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University of Reims, UMRS-INSERM 514, Hôpital Maison Blanche, 45 rue Cognacq Jay, F-51092 Reims Cedex, France

Abstract

The present review tries to identify some trends among the multitude of ways followed by image processing developments in the field of

microscopy. Nine topics were selected. They cover the fields of: signal processing, statistical analysis, artificial intelligence, three-

dimensional microscopy, multidimensional microscopy, multimodality microscopy, theory, simulation and multidisciplinarity. A specific

topic is dedicated to a trend towards semi-automation instead of full automation in image processing.
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1. Introduction

The origin of image processing can be traced back the

middle of the 20th century. The application of this activity

to microscope images started with trials to improve the

quality of images (improvement of the signal-to-noise ratio

and of contrast, image restoration) through frequency

filtering. Of course, as for any application, the real

developments in microscopy started when analogue image

processing could be replaced by digital image processing,

and especially when computers became sufficiently

powerful to apply sophisticated algorithms to large images

within a reasonable amount of time.

The aim of this review is not to describe the state-of-the-

art in this discipline,1 nor to take stock of image processing

in microscopy. It is, rather, to give an overview of some

current trends, and to describe how image processing will

evolve during the next decade(s). Of course, although some

views described below will probably be shared by many

people working in this field, this presentation is necessarily

personal and subjective.

For this presentation, I have selected nine topics, which I

will briefly enumerate in this introduction, before examining

them more deeply in the following sections. These trends

are those in which I am personally involved (except

number 6). There are doubtless others that could also be

listed and developed.

1.1. Trend number 1: signal processing

Some image processing tools will be based on much

more elaborate methods of signal processing than those

employed in the past. More specifically, local methods

(such as wavelets) will probably replace global methods.

As a consequence, methods for performing image analysis

and image improvement/restoration (in terms of signal-to-

noise and/or contrast) will become adaptive, which is a great

improvement over non-adaptive techniques.

1.2. Trend number 2: statistical methods

Other image processing tools will be based on new

statistical methods. Besides the Bayes’ theory and the

maximum likelihood procedures, robust statistics and order

statistics will start to play an important role. Statistics

based on the theory of information (maximum entropy,

cross-entropy, etc.) will also increase in importance.

1.3. Trend number 3: artificial intelligence

Some image processing tools will be based on methods

originating from the fields of pattern recognition and

artificial intelligence. Neural networks and expert systems

will play an increasing part. Automatic classification, in the

supervised or the unsupervised mode, will become more

important when certain experimental techniques currently

under development come into routine use. The same is true

for data fusion, which consists in combining the information

provided by two or more different microscope imaging

modalities. Data fusion can be performed under the general

framework of multivalued logic, including fuzzy logic and

other variants.

1.4. Trend number 4: multidimensional imaging

Microscope imaging is rapidly moving from a two-

dimensional (2D) space towards a three-dimensional (3D)

one. This fact tends to annihilate the main criticism of

philosophers concerning imaging, which was considered as

a flattening of the real universe. The 3D reconstruction of an

object from a series of 2D images (serial sections or tilt

series) can now be performed from most microscope

imaging modalities (wide field optical microscopy, confocal

microscopy, transmission electron microscopy, etc.).

This constitutes one of the great successes of the image

processing community. Now, the next step consists in

generalising to 3D images the methods developed for

processing and analysing 2D images: restoration, segmenta-

tion, quantification, etc. This is also a meeting point

between the community of digital image processing and

the community of scientists working on image synthesis,

visualisation and modelling.

‘Simple’ imaging will be more and more often replaced

by multidimensional imaging. Besides the 3D imaging

mentioned above, this trend concerns the acquisition of

images sequences, as a function of time (time-resolved

imaging, or chrono-imaging) or as a function of energy/

wavelength (multispectral imaging). The weakest form of

multispectral imaging, colour imaging, has been used for a

long time in optical microscopy. New forms of multispectral

imaging are now appearing: spectrum imaging (or a variant

of it: image-spectroscopy), where a complete spectrum is

recorded for each pixel in the image, combines the useful

properties of spectroscopy and imaging.

New tools for data processing/analysis have to be

developed so that the huge amount of information contained

in such data sets can be extracted and fully exploited.

Multivariate statistical analysis, for instance, will be more

and more used.

1.5. Trend number 5: multimodal imaging

Simple microscope imaging is also evolving towards

multimodality imaging. This approach, sometimes called

collaborative microscopy, consists in trying to investigate a

complex reality through different complementary

microscope imaging approaches. The combination may

1 Very few attempts have been made to do it, except perhaps in electron

microscopy (Hawkes, 1980, 1988).
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concern different scale levels (from optical microscopy to

electron microscopy through confocal microscopy),

different points of view of the specimen (topography

with near-field microscopy, interior with transmission

electron microscopy) or the capture of physical versus

chemical information (electron microscopy/microanalysis,

phase contrast optical microscopy/fluorescence

microscopy).

1.6. Trend number 6: on the side of the theory

Several theories have been developed during the youthful

period of image processing. Some of these theories

were based on linear signal processing theory while

others were highly non-linear (mathematical morphology

is one example). Nowadays, we are witnessing a

unification of some of these theories into a more general

framework. Image algebra is one result of such a unifying

process.

1.7. Trend number 7: simulation

Besides image processing/analysis, another way of

extracting information from images consists in comparing

experimental images and image series to simulated images/

image series. This approach, which we can name a

modelling approach, is not new in some fields of physics,

chemistry and biology. For imaging, this approach is

relatively new and becomes more and more necessary

because the models that can be studied through imaging are

becoming more complex and direct image analysis no

longer capable of providing the parameters of these models.

High-resolution transmission electron microscopy of

materials and video microscopy of cell populations are

two examples where the simulation/modelling approach

plays an increasing role.

1.8. Trend number 8: from complete automation

to semi-automation

All the trends listed above describe a tendency towards

more and more complex imaging procedures and image

processing algorithms. Besides this kind of tendency, I think

it is worth noting that, sometimes, an inverse tendency can

also be observed. As one single example in this category,

I have chosen the question of image segmentation, i.e. the

partitioning of an image into several disjoint regions.

From the very beginning of image processing, this task has

been considered as one of the most difficult. Although a lot

of work in this field has led to some progress in the direction

of automatic segmentation, it must be recognised that

good results are obtained in favourable situations only.

Thus, there is a trend to abandon fully automatic

segmentation in favour of semi-automatic segmentation.

Succeeding in performing image segmentation with a

limited amount of user interaction is of course better than

failing to obtain a correct segmentation without user

interaction. This approach will be illustrated through two

examples of semi-automatic procedures.

1.9. Trend number 9: multidisciplinarity

Besides being an autonomous discipline, image

processing has also many links with other disciplines:

artificial intelligence, physics, infography, to name the most

important of them.

2. Signal processing

The beginning of image processing was in fact the

generalisation of 1D (temporal) signal processing to 2D

(spatial) signals. At that time, linear signal processing was

dominant. The Fourier transform (FT) was the tool most

often used for analysing and processing signals. The forward

FT was used for analysing the frequency content of images.

Then, filters could be applied to the signal spectrum in

order to attenuate or enhance some selected frequency

bands and finally, the backward FT was applied to go back

to the real space and obtain the processed signal.

This approach (or, equivalently, the convolution approach

in the real space) has been applied extensively for

analysing images, and more particularly images of

crystalline specimens (Stewart, 1988). It was also applied

for image pre-processing: improvement of the signal-to-

noise ratio by low-pass filtering, contrast enhancement2 by

high-pass filtering, image restoration2 by inverse or Wiener

filtering.

Besides the linear3 signal processing methods, some

non-linear methods were also used. The median filter was

used for the improvement of the signal-to-noise ratio.

This filter is a special case of rank order filters (Pitas and

Venetsanopoulos, 1992). Mathematical morphology

constitutes another important class of non-linear filters

based on the set theory (Serra, 1982; Dougherty, 1992;

Dougherty and Lotufo, 2003; Soille, 2003). It forms the basis

for many kinds of applications in image pre-processing,

image segmentation and image analysis.

2 Image enhancement consists in improving the image quality (especially

the contrast) independently of the characteristics of the imaging instrument.

Image restoration consists in taking into account the characteristics of the

imaging process (especially the contrast transfer function) and trying to

eliminate their effects a posteriori.
3 The linearity of the process described above can be more easily

understood when the equivalent convolution approach is used. The filtered

signal is then computed, for each pixel, as a linear combination of the

content of neighbouring pixels.
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From my point of view, the main characteristic of

these analysis/processing methods is that they are global4

methods. This means that the (1D or 2D) signal is analysed

as a whole. The power spectrum, for instance, represents the

frequency content of the whole image. As a consequence,

the filters applied to the spectrum (or, equivalently,

the convolution kernels applied in the real space) work on

the whole signal in the same way. This fact has a number of

important consequences, which constitute the drawbacks

of global signal/image processing approaches. When a

low-pass filter is applied in order to improve the signal-to-

noise ratio, a degradation of contrast and resolution is

observed concomitantly. When a high-pass filter is applied

in order to enhance contrast, a simultaneous degradation of

the signal-to-noise ratio cannot be avoided. Applying band-

pass filters instead of low- or high-pass filters improves the

situation a little bit, but the drawbacks remain present.

It should be recognised that these drawbacks come from the

fact that the applied filters are not adaptive: if smoothing

filters could be applied in regions of the image without

contrast (flat regions) and not in highly-contrasted areas

(edges, spots), the degradation in contrast and resolution

would be highly reduced. If contrast enhancement could be

limited to areas with existing contrast, the degradation of the

signal-to-noise ratio could also be reduced.

Thus, the question of local4 methods for signal analysis/

processing is raised. In other words, the main drawback of

the FT is its lack of localisation: computing the FT is

equivalent to analysing the signal with series of sine and

cosine functions with a varying frequency. Since these

analysing functions are not limited in space, there is no way

to analyse the signal locally (Bonnet and Vautrot, 1997).

Attempts to overcome the limitations of the FT in terms

of localisation can be traced back to Gabor (1946, 1965):5

(a) The first attempt led to the concepts of windowed

Fourier transform (WFT) and of spectrograms. Limiting the

analysing functions in time (or space) allows us to study the

signal locally. The result of the analysis, expressed as a

function of time (or space) and frequency is called the

spectrogram.

(b) Another attempt is the concept of Gabor filters. Gabor

filters are periodically modulated Gaussian kernels in real

space, which can be written as: Gð
~
k;
~
uÞ ¼ e2u2=ð2s2

uÞe2j
~
k:
~
u;

where
~
u represents a real space vector (

~
u ¼ ðx; yÞ for images)

and
~
k represents a vector in the reciprocal (frequency) space.

The first exponential term performs the real space localiz-

ation, which allows local signal analysis6. Selecting a set of

values for su and a set of orientations for
~
k allows us to

sample the frequency space efficiently. Since this filtering

approach is local, the analysis/filtering approach can be

performed for each image pixel, and several filtered images

can thus be produced. Since Gabor filters are complex

ðGð
~
k;
~
uÞ ¼ Grð

~
k;
~
uÞ þ jGið

~
k;
~
uÞÞ; amplitude and phase infor-

mation can be obtained concomitantly.

As an example of an application of Gabor filters, I will

select the determination of the local image phase in

high-resolution transmission electron microscopy

(HRTEM) (Hytch, 1997; Hytch and Potez, 1997; Hytch

et al., 1998). In periodic (and quasi-periodic) images of

crystals, much information is concentrated close to the spots

observed in reciprocal (frequency) space. Filtering this

information with a Gaussian filter centred on the selected

spot is equivalent to convoluting the original image with a

Gabor filter. The width of the Gaussian filter is inversely

proportional to the localisation in the real space. A complex

filtered image is obtained, from which the local amplitude

and the local (geometrical) phase can be estimated.

The visualisation and the quantification of the local phase

allow the defects in periodicity (dislocations, grain

boundaries, etc.) to be studied very precisely.

It should be stressed that this approach is not limited to

periodic or quasi-periodic specimens. The local geometrical

phase is an important intermediate clue for solving different

problems in computer vision, such as optical flow or

stereopsis.

(c) Wavelets:

Wavelets constitute another attempt to perform the local

analysis of signals. They differ from Gabor filters in the

definition of the analysis function. Whereas the width of the

Gaussian analysis function (related to su) is not related to

the frequency studied ðkÞ for Gabor filters, it is related for

wavelets. The justification for this is that low frequency

components do not need to be localized as precisely as high

frequency components. Moreover, the shape of the wavelet

may not be Gaussian and can be adapted to specific

purposes.

One way to explain the wavelet analysis simply is the

following: the original signal is smoothed (convoluted with

a low-pass wavelet) and the difference between the original

signal and the smoothed signal is computed. This difference

represents the high frequencies (small details, edges, etc.) of

the original signal. Then, the smoothed signal is smoothed

again, i.e. convoluted with another wavelet deduced from

the mother wavelet, and the difference is calculated again,

providing another level of analysis (at intermediate

frequency), and so on. Thus, we get a series of filtered

signals, which are linked hierarchically: this is a multiscale

approach. In most cases, separable wavelets are used. So, at

each scale, three filtered images are produced, providing

information in the horizontal, vertical and intermediate

directions.

Wavelet-based multiscale analysis has proved to be very

powerful for performing different tasks in computer vision:

4 By global algorithms, we mean algorithms that perform the same task

over the whole image, and are thus non-adaptive. On the contrary, local

algorithms adapt their effect to the local content of the image, the local

contrast for instance, and are thus adaptive.
5 An interesting comment on Gabor’s contribution to image processing,

and especially local image processing, can be found in Lindenbaum et al.

(1994).
6 It can be shown that the Gaussian shape constitutes the best compromise

in terms of simultaneous spatial and frequency localisation.
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denoising, contrast enhancement, texture analysis, and

pattern recognition. Its use in microscope imaging has

been more limited than in other fields. A few applications

can however be cited:

(a) denoising and enhancement of electron micrographs

and electron diffraction patterns (Gomez et al., 1992)

(b) texture analysis (Livens et al., 1996; Van de Wouver

et al., 2000)

(c) estimation of the resolution in near-field microscopy

(Barchiesi and Gharbi, 1999)

(d) spot detection in immunomicroscopy images

(Olivo-Marin, 2002)

I have no doubt that wavelet-based local methods for

analysis/processing microscope images will play an

increasing role in the near future.

Besides wavelets, new tools for local analysis, such as

curvelets and ridgelets, are currently being investigated and

promising (Donoho and Flesia, 2001).

It should also be stressed that adaptations of the Fourier

transform are not the only attempts to perform local

processing: anisotropic diffusion and local contrast

enhancement, among others, can be cited (see Bonnet,

1997, for more developments on these topics).

3. Statistical methods

Besides the signal theory mentioned in the previous

section, statistical theories also play an important role in

image processing. In microscope image processing, these

methods did not play a very important role until now, but

this role is also increasing. Briefly speaking, what is used

now can be mainly categorised into probabilistic data

analysis. Two recent reviews were given by Taupin (1998)

and Skilling (1998).

An increasing role can be expected for several aspects of

statistics: multivariate statistical analysis, robust statistics,

and entropy-based statistics, to name a few.

3.1. Multivariate statistical analysis (MSA)

MSA, first developed at the beginning of the 20th

century, is not a new technique. But the type of data

recordings now available in different fields of microscopy

and microanalysis (see trends 4 and 5) makes their use more

and more necessary.

MSA allows us to characterize a multidimensional data

set as a whole, and to put into evidence the different sources

of variation (i.e. of information) contributing to the set.

Multivariate statistics encompass a large group of tech-

niques, ranging from linear decomposition (Principal

Components Analysis (PCA), Correspondence Analysis

(CA), Karhunen-Loëve transformation (KL), etc.) to non-

linear transformations (neural networks).

These techniques were first introduced in microscopy

as tools to manage the classification of images of

macromolecular assemblies prior to 3D reconstruction

(van Heel and Frank, 1981; Frank et al., 1982).

Examples of these techniques, when applied to different

topics in microscope imaging, are given in Geladi (1992);

Van Espen et al. (1992); Bonnet et al. (1992); Bonnet and

Zahm (1998), among others. Partial reviews are given

in Bonnet (1998, 2000)). I will only insist here on

the limitations of existing methods for orthogonal linear

MSA (OLMSA), which are characterized by a

decomposition of the data set into orthogonal components.

This may be sufficient for a qualitative characterization of

the data set, but not for a quantitative analysis. The reason is

that, owing to the orthogonality constraint, the abstract

components found by the decomposition process cannot be

identified with the real components in the system.

An attempt to obtain the true components, which are not

orthogonal in general, goes through oblique analysis

(Malinowski and Howery, 1980). Attempts to perform

oblique analysis (also called factor analysis) in microscope

imaging can be found in Kahn et al. (1997, 1999)):

they concern the analysis of multispectral, dynamic, three-

and 4D image sequences recorded by confocal microscopy.

Other attempts concern quantitative elemental mapping by

X-ray imaging (Trebbia et al., 1995; Trebbia and Ferrar,

1996; Vekemans et al., 1997).

An alternative approach to estimate the true sources of

information is independent components analysis (ICA)

(Hyvärinen and Oja, 2000). Although the concept of

independence is clearly related to the concept of

orthogonality for Gaussian processes, this is no longer

true for non-Gaussian processes. The interest of ICA is

clearly growing in different fields of application. I

imagine that it will be introduced soon for applications

in microscope imaging.

3.2. Robust statistics

When analysing/modelling a large data set, we are often

faced with the problem that the majority of the

measurements obey some model but a few of them do not

obey the same model. They are called inliers and outliers,

respectively.

When fitting the data to the model, we must examine the

importance of the outliers on the results of the fitting process.

If the outliers do not play a significant role, we say that the

method is robust. Alternatively, if the presence of outliers

disturbs the result, we say that the method is not robust. The

breakdown point of an estimation method is defined as the

percentage of outliers that can be tolerated before this method

fails. Unfortunately, most of the commonly used optimiza-

tion methods are not robust (the least squares fitting method,

where one single outlier may deteriorate the estimation

N. Bonnet / Micron 35 (2004) 635–653 639



result, is a typical case). The usual way of coping with this

problem is to ask the user to select from the whole data set the

part of it that has to be fitted to the model. A more objective

way to proceed would be to replace non-robust optimization

criteria by robust ones, which allows the outliers to be

detected and discarded automatically. This is the aim of

robust statistics (Rousseeuw and Leroy, 1987). Some

examples of robust estimators are:

M-estimators (Huber, 1981): the residues are weighted in

such a way that outliers do not strongly contribute to

the estimation process

the least median of squares (Rousseuw, 1984): the average

value of the residuals (or of the squared residuals) is

replaced by their median value

the number of sign changes criterion (Venot et al., 1984):

the number of sign changes obtained when scanning the

residuals is computed and maximized.

Some applications of robust statistics are concerned with:

(a) image registration (Bonnet and Liehn, 1988; Van Dyck

et al., 1988)

(b) parameter estimation in curve fitting (Zhang, 1997)

(c) robust computer vision (Meer et al., 1991)

I expect that robust statistical methods will be used more

and more in place of the classical least squares method in

microscope image processing.

3.3. Entropy-based statistics

Different sorts of entropy have long been used to

characterize the content of an image (Fan, 1988). More

importantly, the maximum entropy principle, first

proposed by Jaynes (1982), has been used to perform

image and spectrum restoration (Skilling and Gull, 1984).

This principle states that the best solution that one can

find to a restoration problem is the one that employs as

little information as necessary to fit the data.

The main applications have concerned:

(a) the approximation of missing cone data in 3D

electron tomography (Barth et al., 1988; Lawrence

et al., 1989)

(b) the enhancement of scanning tunnelling

microscopy and the estimation of atomic positions

(Böhmig et al., 1994)

(c) the reconstruction of compositional depth profiles

from electron probe microanalysis data (Smith et al., 1995)

(d) focus tuning in exit-wavefunction reconstruction in high

resolution electron microscopy (Van Dyck et al., 1996) the

deconvolution of high resolution transmission electron

microscope images (Pennicook et al., 1992; Fu et al., 1994;

Chen et al., 1999)

(e) the a posteriori correction of uneven illumination

(shading) in optical microscopy (Likar et al., 1999)

In the future, we will probably witness the generalization

of the maximum entropy principle, i.e. the minimization of

the Kullback-Leibler cross-entropy, applied to microscope

image processing problems.

4. Artificial intelligence

Originally, image processing techniques grew as

extensions of the 1D signal processing techniques.

They were soon complemented by tools originating from

set theory, such as mathematical morphology. As it becomes

more mature, the image processing/analysis activity has to

explore other disciplines in order to enrich its own

catalogue. Artificial intelligence is one of these disciplines

able to enrich image analysis. Since this connection between

artificial intelligence and pattern recognition techniques and

microscope image processing was reviewed recently

(Bonnet, 2000), I will only summarise it briefly.

The ingredients of artificial intelligence I will consider

are: fuzzy logic, automatic classification and neural

networks.

One of the most important concerns of artificial

intelligence is the way classical methods and algorithms

behave in the presence of uncertainty. Several information

theories have been developed during the last 30 years,

dealing with this problem in different ways:

(a) probability theory, and the associated Bayes decision

theory (Duda and Hart, 1973)

(b) fuzzy set theory, with the concept of membership

function (Zadeh, 1965)

(c) evidence theory (Schafer, 1976), with the belief and

plausibility functions

(d) possibility theory (Dubois and Prade, 1988), with

the possibility and necessity functions.

Apart from the Bayes theory, it appears that only fuzzy

set theory has diffused a little way in the community of

microscope image processing.

An example is given in Hillebrand (1998) for the analysis

of the local composition of III–V compounds from high

resolution electron microscope images: combining

neighbouring image cell similarities, the underlying

chemical composition is evaluated by applying fuzzy

logic criteria of inference.

Automatic classification is an activity which is generally

considered as pertaining to artificial intelligence. Its import-

ance in microscope image analysis is growing and concerns:

(a) the segmentation of multicomponent images, i.e. the

classification of pixels, described by a vector of several

signal intensities:
~
Iðx; yÞ ¼ ðI1; I2;…; INÞ

t; into an
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unknown number of classes. These different classes of

pixels may represent different phases of the material

(in material sciences) or regions of the specimen

incorporating differently the various fluorochromes

(in fluorescence microscopy for applications in

Biology). the classification of sub-images representing

individual views of macromolecular assemblies. These

different views may represent several points of view of

a unique 3D object or several conformation states of

an object family. In both cases, grouping the views into

several nearly-homogeneous classes is a pre-requisite to

achieving meaningful 3D reconstruction. The same type

of classification of sub-images may be useful in HRTEM

of crystalline specimens, where the sub-images corre-

spond to unit cells across an interface.

(b) the classification of objects detected in images, such as

microscopic particles, defects, or textured regions.

Automatic classification techniques can be divided into

supervised and unsupervised ones (Duda and Hart, 1973).

The former requires a training set in order to learn how the

different classes can be discriminated. Learning and

discrimination can be performed by means of numerous

techniques developed in the artificial intelligence

community: the Bayes decision theory (after learning

the probability density function (pdf) of each class), the

k nearest-neighbours (kNN) technique, the multilayers

feed-forward neural networks (MLFFNN) or expert

systems, to name a few.

Examples of application of supervised classification to

microscope image processing are:

(a) the segmentation of multicomponent images in X-ray

microanalysis of minerals in scanning electron

microscopy (Tovey et al., 1992)

(b) the classification of corrosion defects on the basis of

their texture features (Livens et al., 1996)

(c) the classification of unit cells in HRTEM of

crystalline interfaces (Aebersold et al., 1996)

Unsupervised techniques for automatic classification do

not require any training set: the different objects that

constitute the data set are clustered into different classes,

according to some similarity criterion. Many techniques are

available, ranging from hierarchical ones to partitioning

ones. Although the former techniques have been mainly

used in microscopy (especially for the classification of 2D

views of 3D macromolecular assemblies before 3D

reconstruction), there is a growing interest for the latter

techniques. These include:

(a) the k-means technique (clustering of objects around the

centres of classes),

(b) the fuzzy C-means technique, a variant of the previous

one incorporating the concept of fuzzy membership to

each class,

(c) methods based on the estimation of the global pdf and

the partitioning of the parameter space according to the

estimated pdf, using mathematical morphology

approaches (skeleton by influence zones or watersheds)

(Postaire et al., 1993; Herbin et al., 1996; Bonnet, 1998)

neural networks working in the unsupervised mode:

the self-organizing map (SOM)(Kohonen, 1984)

and its variants (Pascual-Montano et al., 2001), the

fuzzy learning vector quantization (FLVQ) also

called fuzzy Kohonen clustering network (FKCN)

(Bezdek and Pal, 1995) or neural networks based on

the adaptive resonance theory (ARTNN) (Carpenter

and Grossberg, 1987).

All these techniques have found preliminary applications

in microscope image processing (Van Heel, 1984, 1989;

Frank, 1990; Marabini and Carazo, 1994; Bonnet, 1995,

1998; Wu et al., 1996; Zuzan et al., 1997; Sherman et al.,

1998; Guerrero et al., 2000; Pascual et al., 2000). However,

it should be stressed that very few comparative studies were

performed in order to test whether different methods

produce similar results and, if not, which one is the most

appropriate to solve one class of problems. From this point

of view I would say that the application of automatic

classification methods in microscopy is still in its infancy.

5. Multidimensional microscopy

Besides conventional (2D) imaging, microscope imaging

is expanding towards many other variants. I will consider

first the case of 3D imaging, which is the most developed

one at the present time, and then other variants.

5.1. Three-dimensional reconstruction and processing

For a long time, microscope imaging, like most imaging

techniques, was mostly limited to 2D images. The 3D

reconstruction of objects was mainly based on the technique

of physical sections. Structures of interest were delineated

in each image and virtually stacked in the computer.

The technique was very cumbersome.

However, starting 35 years ago, an ineluctable tendency

towards 3D imaging can be observed. It reached all forms of

microscopic imaging, from the cellular level to the

macromolecular level in biology for instance.

In transmission electron microscopy, owing to the large

depth of field,7 changing the focus alone does not allow us to

perform 3D reconstruction. It is thus necessary to rely on tilt

series to record the complementary pieces of information.

Two images of the specimen viewed along different

directions allow analogue or digital stereoscopy to be

performed. But many more views are necessary to perform

microtomography, the analogue of medical tomography at

the cellular and sub-cellular levels. As an alternative to

7 Sometimes called the depth of focus.

N. Bonnet / Micron 35 (2004) 635–653 641



recording many views, images of a specimen containing a

large number of equivalent objects in two directions may be

recorded. Microtomography (with its different variants),

launched at the end of the 60s, has evolved very rapidly, for

crystalline structures as well as for isolated objects (Frank,

1996). It has now attained a high level of sophistication and

of automation, allowing 3D reconstructions at the cellular

level as well as at the macromolecular level to be performed

(Koster et al., 1997). Tilts series can also be combined with

focus series in order to correct the contrast transfer function

of the microscope, allowing the 3D density distribution of

macromolecules to be reconstructed with a resolution better

than 10 Å, which compares favourably with X-rays and

neutrons (Henderson, 1995). A partial list of very interesting

results includes those published by Böttcher et al. (1997),

Baker et al. (1999), Van Heel et al. (2000), and Grünewald

et al. (2003).

In the field of optical microscopy, the development of

confocal microscopy can be considered as a revolution as

far as 3D reconstruction is concerned. Confocal systems

allow us to select very thin slabs of a thick specimen for

producing an image. Thus, slicing optically the specimen

and scanning it along its vertical dimension yield series of

images (sometimes called Z-series) that can be stacked in

the computer to reconstitute the 3D specimen afterwards.

Progress made in deconvolution techniques also makes it

possible to perform 3D reconstruction from non-confocal

optical microscopes: although the experimental depth of

field is too large to obtain 3D reconstruction directly,

deblurring methods allow us to reduce this depth of field a

posteriori and to perform 3D reconstruction with sufficient

vertical resolution (note that these deconvolution techniques

(McNally et al., 1999) can also be used to improve the

resolution of confocal-based 3D reconstructions (Van der

Voort and Strasters, 1995; Verveer et al., 1999)).

These different possibilities for performing the 3D

reconstruction of an object from a series of 2D images

constitute an undeniable success of the microscope image

processing community. In parallel, this community is also

tackling the problem of 3D image processing and analysis.

The aim is to extend the possibilities of 2D image

visualisation, processing, analysis and quantification to the

3D reconstructions obtained from 2D image series.

All the fields of image processing/analysis are concerned:

(a) Image restoration: 3D reconstructions are often far from

perfect. They suffer from several drawbacks such as: the

remaining depth of field in focus series reconstructions

(even in confocal microscopy), the missing cone

problem in microtomography, the microscope transfer

function problem in high resolution electron

microscopy 3D reconstruction. All these problems can

be solved (at least partly) through 3D restoration

procedures, applied after or during 3D reconstruction.

(b) Image segmentation: As for 2D image analysis,

segmentation is an important step in 3D quantification.

Three-dimensional segmentation, like its 2D

counterpart, constitutes one of the most challenging

tasks of image processing, but some progress in the field

has nevertheless being made. Interactive methods as

well as automatic ones have been improved.

Besides contouring the objects or zones of interest

within each consecutive section, interactive (or manual)

procedures offer new tools for manipulating the 3D

image reconstruction and delineating 3D structures.

Some examples of such systems are described in

Rodenacher et al. (1997), Einstein et al. (1997), and

Lockett et al. (1998). More importantly, techniques for

automatic segmentation have been extended from 2D to

3D. Besides simple thresholding of the grey levels

(Umesh Adiga and Chaudhuri, 2001), more sophisti-

cated techniques are becoming available: mathematical

morphology tools, for instance, were extended to the

third dimension (Preston, 1991; Meyer, 1992). The

detection of small objects can be done using the top-hat

transformation using mathematical morphology tools.

Another morphology approach useful for the automatic

segmentation is the watershed procedure (Beucher and

Meyer, 1992; Ancin et al., 1996). Another approach for

3D segmentation starts from the concepts of algorithmic

geometry: the Voronoı̈ diagram and the Delaunay

triangulation (Bertin et al., 1993; Eils et al., 1995).

Clustering methods followed by relaxation have also

been suggested (Kett et al., 1992).

Although these techniques have been mainly devel-

oped for applications in confocal microscopy, there are

few doubts that they will also be applied to 3D

reconstructions of sub-cellular systems and of macro-

molecular assemblies, where they will replace the

simple thresholding technique used until now with very

few exceptions.

(c) Volume measurements after segmentation: Once the

segmentation of the 3D reconstruction is done,

quantitative measurements can be performed, in order

to determine the number of objects, their individual

characteristics (volume, surface, shape parameters,

orientation…) or their collective characteristics. For

instance, the spatial relationships exhibited by a set of

objects can be computed through statistical approaches

(König et al., 1991), computational geometry concepts

(Dussert et al., 1987; Marcelpoil and Usson, 1992),

fractal approaches, ad-hoc procedures such as the

coefficient of margination (Höfers et al., 1993; Parazza

et al., 1995; Beil et al., 1996), the anisotropy in the

orientation of objects (Usson et al., 1994; Mattfeldt

et al., 1994). An analysis of measurement accuracy can

be found in Delorme et al. (1998).

(d) Volume measurements without segmentation: In two

dimensions, this group of methods concerns texture

analysis, fractal analysis, co-localisation approaches

and the analysis of image series. Only a few attempts

have been done to extend texture and fractal analysis in
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three dimensions (Strasters et al., 1994; Beil et al.,

1995). This is still a challenge for the future.

Co-localisation approaches, involving the construc-

tion of 2D or 3D histograms have been extended to 3D

data sets (Beltrame et al., 1995; Demandolx and

Davoust, 1997). Another co-localisation approach

consist in classifying the pixels or voxels, on the basis

of their different intensity values, and building a ‘map’

of the different classes.

Some suggestions related to the 3D reconstruction of

macromolecular assemblies at high resolution are given in

Herman et al. (2000). According to these authors, three

multidisciplinary approaches have the potential for

improving 3D electron microscopy in this field:

(a) incorporation of realistic image formation models into

new reconstruction models

(b) incorporation of knowledge regarding the specimens.

This knowledge could be obtained by means other than

electron microscopy, such as atomic force microscopy

(c) improvement of the rendering and the analysis of

the reconstruction volumes by the development of

more accurate segmentation and visualization

algorithms.

We will see in Section 10 that these multidisciplinary

trends are not limited to the 3D reconstruction of

macromolecular assemblies but are much more general.

5.2. Other variants of multidimensional microscopy

For a long time, imaging was a 2D process: a signal was

recorded as a function of two spatial coordinates (x and y).

This process was found useful and complementary to

1D signals such as time-dependent signals and frequency/

wavelength-dependent signals found in spectroscopy.

Nowadays, we are witnessing the development of more

complex acquisition procedures that combine two (or three)

spatial coordinates and one or several other variables, such

as time and/or wavelength.

The combination of spatial coordinates and time gives

rise to time-resolved microscopy, a dynamic imaging

process that allows us to record images of living cells

(Tvarusko et al., 1999) and/or of mechanical/chemical

dynamical processes, in environmental scanning electron

microscopy or near-field microscopy.

The combination of spatial coordinates and wavelength

allows multispectral imaging, a very promising combination

of imaging and spectroscopy, to be performed. The simplest

and oldest form of multispectral imaging is probably colour

imaging, i.e. recording of data within three different

energy windows in the visible domain (Red, Green, Blue

components). But full multispectral imaging (sometimes

called deep multispectral imaging) can also be performed

when many images are recorded in energy windows close

together, giving rise to image-spectroscopy (Lavergne et al.,

1994; Körtje, 1994; Mayer et al., 1997). As an alternative, a

large part of a spectrum can be recorded for any pixel of the

image, giving rise to spectrum-imaging (Hunt and Williams,

1991; Balossier et al., 1991; Colliex et al., 1994; Tencé et al.,

1994). These two modes do not differ from a conceptual

point of view: in both modes, a data cube is recorded as

Iðx; y;lÞ (Jeanguillaume and Colliex, 1989). They differ

only from the instrumental point of view, which may have

some incidence on the data sampling: larger images and less

energy channels in the latter case, less pixels and more

energy channels in the former case.

The recorded data cube Iðx; y;lÞ contains a lot of

information, which may be partly hidden and has to be

extracted a posteriori. Of course, classical image

processing/analysis methods may be applied to the set

of stacked images Iðx; y;lkÞ and classical signal proces-

sing/analysis methods can be applied to the set of spectra

Iðxi; yj;lÞ: The coherence and completeness of the data

cube is partly lost however. Thus, multivariate methods,

working on all the data at once, are to be preferred. For

instance, multispectral image segmentation is generally

more efficient than mono-component image segmentation

followed by a combination of the different binary images

(Bonnet, 1995). The same is true for image pre-

processing tasks (improvement of the signal-to-noise

ratio, local contrast enhancement, etc.). Factorial filtering,

for instance, has been demonstrated to be very efficient

(Trebbia and Bonnet, 1990). It consists in submitting the

whole data set to multivariate statistical analysis,

principal component analysis or correspondence analysis.

Then, the eigen-components that contain only noise or

artefacts are discarded and the data set is reconstructed

using useful components only. Applications of this

procedure can be found in Quintana and Bonnet (1994)

and Quintana et al. (1998).

However, I consider that tools for processing and

analysing multidimensional data sets have not attained a

sufficient level and have still to be developed. Even the

simple visualization of these data sets necessitates

specialized tools that are still in their first stage of

development (Mountain et al., 1996; Kenny et al., 1997).

Higher dimensional imaging (also called hyper-dimen-

sional imaging) is still in its infancy, but will, without any

doubt, become more common in the future. Among the

different possibilities, I can cite:

(a) Iðx; y; z; tÞ : time-resolved 3D imaging is already in use

in 3D video microscopy,

(b) Iðx; y; z;lÞ : multispectral 3D microscopy,

(c) Iðx; y; t;lÞ : time-resolved multispectral microscopy,

(d) Iðx; y; z; t; lÞ : time-resolved multispectral 3D

microscopy.
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6. Multimodal microscopy and data fusion

Modern microscopes (and new prototypes) are not only

able to produce higher and higher quality images. Some of

them are also capable of producing signals and images in

different modes. Some examples of these possibilities are—

not exhaustively—listed below:

the optical microscope was certainly the first instrument

to offer different working modes: bright field (BF),

dark field (DF), phase contrast (PC), differential

interference contrast (DIC), fluorescence microscopy

(FM). An illustration of this multimode light microscopy

for the study of the dynamics of molecules, cells and

tissues was given by Farkas et al. (1993). Another

illustration was given by Glasbey and Martin (1996) who

tried to explore the complementary information content

of multimodal images (BF, DIC, PC).

the confocal microscope maintains most of these

possibilities with, in addition, the facility to perform

optical sectioning and easier 3D reconstruction.

A description of this 3D versatility was given by

Jovin et al. (1990). Beltrame et al. (1995) combined

transmitted light and fluorescence images in a

confocal microscope. They also developed some

tools (such as the 3D scatterplot) for dealing with

this multimodal data set and classifying pixels into

different clusters.

the transmission electron microscope (TEM) also offers

different imaging capabilities (bright-field, dark-field,

convergent beam diffraction, etc). When coupled with a

spectrometer, the imaging and the analytical possibilities

are combined. The scanning transmission electron

microscope (STEM) is even more versatile in the sense

that the image-forming electrons can be selected more

easily (Burge et al., 1982).

(a) the scanning electron microscope (SEM) also allows

different signals to be recorded (back-scattered and

secondary electrons) and can be combined with

analytical systems allowing microanalytical infor-

mation to be collected.

(b) versatile analytical instruments, with which several

analytic signals can be recorded simultaneously,

have also been built. An example is the multispectral

Auger microscope built in York (Prutton et al., 1996,

1999).

(c) some small instruments can also be put inside

others, allowing a large magnification range to be

covered: near-field microscopes have been put inside

SEMs.

Generally speaking, the aim of such multimodality

techniques is to gather several types of information about

the object, in order to better explore its complex reality.

Different possibilities are:

(a) to study the specimen at different scale levels

(from light microscopy to electron or near-field

microscopy through confocal microscopy)

(b) to study the specimen from different points of view

(topography with a near-field microscope and interior

of the specimen with a TEM)

(c) to capture chemical information in complement to

physical information (electron microscopy and micro-

analysis; phase contrast light microscopy and fluor-

escence microscopy)

(d) to combine chemical information with low and high

atomic numbers (electron energy loss imaging and

X-ray mapping).

These different possibilities give rise to what is

sometimes called collaborative microscopy.

From the point of view of image processing, the

multimodal data sets require specific image processing

techniques if we really want to combine the different pieces

of information. Very few attempts have been made to set up

the necessary tools.

One significant attempt is due to Glasbey and Martin

(1996) who tried to explore the data set composed of BF, PC

and DIC images recorded from a sample of algal and

bacterial cells. They mainly used PCA to explore the

information content in the triplet of images. They found

that the three principal components could be interpreted.

The first principal component, which represents 74% of

the total variance, expresses the correlation between BF

and DIC images and their anti-correlation with the PC

image.

But this type of analysis, which is well suited to

multispectral or time-dependent image series (because all

the images are of equivalent nature) becomes largely

insufficient for multimodal image series. For this type of

image series, other tools have to be developed and used in

order to elicit information unavailable from any single

modality. This process can be named image fusion, in

relation with the more general data fusion8 principles.

Image fusion may concern the production of a resultant

image by merging the whole set of individual images. With

a series of two or three images only, the technique of

pseudo-coloured composite image can be used, and has

been used extensively in multifluorescence imaging or in

X-ray microanalysis (Razdan et al., 2001). The scatterplot

technique can also be used (Bright and Newbury, 1991;

Kenny et al., 1994; Demandolx and Davoust, 1997). But

several new possibilities are available. As an example, the

combination of images recorded at different resolution can

be performed through wavelet merging (Nuñez et al., 1999;

Scheunders and De Baker, 2001).

8 Data fusion consists in considering several data sets as a whole and

combining the different pieces of information they contain in order to

produce new information that could not be extracted from any individual

data set.
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Besides simple merging, the main problem in

image fusion concerns the way the different sources

of information can be fused in order to provide an

answer to a given problem. For doing this, one has to

define: (i) which measure of belief is chosen for the

individual sources of information, (ii) how the different

measures of belief are combined. This subject is slightly

more developed in Bonnet (2000). The interested readers

may also consult Bloch (1996) for an extended theoretical

study.

7. Theory

As stated by Ritter et al. (1990), ‘vast increase in image

processing activities in the military, industrial and academic

communities have resulted in a deluge of different image

processing techniques, notation, and operations that all too

often perform similar or identical tasks’. At the beginning of

the 1980s, some people started to think that this chaotic

situation could be transformed and they decided to work on

‘the development of a highly structured mathematical

foundation for image processing and image analysis with

the intent that the fully developed structure would sub-

sequently form the basis of a common image processing

language’.

This unified system is supposed to work on any type of

image, and particularly with multivalued as well as

single-valued images, and to support non-linear as well as

linear transformations.

Limitations of space prevent me from describing in

detail the results of this research, which has taken the

terminology of image algebra(s). Only a very brief summary

is given below.

Image algebra consists of images, templates

(images whose pixels are themselves images), mathematical

operations (addition, multiplication, sup, subtraction,

division, inf, etc.), the sets F and X of types of values

(integer, real, complex, etc.) and of types of coordinates

(Cartesian, polar, …), respectively.

It was shown theoretically (and verified in practice) that

any known (linear or non-linear) operation on images and

templates9 could be described in terms of a few operators of

image algebra. This is the case of: the Fourier

transformation, all linear convolution routines, mathemat-

ical morphology basic operations (erosion, dilation,

opening, closing) and extensions, such as adaptive mor-

phology, histogram equalization, median filters and their

generalizations such as rank-order filters, restoration,

including the Wiener filter and iterative procedures such

as the Gerchberg-Saxton algorithm, singular value

decomposition and multivariate statistical analysis, 3D

reconstruction with the filtered back-projection method or

the projection onto convex sets (POCS).

The concepts of image algebra were introduced in the

microscope image processing community by Hawkes, who

also showed that the images which can be recorded in

microscopy may be of numerous types but all can be pretty

well managed using the concepts of image algebra.

Hawkes (1992) deals with the question of image

restoration.

Hawkes (1993) concerns the algebraic manipulation of

sets of electron images and spectra. As an example, he

shows that the different possible representations of a

multivalued image can be used as alternatives to standard

techniques for multivariate statistical analysis.

Hawkes (1995a, 1998) presents a review of image

algebra for electron images and shows that all known

image processing operations (divided into four classes:

image acquisition and coding, enhancement, restoration and

analysis) can be described using the framework and

notations of image algebra.

Hawkes (1995b) shows that the very specific images

which can be recorded with a STEM are in fact

templates and can be processed as such within the

framework of image algebra.

Undoubtedly, from a theoretical point of view, image

algebra constitutes a progress towards a unification of image

processing techniques. However, it seems difficult to

affirm that image algebra has led to a real practical progress,

in the sense that the unification has not produced new tools

that were not available previously. Image algebra being only

twenty years old, we can expect that only the first steps of its

development have been achieved and that future

developments will provide new practical tools that will

help to cope with presently unsolved problems (Ritter and

Wilson, 2001).

8. Simulation

In general, imaging is considered as self-consistent in the

sense that the images obtained are supposed to capture the

essential information contained within the object under

study. This means that this information can be extracted

directly from the image, perhaps after image processing

and/or analysis. However, situations exist where, although

the image still carries some information concerning the

object, it is not possible to infer this useful information

directly from the image. The reason for this may be that

the transfer function of the imaging system, which carries

the information from the object to the image(s), is rather

complicated and cannot be inverted easily. When this

situation occurs, one possibility is to make use of

simulations as intermediate steps for recovering the hidden

information from the complicated images.

The general process can be described as follows.

First, two paths are followed in parallel: experimental

images are produced with the imaging system and simulated

images are computed according to a preliminary model of9 Image-image, image-template or template-template.
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the object and a model of the imaging system. The two sets

of images are thus analysed/quantified in order to produce

two comparable data sets. Then, these two data sets are

submitted to a comparator. If they do not agree, a feedback

loop is activated in order to modify the model of the object,

the model of the imaging system, or both. If the feedback

loop is correctly designed, the process should converge

and, after some iterations, the data sets originating from the

experimental and the simulated images will agree. At this

moment, we can say that the object and imaging models

agree too. We can either stop here, considering that the

information obtained about the object is sufficient. We can

also try to design new experiments, which, following the

same principle, can help to gain even more information

(experimental design).

Below, I describe briefly three situations in microscopy

where simulation proved useful.

8.1. Simulation in HRTEM

At very high resolution, TEM images no longer reproduce

the magnified image function directly. The complex transfer

function of the microscope interacts with the complex

wavefunction emerging from the specimen to produce

images that cannot be interpreted straightforwardly.

Procedures have been developed for restoring the object

structure from series of images (focus series, tilt series).

But the most often used approach to infer the specimen

structure from the experimental images consists in

performing many simulations of images from the expected

atom positions, in specific experimental conditions, and

fitting the experimental images to simulated ones. By playing

with the unknown experimental parameters and the atom

positions, the object structure may (hopefully) be

determined (see, for instance, Self and O’Keefe, 1988;

Möbus et al., 1998).

The simulation approach is already rather complex and

sophisticated. It requires three steps:

(a) computation of the wavefunction at the exit face of the

specimen, taking into account the presumed structure.

This is generally done by the multislice approach

(Van Dyck, 1997)

(b) simulation of the effects of the microscope on the wave

travelling in the microscope (all microscope par-

ameters have to be provided or checked)

(c) simulation of the recording process, i.e. transform-

ation of a complex wavefunction into an intensity.

Some commercial software is available for performing

these computations (Stadelman, 1987).

However, there remain some differences (especially in

terms of contrast) between experimental and simulated

images, which are not well understood yet (Boothroyd,

1998). This means that even more contributions have to be

taken into account, so that HRTEM images simulations

probably still have a brilliant future.

8.2. Simulations at lower resolution in materials science

Besides HRTEM of crystalline structures (with or

without defects), another domain of application where

image simulation is playing an increasing role is the domain

of complex and disordered textures encountered in material

science at lower resolution (metallurgical structures).

Here again, structure or image synthesis may be of great

help to understand real images and deduce some

quantitative parameters. Following the work of Matheron

(1975), Jeulin (1988, 1992, 2000) made several classes of

models available for this purpose:

(a) stochastic point processes, simulating germination

(b) random tessellations, simulating granular structures

(c) random sets and multiphase random sets, simulating

two-phase materials (such as porous media) or

multiphase materials

(d) random functions, simulating rough surfaces.

(e) dead leaves.

Decker and Jeulin (1999) showed that complex 3D

space-time textures can be simulated by reaction-diffusion

models, suggesting that a reaction-diffusion mechanism is at

the origin of these structures.

Boolean models have also been studied extensively by

Handley and Dougherty (1996).

In any case, the comparison of quantitative values

extracted from simulated and experimental images allows

us to concentrate the recorded information into a few

parameters of the models.

8.3. Analysis of the behaviour of cell populations

(video microscopy)

Video microscopy (Inoue and Spring, 1997) allows us to

record and visualise the behaviour of specimens as a

function of time. This is particularly interesting in the case

of living specimens, although the technique is not limited to

this specific case. Cell populations, for instance, can be

studied by optical video microscopy. Such populations often

exhibit a complex behaviour, which can be described in

terms of cellular sociology. By this terminology, we mean

that cells in a population are not independent: they exchange

information and their behaviour is the result of interactions

with their neighbours. Among the consequences of such

interactions is the different spatial distribution and space

occupancy of different cell populations, which can be

studied as a function of time with the help of videomicro-

scope recordings. Although some information can be gained

directly from observation of these recordings, it is often

difficult to deduce the modes of interaction between cells

directly or from the set of spatial distribution parameters
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computed from these images. In this situation too, it is

necessary to use simulations as an intermediate step.

According to a pre-specified model of the interaction

(the parameters of which are unknown), series of images

of cell populations are simulated, according to the

techniques of cellular automata (Wolfram, 1984) or

multiagents systems. The parameters describing the spatial

distribution of cells are then computed and compared to

those computed from the experimental recordings. Finally,

the parameters of the model, or the interaction model itself,

are varied until a good agreement is obtained.

Different cell populations (for instance: invasive and

non-invasive cells in cancerology) can be discriminated on

the basis of the parameters that describe their interaction

(Palmari et al., 1994; Bonnet et al., 2004).

9. From complete automation to semi-automation

One of the aims of image processing/analysis developers

is to provide end-users with software tools capable of

performing an automatic analysis of the image.10 Achieving

the general aim of automation requires that more and more

complex imaging procedures and image processing/analysis

algorithms are developed. In the previous sections, I tried to

describe some of the tendencies of image processing that go

in this direction of greater and greater complexity.

But, alongside this tendency, we also encounter some

trends to abandon the aim of full automation and to limit the

ambitions of image processing to semi-automation only. In a

sense, this trend may appear as a setback to earlier

ambitions, but in another sense, this can be seen to be

more realistic taking into account the complex structure of

images we have often to deal with.

As a single example to illustrate this trend, I have chosen

the problem of image segmentation. From the very

beginning of image processing/analysis, this task, which

consists in partitioning the image into different regions

(objects of interest versus background), has received

considerable attention, because it is a central task for

many applications. It has also been recognised as the most

difficult part. Automatic image segmentation has

constituted a challenge for several generations of developers

in the field of computer image processing. It should be

recognised that all these efforts have led to much progress

and that sophisticated algorithms are now available for

image segmentation, which I cannot unfortunately describe

in this review (see Russ, 2002). But, at the same time, it

must also be recognised that good results can only be

obtained with fully automatic segmentation methods in

favourable situations, where only one type of object is

present within the scene. In many other situations, fully

automatic segmentation appears unrealistic, and users prefer

to use fully interactive segmentation (i.e. contour drawing)

rather than having to modify the (wrong) results of

automatic segmentation afterwards (Einstein et al., 1997).

One of the recently appearing trends in image

segmentation is the awareness that, between these two

extremes, i.e. fully interactive and fully automatic

segmentation procedures, there is room for semi-automatic

segmentation techniques. Here, a limited amount of user

interaction is requested, which helps the computer to

perform the remaining work. This user interaction may

consist in telling the computer how many objects of

interest are present in the scene and where they are

(very approximately) located.

I will briefly describe two of these approaches: one

approach based on the watershed technique we

have developed and one approach based on the fuzzy

connectedness concept, already in use in medical imaging,

but not in microscope imaging (Cutrona and Bonnet, 2001).

(a) An approach based on the concept of watersheds:

The watershed technique is one of the central techniques

used for segmentation in the community of mathematical

morphology (Beucher and Meyer, 1992). When applied in a

full automation context, the technique requires the

automatic determination of seeds from which the different

regions are grown. Using the local minima of the gradient

modulus as seeds generally results in over-segmentation, the

number of local minima being much larger than the actual

number of objects or regions. Even grouping the regions, on

the basis of their saliency (Najman and Schmitt, 1996), is often

insufficient, in difficult situations. The approach we have

developed consists in applying the watershed technique within

a minimally-interactive context. The user interaction consists

in telling the system how many objects of interest are present

in the scene, where they are approximately located (one pixel

per object is designated with the graphic mouse). The same is

done for the objects or regions in the image that are not

considered of interest by the user and constitute the back-

ground. The designated pixels (of the objects of interest and of

the other objects) are then used as seeds for the watershed

technique, which grows the different types of objects taking

into account the regularized image gradient.

(b) An approach based on fuzzy connectedness

(Udupa and Samarasekera, 1996; Carvalho et al., 1999):

This technique has already found applications in medical

imaging but not yet in microscope image processing. I am

convinced that this kind of technique will be useful when it

will be imported in our field. The technique is based on the

concept of fuzzy connectedness.11 It relies on two

considerations: (i) objects are not always defined by a

constant grey level, they often display a graded grey level,

(ii) the image elements (pixels or voxels) that constitute an

object hang together in some way. These two properties
10 Of course, it remains the responsibility of the users to choose among

these tools those appropriate to the type of image to be processed and to the

goal of the study.

11 This is another example of using the concepts of artificial intelligence,

here fuzzy geometry, in image processing and analysis.
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(grey-level grading and ‘hanging-togetherness’) can be

handled with the notion of fuzzy object or, more precisely,

of fuzzy connected components.

First, the user designates (interactively) an image

element belonging to the object to be extracted.

Then, from the original image, a parametric image is

built: for any pixel in the image, its affinity with the selected

pixel is computed. This affinity takes into account the

degree of adjacency of the grid points and the similarity of

their intensity values.12 Then, the affinity map can be

segmented through affinity thresholding, more easily than

through grey level thresholding.

This method was improved recently by incorporating

the multiscale concept (Saha et al., 2000) and

by incorporating competitive learning (Cutrona and

Bonnet, 2001; Saha and Udupa, 2001), avoiding any

thresholding.

Besides these two approaches, it may be useful to mention

other approaches to semi-automatic image segmentation:

(a) intelligent scissors (Mortensen and Barrett, 1998)

(b) live wire and live lane (Falçao et al., 1998)

(c) computational geometry (Voronoı̈ partition) followed

by deformable contours, or snakes (Klemencic et al.,

1998).

10. Multidisciplinarity

Image processing and analysis has become a very

specialised discipline, at least so far as algorithmic and

software development is concerned. This tendency will

probably persist in the future, since new algorithmic

procedures require higher and higher skills in mathematics

and computer science. But, at the same time, image

processing will probably get out of breath if better links

are not established with other disciplines and communities,

such as computer graphics (computer visualisation and

animation, image synthesis), artificial intelligence or

physics, for instance.

I will only describe two examples of links that appear as a

necessary condition for passing beyond the present state of

image processing/analysis.

10.1. Example 1: image processing and computer graphics

Multidimensional and multimodality microscopes are

now on the market but the means of visualising the recorded

data are still relatively inefficient. Even visualising a 3D

reconstructed object is not as trivial as might be expected

and the surface rendering methods, applied after simple

thresholding, are not sufficient. Herman et al. (2000), for

instance, consider the improvement of the rendering as one

of the three areas that have the potential for improving 3D

electron microscopy.

Things are even more complex for other multidimen-

sional data sets, such as 2D or 3D time-dependent or energy-

dependent records.

Clearly, developing new approaches to visualization

requires some collaboration with specialists of this domain,

i.e. computer graphists (Foley, 1998). These people have

been working for a long time on problems related to

visualisation and some of the techniques they have made

available have to be introduced in the field of

multidimensional microscope image analysis. Volume

rendering methods should be implemented in addition to

the surface rendering methods (Diaspro et al., 1996; Lucas

et al., 1996; Razdan et al., 2001). New attempts to model 3D

shape and topology in the framework of the a-shapes

approach can be found in De-Alarcon et al. (2002).

The use of tools originating from the world of virtual

reality (Burdea and Coiffet, 1994; Sherman and Craig, 2002;

Volino and Magnenat-Thalmann, 2000) and augmented

reality (Behringer et al., 1999) could also bring something

new, in terms of interaction between the user and the

multidimensional data sets.

10.2. Example 2: image processing and physics

Physicists have to play a role in image processing

because the physical processes of image formation have

often to be accounted for during the process of image

restoration and analysis. This is more and more true when

structures are studied at higher and higher resolution.

In addition, many image processing algorithms are

already based on analogies with physical concepts. A few

examples of these interactions are:

(a) the concept of energy: ‘It is clearly possible to write

any vision problem in terms of minimizing an energy

function’ (Yuille, 1987). Energy minimization is often

used in segmentation problems, in stereoscopic

correspondence and in motion problems, to name a

few. the concept of entropy (see trend 2)

(b) the geometric moments, inspired by classical mech-

anics, are used in shape description and recognition

(c) isotropic and anisotropic diffusion concepts, originat-

ing from fluid mechanics, are used in order to perform

local signal-to-noise ratio and contrast enhancement

(d) optical flow techniques, also originating from fluid

mechanisms, are useful for the characterization of

motion from image sequences

(e) concepts originating from quantum mechanics, such as

the uncertainty principle, are used to describe space-

time and multiscale approaches and fuzzy logic

modelling

(f) concepts inspired of statistical mechanics, such as the

partition function or phase transitions, are used to

12 I do not reproduce formula and ask the interested readers to refer to

original papers.
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perform image segmentation and clustering

(g) models that have been defined in Physics, such as

the Potts and Ising models, electrostatic and

electromagnetic models, are also used as models in

image processing applications.

We can expect that even more physical concepts could be

imported in the general field of image processing and then in

the specific field of microscope image processing.

As a whole, we can say that image processing is

becoming more and more an interdisciplinary activity.

11. Conclusion

In this review, I have attempted to select and comment on

some trends of microscope image processing. Some of them

form part of image processing in general, while others

appear to be specific to microscope imaging.

From this (personal) selection, it appears that image

processing is not a stand-alone research activity, but is

connected to a number of other fields, such as physics,

artificial intelligence, statistics and computer graphics.

This means that progress made in these other fields have

to be followed by people working in image processing and

incorporated as soon as possible.
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Falçao, A.X., Udupa, J.K., Samarasekera, S., Sharma, S., Hirsch, B.E.,

Lotufo, R., 1998. User-steered image segmentation paradigms: live

wire and live lane. Graph. Models Image Proc. 60, 233–260.

Fan, G.Y., 1988. Relative entropy of amorphous images. Scanning Microsc.

Suppl. 2, 157–164.

Farkas, D.L., Baxter, G., BeBiaso, R.L., Gough, A., Nederlof, M.A., Pane,

D., Pane, J., Patek, D.R., Ryan, K.W., Taylor, D.L., 1993. Multimode

light microscopy and the dynamics of molecules, cells and tissues.

Annu. Rev. Physiol. 55, 785–817.

Foley, J.D., 1998. The convergence of graphics and imaging. Proc.

Eurographics ’98, 17.

Frank, J., 1990. Classification of macromolecular assemblies studied as

single particles. Quart. Reviews Biophys. 23, 281–329.

Frank, J., 1996. Three-dimensional Electron Microscopy of Macromolecu-

lar Assemblies, Academic Press, San Diego.

Frank, J., Verschoor, A., Boublik, M., 1982. Multivariate statistical

analysis of ribosome electron micrographs. J. Mol. Biol. 161,

107–137.

Fu, Z.Q., Huand, D.X., Li, F.H., Li, J.Q., Zhao, Z.X., Cheng, T.Z., Fan,

H.F., 1994. Incommensurate modulation in minute crystals revealed by

combining high-resolution electron microscopy and electron diffrac-

tion. Ultramicroscopy 54, 229–236.

Gabor, D., 1946. Theory of communication. J. Inst. Electr. Engng 93,

429–441.

Gabor, D., 1965. Information theory in electron microscopy. Lab. Invest.

14, 801–807.

Geladi, P., 1992. Some special topics in multivariate image analysis.

Chemom. Intell. Lab. Syst. 14, 375–390.

Glasbey, C.A., Martin, N.J., 1996. Multimodal microscopy by digital image

processing. J. Microsc. 181, 225–237.

Gomez, A., Beltran del Rio, L., Romeu, D., Yacaman, J., 1992.

Application of the wavelet transform to the digital image

processing of electron micrographs and of backreflection electron

diffraction patterns. Scanning Microsc. Suppl. 6, 153–161.
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Möbus, G., Schweinfest, R., Gemming, T., Wagner, T., Rühle, M., 1998.

Iterative structure retrieval techniques in HREM: a comparative study

and a modular program package. J. Microsc. 190, 109–130.

Mountain, D.L., Kenny, P.G., Barkshire, I.R., Prutton, M., 1996.

Visualization of 3D spectrum-images from multispectral surface

analytical microscopy. Proc. Eurographics UK Conf. London 1,

95–102.

Mortensen, E.N., Barrett, W.A., 1998. Interactive segmentation with

intelligent scissors. Graph. Models Image Proc. 60, 349–384.

Najman, L., Schmitt, M., 1996. Geodesic saliency of watershed contours

and hierarchical segmentation. IEEE Trans. PAMI 18, 1163–1173.
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fusion with additive multiresolution wavelet decomposition. Appli-

cations to SPOT þ Landsat images. J. Opt. Soc. Am. A 16, 467–474.

Olivo-Marin, J.-C., 2002. Extraction of spots in biological images using

multiscale products. Pattern Rec. 35, 1989–1996.
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Tencé, M., Quartuccio, M., Colliex, C., 1994. PEELS Compositional

profiling and mapping at nanometer spatial resolution. Ultramicro-

scopy 58, 42–54.

Tovey, N., Dent, D., Corbett, W., Krinsley, D., 1992. Processing

multispectral scanning electron microscopy images for quantitative

microfabric analysis. Scanning Microsc. Suppl. 6, 269–282.

Trebbia, P., Bonnet, N., 1990. EELS elemental mapping with unconven-

tional methods. I. Theoretical basis: image analysis with multivariate

statistics and entropy concepts. Ultramicroscopy 34, 165–178.

Trebbia, P., Ferrar, G., 1996. Quantitation of X-Ray radiographic elemental

maps using factorial analysis of correspondence: methods and

programs. J. Microsc. Soc. Am. 2, 21–34.

Trebbia, P., Wulveryck, J.M., Bonnet, N., 1995. Progress in

quantitative elemental mapping by X-ray imaging. Microbeam Anal.

4, 85–102.

Tvarusko, W., Bentele, M., Misteli, T., Rudolf, R., Kaether, C., Spector,

D.L., Gerdes, H.H., Eils, R., 1999. Time-resolved analysis and

visualization of dynamic processes in living cells. Proc. Natl. Acad.

Sci. USA 96, 7950–7955.

Udupa, J.K., Samarasekera, S., 1996. Fuzzy connectedness and object

definition: theory, algorithms, and applications in image segmentation.

Graph. Models Image Proc. 58, 246–261.

Umesh Adiga, P.S., Chaudhuri, B.B., 2001. Some efficient methods to

correct confocal images for easy interpretation. Micron 32,

363–370.

Usson, Y., Parazza, F., Jouk, P.-S., Michalowicz, G., 1994. Method for the

study of the three-dimensional orientation of the nuclei of myocardial

cells in foetal human heart by means of confocal scanning laser

microscopy. J. Microsc. 174, 101–110.

Van der Voort, H.T.M., Strasters, K.C., 1995. Restoration of

confocal images for quantitative image analysis. J. Microsc. 178,

165–181.

Van de Wouver, G., Weyn, B., Scheunders, P., Jacob, W., Van Marck, E.,

Van Dyck, D., 2000. Wavelets as chromatin texture descriptors for

the automatic identification of neoplastic nuclei. J. Microsc. 197,

25–35.

Van Dyck, D., 1997. High resolution electron microscopy. In: Amelinckx,

D., van Dyck, D., van Landuyt, J., van Tendeloo, G. (Eds.), Handbook

of Microscopy. Applications in Materials Science, Solid-state Physics

and Chemistry, VCH, Weinheim.

Van Dyck, D., Van den Plas, F., Coene, W., Zandbergen, H., 1988. Robust

statistical methods in image processing. Scanning Microsc. Suppl. 2,

185–190.

Van Dyck, D., Op de Beeck, M., Tang, D., Jansen, J., Zandbergen, H.W.,

1996. A global entropy criterion for focus tuning in exit wavefunc-

tion reconstruction in high resolution electron microscopy, Proceed-

ings of International Conference on Image Processing (ICIP’96),

pp. 737–740.

Van Espen, P., Janssens, G., Vanhoolst, W., Geladi, P., 1992. Imaging and

image processing in analytical chemistry. Analusis 20, 81–90.

N. Bonnet / Micron 35 (2004) 635–653652



Van Heel, M., Frank, J., 1981. Use of multivariate statistics in analysing

the images of biological macromolecules. Ultramicroscopy 6,

187–194.

Van Heel, M., 1984. Multivariate statistical classification of noisy

images (randomly oriented biological macromolecules). Ultramicro-

scopy 13, 165–183.

Van Heel, M., 1989. Classification of very large electron microscopical

image data sets. Optik 82, 114–126.

Van Heel, M., Gowen, B., Matadeen, R., Orlova, E.V., Finn, R., Pape, T.,

Cohen, D., Stark, H., Schmidt, R., Schatz, M., Patwardhan, A., 2000.

Single-particle electron cryo-microscopy. Quart. Rev. Biophys. 33,

307–369.

Vekemans, B., Janssens, K., Vincze, L., Aerts, A., Adams, F., Hertogen, J.,

1997. Automated segmentation of m-XRF image sets. X-ray Spec-

trometry 26, 333–346.

Venot, A., Lebruchec, J.F., Roucayrol, J.C., 1984. A new class of similarity

measures for robust image registration. Comp. Vis. Graph. Image Proc.

28, 176–184.

Verveer, P.J., Gemkow, M.J., Jovin, T.M., 1999. A comparison

of image restoration approaches applied to three-dimensional confocal

and wide-field fluorescence microscopy. J. Microsc. 193, 50–61.

Volino, P., Magnenat-Thalmann, N., 2000. Virtual Clothing, Springer,

Berlin.

Wolfram, S., 1984. Cellular automata as models of complexity. Nature 311,

419–424.

Wu, H.-S., Barba, J., Gil, J., 1996. An iterative algorithm for cell

segmentation using short-time Fourier transform. J. Microsc. 184,

127–132.

Yuille, A., 1987. Energy functions for early vision and analog networks.

A.I. Memo 987, Massachussets Institute of Technology, Artificial

Intelligence Laboratory.

Zadeh, L.A., 1965. Fuzzy sets. Inform. Control. 8, 338–353.

Zhang, Z., 1997. Parameter estimation techniques: a tutorial with

applications to conic fitting. Image Vis. Comput. 15, 59–76.

Zuzan, H., Holbrook, J.A., Kim, P.T., Harauz, G., 1997. Coordinate-free

self-organizing feature maps. Ultramicroscopy 68, 201–214.

N. Bonnet / Micron 35 (2004) 635–653 653


	Some trends in microscope image processing
	Introduction
	Trend number 1: signal processing
	Trend number 2: statistical methods
	Trend number 3: artificial intelligence
	Trend number 4: multidimensional imaging
	Trend number 5: multimodal imaging
	Trend number 6: on the side of the theory
	Trend number 7: simulation
	Trend number 8: from complete automation to semi-automation
	Trend number 9: multidisciplinarity

	Signal processing
	Statistical methods
	Multivariate statistical analysis (MSA)
	Robust statistics
	Entropy-based statistics

	Artificial intelligence
	Multidimensional microscopy
	Three-dimensional reconstruction and processing
	Other variants of multidimensional microscopy

	Multimodal microscopy and data fusion
	Theory
	Simulation
	Simulation in HRTEM
	Simulations at lower resolution in materials science
	Analysis of the behaviour of cell populations (video microscopy)

	From complete automation to semi-automation
	Multidisciplinarity
	Example 1: image processing and computer graphics
	Example 2: image processing and physics

	Conclusion
	Acknowledgements
	References


