
is still open. In this subsection, we provide a sufficient condition for local
asymptotic stability.

We make two assumptions in this subsection. First, R has full row rank
and hence there is a unique equilibrium point (w, p). Second, the round-

trip feedback delays τi = τfli + τ bli in (2.2) and (2.3) equal the equilibrium
values of Ti := di +

∑

lRlipl.
To linearize the model (2.5) and (2.6) around the unique equilibrium,

define routing matrices with feedback delay in frequency domain as

[Rf (s)]li :=

{

e−τ
f

li
s if Rli = 1

0 if Rli = 0

[Rb(s)]li :=

{

e−τ
b
lis if Rli = 1

0 if Rli = 0.

Let wi, pl, xi, qi, and Ti be the corresponding equilibrium values. The
following Lemma provides the open-loop transfer function.
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Lemma 3.1. The open-loop transfer function of the linearized FAST
TCP system is

L(s) = DRf (s)Λ(s)XRTf (−s) (3.8)

where

D := diag

(

1

cl

)

, X := diag(xi), Λ(s) := diag

(

e−Tis

Tis

Tis+ γTi
Tis+ γqi

)

.

Proof. See Appendix A.
The following theorem provides a sufficient condition for local stability.
Theorem 3.2. The FAST TCP system described by (2.5) and (2.6)

is locally asymptotically stable if

M

φ

√

φ2 + γ2T 2
max

φ2 + γ2q2min

< 1 (3.9)

where M := maxi
∑

lRli is the maximal number of links in the path of any
source, qmin = mini qi, Tmax = maxi Ti and

φ := min
i

(

π

2
− tan−1 1− qi/Ti

2
√

qi/Ti

)

. (3.10)

Proof. It is sufficient to show that the eigenvalues of the open-loop transfer
function do not encircle −1 in the complex plane for s = jω, ω ≥ 0 when
the condition in the theorem is satisfied [3]. The proof is similar to that in
[2]. Note that both X and Λ(s) are diagonal matrices and that AB and BA
have the same nonzero eigenvalues for two matrices A and B of approriate
dimensions. Hence the set of nonzero eigenvalues of L(s) is the same as
those of Λ(s)R̂T (−jω)R̂(jω), when s = jω, where R̂(jω) is defined as

R̂(jω) := diag

(

1√
cl

)

Rf (jω)diag(
√
xi).

Following the argument of [13, 16], we study the convex hull of Nyquist
trajectories and ensure it does not encircle the critical point −1. More
specifically, the set σ(L(jω)) of eigenvalues of L(jω) satisfies [16] (possibly
ignoring the zero eigenvalue):

σ(L(jω)) = σ
(

Λ(s)R̂T (−jω)R̂(jω)
)

⊆ ρ
(

R̂T (−jω)R̂(jω)
)

· co (0 ∪ {Λi(jω), i = 1, . . . , N})

where ρ(A) denotes the spectral radius of matrix A, co(·) denotes the con-
vex hull, and

Λi(jω) :=
e−jωTi

jωTi

jωTi + γTi
jωTi + γqi
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Similar to [2], the spectral radius of R̂T (−jω)R̂(jω) is less than M , which is
the maximal number of links in the path of any source, M = maxi

∑

lRli.
This implies

σ(L(jω)) ⊆M · co (0 ∪ {Λi(jω), i = 1 . . .N}) .

Therefore a sufficient condition for local stability is that MΛi(jω) does not
encircle −1 for any i. We now prove that when the phase of MΛi(jω)
reaches −π, its magnitude is strictly less than 1 and hence the trajectory
of MΛi(jω) will not encircle −1 as ω goes from 0 to ∞.

It is not hard to show that the largest phase lag (i.e., the minimum
phase) of (jωTi + γTi)/(jωTi + γqi) is produced when ωTi =

√
γTi · γqi ,

which is

∠
j
√
γTi · γqi + γTi

j
√
γTi · γqi + γqi

= − tan−1 1− qi/Ti
2
√

qi/Ti
.

The above equation yields

∠Λi(jω) ≥ −ωTi −
π

2
− tan−1 1− qi/Ti

2
√

qi/Ti
.

Suppose that the phase of Λi(jω) is −π at frequency ωi. Then

−π = ∠Λi(jωi) ≥ −ωiTi −
π

2
− tan−1 1− qi/Ti

2
√

qi/Ti
.

The condition (3.10) in the theorem implies

ωiTi ≥ φ for i = 1 . . .N.

It is easy to check that the magnitude of Λi(jω) is a decreasing function of
ω. Therefore under the condition in the theorem, we have

M |Λi(jωi)| ≤M
∣

∣

∣

∣

Λi(j
φ

Ti
)

∣

∣

∣

∣

=
M

φ

√

φ2 + γ2T 2
i

φ2 + γ2q2i
≤ M

φ

√

φ2 + γ2T 2
max

φ2 + γ2q2min
< 1

and MΛ(jωi) can not encircle −1. Hence the system is locally asymptoti-
cally stable if (3.9 ) is satisfied.

The condition (3.10) can be hard to satisfy when M is large. Nonethe-
less, it provides information on the effect of various parameters on stability.
For example, it suggests that the equilibrium queueing delay should be large
to guarantee stability.

3.3. Numerical simulation and experiment. In general, the con-
dition in Theorem 3.2 is only sufficient. When there is only one link and
all sources have the same feedback delay, it is necessary as well. The the-
orem implies that FAST TCP may become unstable in a single bottleneck
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network with homogeneous sources. We now present an experiment with a
single bottleneck link where the local stability condition is violated. Numer-
ical simulation of the continuous-time model exhibits instability confirming
the theorem. Yet, the same network on Dummynet with real FAST TCP
implementation is stable. This suggests that the discrepancy is not in the
stability theorem but rather in the continuous-time model.

In our experiment, the sources have identical propagation delay of
100ms with a constant α value of 70 packets. They share a bottleneck with
capacity of 800Mbps. The simulations and experiments consist of three
intervals. The interval length is 10 seconds for the continuous-time model
simulation and 100 seconds for the experiment2. Three sources are active
from the beginning of the experiment, seven additional sources activate in
the second interval, and in the last interval, all sources become inactive
except five of them. The simulation and experimental results are shown in
Figure 3 and Figure 4, respectively. Figure 3 confirms the theorem that the
continuous-time model is unstable under the chosen condition that violates
the stability condition of Theorem 3.2. However, as Figure 4 shows, the
real FAST TCP implementation is actually stable.3

We believe that the discrepancy is largely due to the fact that the
continuous-time model does not capture the self-clocking effect accurately.
Self-clocking ensures that packets are sent at the same rate as the through-
put the source receives, except briefly when the window size changes, and
helps stabilize the system. Indeed, for the case of one source over one
link, a discrete-event model is used in [18] to prove that FAST TCP and
Vegas are always stable regardless of the feedback delay. It also provides
justification for the discrete-time models in (2.4).

4. Stability analysis with the discrete-time model. We now an-
alyze the stability of the discrete-time model. We first show that a network
of homogeneous sources with the same feedback delay is locally stable no
matter how large the delay is, agreeing with our experimental experience.
We then show that at a single link, FAST TCP converges globally and
exponentially in the absence of feedback delay.

4.1. Local stability with feedback delay. A network of FAST
TCP sources is modelled by equations (2.3), (2.4), and (2.7). We assume
R has full row rank so that the equilibrium is unique. Since we are study-
ing local stability around the equilibrium, we ignore all un-congested links
(links where prices are zero in equilibrium) and assume that equality always
holds in (2.7).

The main result of this section provides a sufficient condition for lo-
cal stability in general networks with common feedback delay. This proof

2We use a longer duration in the Dummynet experiment because a FAST TCP source
takes longer to converge due to slow-start, which is not included in our model.

3The regular spikes every 10 seconds in the queue size are probably due to a certain
background task in the sending host.
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generalizes the technique in [7, 8] from a single link to a network and by
including feedback delay.

Theorem 4.1. FAST TCP is locally asymptotically stable for arbi-
trary networks for any γ ∈ (0, 1] and if all sources have the same round-trip
feedback delay τi = Ti = τ for all i.

In particular, when all feedback delays are ignored, τi = 0 for all i, then
FAST TCP is locally asymptotically stable. This generalizes the stability
result in [7, 8] from a single link to a network.

Corollary 4.1. FAST TCP is locally asymptotically stable in the
absence of feedback delay for general networks with any γ ∈ [0, 1).

The rest of this subsection is devoted to the proof of Theorem 4.1.
We apply Z-transform to the linearized system, and use the generalized
Nyquist criterion to derive a sufficient stability condition.

Define the forward and backward Z-transformed routing matrices
Rf (z) and Rb(z) as

[Rf (z)]li :=

{

z−τ
f

li if Rli = 1
0 if Rli = 0

[Rb(z)]li :=

{

z−τ
b
li if Rli = 1

0 if Rli = 0.

The relation τfli + τ bli = τi = Ti gives

Rb(z) = Rf (z
−1) · diag(z−τi). (4.1)

Denote by δw(z), δq(z), and δp(z) the correspondingZ-transforms of δw(t),
δq(t), and δp(t) for the linearized system, respectively. Let q and w be the
end-to-end queueing delay and congestion window at equilibrium. Lineariz-
ing (2.7) yields

∑

i

Rli

(

δwi(t− τfli)
di + qi

− wi
δqi(t− τfli)
(di + qi)2

)

= 0

where equality is assumed in (2.7). The corresponding Z-transform in
matrix form is

Rf (z)D
−1Mδw(z)−Rf (z)Bδq(z) = 0 (4.2)

where the diagonal matrices are

B := diag

(

wi
(di + qi)2

)

, M := diag

(

di
di + qi

)

, D := diag(di).

Since Rf (z) is generally not a square matrix, we cannot cancel it in (4.2).
Equation (2.3) is already linear, and the corresponding Z-transform

in matrix form is

δq(z) = Rb(z)
T δp(z). (4.3)
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By combining (4.2) and (4.3), we obtain

(

I −RTb (z)
Rf (z)B 0

)(

δq(z)
δp(z)

)

=

(

0
Rf (z)D

−1M

)

δw(z).

Solving this equation with block matrix inverse gives the transfer function
from δw(z) to δq(z):

δq(z)

δw(z)
= RTb (z)(Rf (z)BR

T
b (z))−1Rf (z)D

−1M.

The Z-transform of the linearized congestion window update algorithm is

zδw(z) = γ (Mδw(z)−DBδq(z)) + (1− γ)δw(z).

By combining the above equations, the open-loop transfer function L(z)
from δw(z) to δw(z) is:

L(z) = −γ
(

M −DBRTb (z)(Rf (z)BR
T
b (z))−1Rf (z)D

−1M
)

z−1

+(1− γ)z−1I.

A sufficient condition for local asymptotic stability can be derived based
on the generalized Nyquist criterion [1, 3]. Since the open-loop system is
stable, if we can show that the eigenvalue loci of L(ejw) does not enclose
−1 for ω ∈ [0, 2π), the closed-loop system is locally asymptotically stable.
A sufficient condition for this is that the spectral radius of L(ejw) is strictly
less than 1 for ω ∈ [0, 2π).

When z = ejw, the spectral radii of L(z) and −zL(z) are the same.
Hence, we only need to study the spectral radius of

J(z) : = γ(M −DBRTb (z)
(

Rf (z)BR
T
b (z)

)−1
Rf (z)D

−1M + (1− γ)I.

Clearly, the eigenvalues of J(z) are dependent on γ. For any given z = ejω ,
let the eigenvalues of J(z) be denoted by λi(γ), i = 1 . . .N , as functions of
γ ∈ (0, 1]. It is clear that

|λi(γ)| = |γλi(1) + (1− γ)| ≤ γ|λi(1)|+ (1− γ).

Hence if ρ(J(z)) < 1 for any z = ejω for γ = 1, it will also hold for all
γ ∈ (0, 1]. Therefore, it suffices to study the stability condition for γ = 1.

Let µi = di/(di + qi) be the ith diagonal entry of matrix M . Let
µmax := maxi µi. Since the end-to-end queueing delay qi cannot be zero at
equilibrium (otherwise the rate will be infinitely large), we have qi > 0 and
µmax < 1. The following key lemma characterizes the eigenvalues of J(z)
with γ = 1.

Lemma 4.1. When z = ejω with ω ∈ [0, 2π) and γ = 1, the eigenvalues
of J(z) have the following properties:
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1. There are L zero eigenvalues with the corresponding eigenvectors
being the columns of the matrix M−1DBRTb (z).

2. The nonzero eigenvalues have moduli less than 1 if τmax − τmin <
1/4, where τmax = maxi τi and τmin = mini τi .

Proof: At γ = 1, the matrix J(z) is

M −DBRTb (z)(Rf (z)BR
T
b (z))−1Rf (z)D

−1M.

It is easy to check that

J(z)M−1DBRTb (z) = DBRTb (z)−DBRTb (z) = 0.

Since M−1DBRTb (z) has full column rank, it consists of L linearly inde-
pendent eigenvectors of J(z) with corresponding eigenvalue 0. This proves
the first assertion.

For the second assertion, suppose that λ is an eigenvalue of J(z) for a
given z. Define matrix A as

A := J(z)− λI = (M − λI)−DBRTb (z)(Rf (z)BR
T
b (z))−1Rf (z)D

−1M

which is singular by definition. Recall the matrix inversion formula (see,
e.g., [6])

(J +EHS)−1 = J−1 − J−1E(H−1 + SJ−1E)−1SJ−1.

If J +EHS is singular, then either J or H−1 + SJ−1E must be singular.
We can let

J := M − λI, E := −DBRTb (z)

H := (Rf (z)BR
T
b (z))−1, S := Rf (z)D

−1M.

Since A = J+EHS is singular, either J = M−λI orH−1+SJ−1E is singu-
lar. The second term can be rewritten as Rf (z)(B−M(M−λI)−1B)RTb (z).
Case 1: M − λI is singular. Since M is diagonal, then

0 < λ =
di

di + qi
= µi ≤ µmax < 1.

Case 2: Rf (z)(B −M(M − λI)−1B)RTb (z) is singular.
It is clear that

B −M(M − λI)−1B = diag
(

(1− µi(µi − λ)−1)βi
)

= −λdiag

(

βi
µi − λ

)

where βi is the ith diagonal entry of matrix B. Hence, λ = 0 is always an
eigenvalue, as shown above. If λ is nonzero, it has to be true that

det

(

Rf (z)diag

(

βi
µi − λ

)

RTb (z)

)

= 0. (4.4)
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When z = ejω , we have z−1 = z. Hence, equation (4.1) can be rewritten as

RTb (z) = diag(z−τi)RTf (z) = diag(z−τi)R∗
f (z).

Substituting the above equation into (4.4) with z = ejω yields

det

(

Rf (z)diag

(

e−jωτiβi
µi − λ

)

R∗
f (z)

)

= 0. (4.5)

Therefore, the following formula is also zero:

e−j(ωτmax+ψ) det

(

Rf (z)diag

(

ej(θi+ψ)βi
µi − λ

)

R∗
f (z)

)

= 0

where θi = (τmax− τi)ω, and ψ can be any value. When τmax− τmin < 1/4,
we have for ω ∈ [0, 2π)

0 ≤ θi = (τmax − τi)ω < π/2.

Suppose that there is a solution such that |λ| ≥ 1. Based on
Lemma 4.2, which will be presented later, there exists a ψ s.t.
Im(diag

(

ej(θi+ψ)βi/(µi − λ))
)

is a positive diagonal matrix. Therefore the
imaginary part of matrix

Rf (z)diag

(

ej(θi+ψ)βi
µi − λ

)

R∗
f (z)

is positive definite, and the real part is symmetric. From Lemma 4.3 below,
it has to be nonsingular. This contradicts the equation

det

(

Rf (z)diag

(

ej(θi+ψ)βi
µi − λ

)

R∗
f (z)

)

= 0.

Hence, we have |λ| < 1.

The proof of Theorem 4.1 will be complete after the next two lemmas.

Lemma 4.2. Suppose that 0 < µi < 1 and 0 ≤ θi < π/2. If |λ| ≥ 1 ,
there exists a ψ such that

Im

(

ej(θi+ψ)βi
µi − λ

)

> 0 for i = 1 . . .N.

Proof: See Appendix B.

Lemma 4.3. If the real part of a complex matrix is symmetric, and
the imaginary part is positive definite, then the matrix is nonsingular.

Proof: See Appendix C.
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4.2. Global stability for one link without feedback delay. In
the absence of feedback delay, when there is only one link, the FAST TCP
model can be simplified into

wi(t+ 1) = γ

(

diwi(t)

di + q(t)
+ αi

)

+ (1− γ)wi(t) (4.6)

∑

i

wi(t)

di + q(t)
≤ c with equality if q(t) > 0 (4.7)

where q(t) is the queueing delay at the link (subscript is omitted). The
main result of this section proves that the system (4.6)–(4.7) is globally
asymptotically stable and converges to the equilibrium exponentially fast
starting from any initial point.

Theorem 4.2. On a single link, FAST TCP converges exponentially
to the equilibrium, in the absence of feedback delay.

In the rest of this subsection, we prove the theorem in several steps.
The first result is that equality always holds in (4.7) after some finite

numberK1 of steps, i.e., and q(t) > 0 for any t > K1. Define the normalized
congestion window sum as Y (t) :=

∑

i wi(t)/di. From (4.7), it is clear that
q(t) > 0 if and only if Y (t) > c.

Lemma 4.4. There exists K1 > 0 such that the following are true for
all t > K1:

1. q(t) > 0.
2. ν(t+ 1) = (1− γ)ν(t) where ν(t) := Y (t)− c−∑i αi/di .

Proof: If initially q(t) = 0, which also means Y (t) ≤ c, from (4.6) we
have Y (t + 1) = Y (t) + γ

∑

i αi/di, which linearly increases with t. Then
Y (t) > c after some finite steps. Therefore, there exists a K1 such that
Y (t) > c and q(t) > 0 at t = K1.

We will show that Y (t) > c implies Y (t + 1) > c. Hence q(t) > 0 for
all t > K1. Moreover, ν(t) converges exponentially to 0.

Suppose Y (t) > c. From
∑

i wi(t)/(di + qi(t)) = c, we have

ν(t+ 1) =
∑

i

wi(t+ 1)

di
−
∑

i

αi
di
− c

= (1− γ)
∑

i

wi(t)− αi
di

+ γ
∑

i

wi(t)

di + q(t)
− c

= (1− γ)
(

∑

i

wi(t)

di
− c−

∑

i

αi
di

)

= (1− γ) ν(t).

This proves the second assertion. Moreover it implies

Y (t+ 1) = (1− γ)Y (t) + γ

(

∑

i

αi
di

+ c

)
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Hence, Y (t) > c implies Y (t + 1) > c and q(t + 1) > 0. This completes
the proof.

For the rest of this subsection, we pick a fixed ε with 0 < ε <
∑

i αi/di.
Define

qmin :=
dmin

c

(

∑

i

αi
di
− ε
)

and qmax :=
dmax

c

(

∑

i

αi
di

+ ε

)

where dmin := mini di and dmax := maxi di.
Then q(t) is bounded by these two values after finite steps.
Lemma 4.5. There exists a positive K2 such that qmin ≤ q(t) ≤ qmax

for any t ≥ K2.
Proof: From Lemma 4.4, after finite steps K1, ν(t + 1) = (1 − γ)ν(t).
Therefore, there exists a K2 such that |ν(t)| < ε for all t ≥ K2. It implies

∑

i

αi
di

<
∑

i

wi(t)

di
− c+ ε =

∑

i

(

wi(t)

di
− wi(t)

di + q(t)

)

+ ε

≤
∑

i

q(t)wi(t)

dmin(di + q(t))
+ ε =

q(t)c

dmin
+ ε.

Therefore

q(t) ≥ dmin

c

(

∑

i

αi
di
− ε
)

= qmin.

The proof for qmax is the same.
Define µi(t) := di/(di+q(t)), and µmax := maxi di/(di+qmin), µmin :=

mini di/(di + qmax). Based on Lemma 4.5, we have 0 < µmin ≤ µi(t) ≤
µmax < 1 for any t ≥ K2. Define

ηi(t) :=
wi(t)− αi
αidi

− 1

q(t)
(4.8)

and denote ηmax(t) := maxi ηi(t), ηmin(t) := mini ηi(t). We will show that
the window update for source i is proportional to ηi(t), and the system
is at equilibrium if and only if all ηi(t) are zero. The next lemma gives
bounds on ηi(t).

Lemma 4.6. There exist two positive numbers δ1 and δ2 such that for
all t ≥ K2

ηmax(t) > −δ1(1− γ)t and ηmin(t) < δ2(1− γ)t.

Proof: From (4.8), it is easy to check that Y (t+ 1)− Y (t) = −γν(t). By
Lemma 4.4, when t ≥ K2 we have

Y (t+ 1)− Y (t) = −γν(t) ≤ γ(1− γ)t−K2 |ν(K2)| = κ(1− γ)t (4.9)
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where κ := γ(1− γ)−K2 |ν(K2)|.
The update of source i’s congestion window is

wi(t+ 1)− wi(t) = γ

(

diwi(t)

di + q(t)
+ αi − wi(t)

)

=
γq(t)

di + q(t)

(

αidi
q(t)

− (wi(t)− αi)
)

= −γαidiq(t)
di + q(t)

(

wi(t)− αi
αidi

− 1

q(t)

)

= −γαiq(t)µi(t)ηi(t).

Choose δ1 large enough such that δ1Nγαminqminµmin/dmax > κ where
αmin := mini αi.

We now prove ηmax(t) > −δ1(1− γ)t for all t ≥ K2 by contradiction.
Suppose that there is a time t ≥ K2 such that ηmax(t) ≤ −δ1(1−γ)t. Then
all the ηi(t) are negative, which implies

Y (t+ 1)− Y (t) =
∑

i

(wi(t+ 1)− wi(t))/di

=
∑

i

−γαiq(t)µi(t)ηi(t)/di

≥ N(−ηmax(t))γαminqminµmin/dmax

≥ δ1N(1− γ)tγαminqminµmin/dmax > κ(1− γ)t.

This contradicts equation (4.9) and proves the claim. The proof for ηmin(t)
is similar.

Define L(t) as:

L(t) := ηmax(t)− ηmin(t). (4.10)

The following lemma implies that the difference between different ηi(t) goes
to zero exponentially fast.

Lemma 4.7. There are two positive numbers δ3 and δ4, such that for
t ≥ K2 we have

1. L(t) ≥ 0.
2. L(t+ 1) ≤ (1− γ + γµmax)L(t) + δ3(1− γ)t.
3. L(t) ≤ δ4(1− γ + γµmax)

t.
Proof: See Appendix D.

Lemma 4.8. Both ηmax(t) and ηmin(t) exponentially converge to zero.
Proof: When t ≥ K2, combining Lemma 4.6 and Lemma 4.7 yields bounds
for ηmax(t):

−δ1(1−γ)t < ηmax(t) = L(t) + ηmin(t) ≤ δ4(1−γ + γµmax)
t + δ2(1−γ)t.

Since both the upper and lower bounds of ηmax(t) converge to zero expo-
nentially fast, ηmax(t) exponentially goes to zero. The proof for ηmin(t)
is similar.
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Proof of Theorem 4.2: The system is at equilibrium if and only if wi(t) =
wi(t + 1) for all i. This is equivalent to ηi(t) = 0 for all i because of the
equation proved in Lemma 4.6:

wi(t+ 1)− wi(t) = −γαiq(t)µi(t)ηi(t).

Since both ηmax(t) and ηmin(t) converge to zero exponentially from any
initial value, the system converges to the equilibrium defined by ηi(t) = 0
globally.

5. Conclusion. we have proved that FAST TCP is globally asymp-
totically stable in a general network when there is no feedback delay using
the traditional continuous-time model. When feedback delays are present,
a sufficient condition is provided for local stability for general networks.
Using a discrete-time model that captures the stabilizing effect of self-
clocking, we have proved that FAST TCP is locally asymptotically stable
in a general network as long as all flows have the same feedback delay, no
matter how large it is. We have also proved that FAST TCP is globally
asymptotically stable at a single link in the absence of feedback delay.

This work can be extended in several ways. First, the condition for
local asymptotic stability derived appears more restrictive than our exper-
iments suggest. Moreover, we have also found scenarios where predictions
of the discrete-time model disagree with experiment. These discrepancies
should be clarified. Second, it will be interesting to extend the global sta-
bility analysis to general networks with feedback delays. Finally, the new
model and the analysis techniques here can be applied to analyze other
congestion control algorithms.

APPENDIX

A. Proof of Lemma 3.1. The FAST TCP model (2.1, 2.3, 2.5, 2.2)
and (2.6) can be linearized into

δqi(t) =
∑

l

Rliδpl(t− τ bli), δyl(t) =
∑

i

Rliδxi(t− τfli)

δẇi(t) = −γ
(

qiδwi(t)

di + qi
+
diwiδqi(t)

(di + qi)2

)

, δṗl(t) = δyl(t)/cl

δxi(t) =
δwi(t)

di + qi
− wiδqi(t)

(di + qi)2

where wi and qi are equilibrium values. Sinceτi = τfli + τ bli = Ti = di + qi
for all links l on the path of source i, the following equation holds

RTb (s) = diag(e−Tis)RTf (−s). (A.1)
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Fig. 5. Illustration of Lemma 4.2.

The Laplace transform of the linearized system in matrix form is























δq(s) = Rb(s)
T δp(s)

δx(s) = D3δw(s) −D4δq(s)
sδw(s) = −γ (D2D3δw(s) +D1D4δq(s))
δy(s) = Rf (s)δx(s)
sδp(s) = Dδy(s)

where the diagonal matrices are

D := diag

(

1

cl

)

D1 := diag (di) , D2 := diag (qi)

D3 := diag

(

1

di + qi

)

D4 := diag

(

wi
(di + qi)2

)

.

The open-loop transfer function from δp(s) to δp(s) can be derived based
on the above equations as

1

s
DRf (s)

(

γD1D3(sI + γD2D3)
−1 + I

)

D4R
T
b (s).

By using the fact that Ti = di + qi, xi = wi/Ti and (A.1), we can simplify
the open loop transfer function L(s) into (3.8).

B. Proof of Lemma 4.2. Proof: Consider the complex plane in
Figure 5. Let the points A, B, and λ represent the value of µmin, µmax,
and λ, respectively. Z is the intersection of segment Aλ and the unit circle,
and λ stands for the complex conjugate of λ.
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Let φi ∈ [0, 2π) be the phase of 1/(µi − λ). Let φmax := maxi φi
and φmin := mini φi. Clearly, φi ∈ [0, π) if Im(λ) > 0, and φi ∈ (π, 2π)
otherwise. Hence 0 ≤ φmax − φmin ≤ π. Since every µi is in the range
[µmin, µmax], it is easy to check that every φi is in the range formed by the
phases of 1/(µmin − λ) and 1/(µmax − λ). This implies

φmax − φmin ≤
∣

∣

∣

∣

∠
1

µmin − λ
− ∠

1

µmax − λ

∣

∣

∣

∣

= ∠AλB = ∠AλB < ∠OZB < π/2.

Let ε > 0 be small enough such that φmax − φmin < π/2 − ε. Choosing
ψ = −φmin + ε gives

∠
ej(ψ+θi)βi
µi − λ

= φi + ψ + θi

= φi − φmin + ε+ θi (greater than 0)

< φmax − φmin + ε+ π/2 < π.

The fact that its phase is in (0, π) implies that

Im

(

ej(ψ+θi)βi
µi − λ

)

> 0.

C. Proof of Lemma 4.3. Suppose that A := Ar + jAi where Ar =
ATr and Ai is positive definite. If A is singular, there exists a nonzero vector
v := vr + jvi such that Av = 0. Then Arvr = Aivi and Aivr = −Arvi.
Since Ai > 0 and Ar = ATr , we have

0 < vTr Aivr = −vTr Arvi = −vTr ATr vi
= −vTi Arvr = −vTi Aivi < 0

a contradiction. Hence A is nonsingular.

D. Proof of Lemma 4.7. It is obvious that L(t) ≥ 0 because of its
definition in (4.10). We start with the update of ηi(t)

ηi(t+ 1)− ηi(t) =
wi(t+ 1)− wi(t)

αidi
− 1

q(t+ 1)
+

1

q(t)

= −γαiq(t)µi(t)ηi(t)
αidi

− 1

q(t+ 1)
+

1

q(t)

= −γq(t)ηi(t)
di + q(t)

− 1

q(t+ 1)
+

1

q(t)

= −γ(1− µi(t))ηi(t)−
1

q(t+ 1)
+

1

q(t)
.
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For simplicity, we let ai(t) := 1−γ+γµi(t) and denote amax := 1−γ+γµmax,
then ai(t) ≤ amax. This definition simplifies the above equation into

ηi(t+ 1) = ai(t)ηi(t)−
1

q(t+ 1)
+

1

q(t)
. (D.1)

By comparing equation (D.1) for source i and j, we obtain

ηi(t+ 1)− ηj(t+ 1) = ai(t)ηi(t)− aj(t)ηj(t). (D.2)

Without loss of generality, suppose that at time t + 1, the largest and
smallest values of η are achieved at sources i and j, respectively. This
assumption implies

L(t+ 1) = ηi(t+ 1)− ηj(t+ 1).

The upper bound of L(t+ 1) is derived by considering the following three
cases separately.
Case 1: ηi(t) and ηj(t) have different signs. It is easy to see that

L(t+ 1) = ai(t)ηi(t)− aj(t)ηj(t) ≤ amax(ηi(t)− ηj(t))
= amax(ηmax(t)− ηmin(t)) = amaxL(t).

Case 2: Both ηi(t) and ηj(t) are positive. It yields

L(t+ 1) = ai(t)ηi(t)− aj(t)ηj(t) ≤ amaxηmax(t)

= amaxL(t) + amaxηmin(t) ≤ amaxL(t) + amaxδ2(1− γ)t

≤ amaxL(t) + δ3(1− γ)t

as long as δ3 ≥ amaxδ2.
Case 3: Both ηi(t) and ηj(t) are negative. The proof is similar to that for
Case 2.

Summarizing all the above cases, we have proved L(t+1) ≤ amaxL(t)+
δ3(1− γ)t for all t ≥ K2. Denote b := 1− γ. Then 1 > amax > b ≥ 0. For
any t ≥ K2, an upper bound of L(t) is

L(t) ≤ amaxL(t− 1) + δ3b
t−1

≤ at−K2

max L(K2) + δ3(b
t−1 + bt−2amax + · · ·+ bK2at−K2−1

max )

=

(

a−K2

max L(K2)− δ3
bK2a−K2

max

b− amax

)

atmax +
δ3

b− amax
bt.

Note that the coefficient of bt is negative. By choosing δ4 as the coefficient
of atmax, we get

L(t) ≤ δ4atmax = δ4(1− γ + γµmax)
t.
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