
Complex control
systems often
contain numer-
ous controllers
(or control laws)
for a given plant, where the controller

having authority at any given time depends on the current
operating condition of the plant. For example, a plant op-
erating in the nominal condition generally uses one con-
troller, while a plant with a fault uses a different controller.
Even in nominal operation,
there may be several con-
trollers that are designed
for different steady-state
operating points (for exam-
ple, a helicopter may have
one controller for hover and a different one for takeoff).
These types of systems can be modeled as hybrid sys-
tems; that is, systems that have both continuous and dis-
crete states. In this case, the plant and the controllers
can be modeled using differential or difference equa-
tions, which have continuously varying states. The
higher-level logic that determines which controller to
use can be modeled using discrete states that evolve ac-
cording to a finite state automaton.

The implementation of hybrid
controllers can be facilitated by us-
ing component-based software ar-
chitectures [1], [2], which reduce
software development and valida-

tion costs. Component-based architectures encourage code
reuse across applications. For example, there are many algo-
rithmic methods that are applicable to many different sys-
tems: neural networks, Kalman filters, and even PID
controllers. These can all be made into software components

by standardizing the inter-
faces of the different modules
and by making sure that the
components can be com-
posed together to form spe-
cific hybrid control systems.

Built in this manner, a hybrid control system would require
dynamic reconfiguration of the software components (that
is, switching and adapting components at run time), with the
discrete logic determining which controller component is se-
lected at any given time. Component-based designs are also
more adaptable and easier to evolve as the plant changes or
as the control requirements for the plant change over time.
This type of reconfiguration of the hybrid controller might be
done offline.

36 IEEE Control Systems Magazine February 2003
0272-1708/03/$17.00©2003IEEE

Wills (linda.wills@ece.gatech.edu), Guler, Clements, Heck, and Vachtsevanos are with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332-0250, U.S.A.

By Murat Guler, Scott Clements,
Linda M. Wills, Bonnie S. Heck,

and George J. Vachtsevanos


JE

N
E

N
E

LS
O

N
AT

C
N

G
R

A
P

H
IC

S
IN

C
.

Further reduction in code development and validation
costs can be achieved by taking advantage of generic pat-
terns [3] in software architectures. With hybrid systems, for
example, designers tend to use a select few ways of organiz-
ing and reconfiguring their systems. It is beneficial to iden-
tify generic ways of integrating and dynamically
reconfiguring these systems and to use these patterns to
create implementation code that can be reused in different
applications. Capturing valid strategies for dynamic recon-
figuration leads to robust, highly reliable computing sys-
tems. Moreover, it is desirable to design the code so that it
can be modified and updated easily whenever new control-
lers are added; that is, the code im-
plementing the reconfiguration
decision logic should be explicitly
evolvable and adaptable.

Transition management (TM) is
an example of a common practice in
hybrid system implementation for
which generic patterns can be iden-
tified. In particular, practicing engi-
neers often introduce a strategy to smooth transitions
during reconfigurations. An abrupt transition (that is, a dis-
crete switch between controllers) can excite high-fre-
quency dynamics in a system, which causes undesired
responses and can stress the actuators. A number of transi-
tion management strategies that smooth the transition are
performed in practice, but they are usually incorporated
into the system on an ad hoc basis after the overall system
has been designed, rather than early in the process. This of-
ten leads to an implementation that does not explicitly pre-
serve the transition logic, making it difficult to change later.

This article discusses generic aspects of transition man-
agement that have been identified in hybrid system recon-
figuration and that have been derived from the literature, as
well as from our experience in building hybrid systems. It fo-
cuses on one particular generic pattern that recurs in hy-
brid system designs to smooth transitions when switching
from one configuration to another. It shows how the pattern
is supported on the open control platform (OCP), a real-time
middleware-based substrate for integrating and reconfiguring
control systems [4]-[6]. The article illustrates how this pattern
can be instantiated in multiple different contexts that require
configuration transitioning.

This transition management pattern encapsulates the re-
configuration decision logic, the structural configuration
specifications, and the blending strategies as separate mod-
ular entities that can be specified and easily changed by the
control system designer. Our goal is to provide reconfigura-
tion flexibility in hybrid control system design and imple-
mentation. Most importantly, we would like to maintain the
connection between the underlying transitioning model
specified when the system was designed (e.g., in state dia-
grams or Petri net models) and the code that implements
the decision logic. By making the decision logic and recon-

figuration strategies explicit in encapsulated software com-
ponents, changes and upgrades to the strategies are made
easier, as is validation and modeling of the hybrid system.

To facilitate rapid prototyping of the software implemen-
tation, we are using hybrid modeling and simulation tech-
niques from the Ptolemy group [7], [8] at the University of
California at Berkeley to specify the transition management
strategies. Our goals are to model and enforce valid
instantiations and compositions of the generic reconfigura-
tion and transition mechanisms early in the development
process rather than patching transition management code
into the system in later development stages, which is costly

and error prone. We are using Ptolemy II as a rapid
prototyping tool with which to express these strategies and
validate them through simulation.

This article first discusses generic aspects of hybrid sys-
tem reconfiguration, which provide the basis and justifica-
tion for the transition management support we have
developed. Our transition management pattern is then pre-
sented, along with background on the OCP on which it is
built. The hybrid modeling and simulation of the transition
management strategies using Ptolemy are also discussed,
showing results that validate the strategies. We describe
how the transition management pattern has been applied to
gain scheduling and state initialization transition strategies.
Finally, conclusions and future directions are given.

Generic Reconfiguration
Transition Strategies
We began the process of identifying generic patterns for
modeling hybrid systems and for implementing hybrid con-
trollers by reviewing a large number of recent publications
(more than 400) on hybrid systems. These papers ranged
from theoretical hybrid modeling techniques to applica-
tions of hybrid control to real world systems [9]-[19]. A brief
compilation of the generic aspects of hybrid systems found
from the literature search is given next.

Hybrid systems contain both continuous- and dis-
crete-state variables. Within a given discrete state, the con-
tinuous variables evolve according to a set of differential (or
difference) equations. Transitions between discrete states
are generally modeled with a finite automaton. Of particular
interest to the controls engineer is how to design these dis-
crete transitions.

Traditional approaches to the modeling of hybrid control
systems concealed the continuous + discrete nature of the

February 2003 IEEE Control Systems Magazine 37

Transition management is an example of
a common practice in hybrid system

implementation for which generic
patterns can be identified.

systems by converting them into either purely discrete or
purely continuous systems. Recently, efforts have been
made to capture the true hybrid nature of a system. A hybrid
system is, essentially, an indexed set of dynamical systems
along with some means of “switching” between them. These
switches are initiated whenever the state satisfies certain
conditions, described by the state’s inclusion in a specified
subspace of the state space. Also, when a transition occurs,
there is some means of determining the initial state of the
new dynamical system.

One paper that is particularly useful for identifying ge-
neric patterns in hybrid systems is [10], in which Branicky
proposes a unified framework that encapsulates both the
important continuous and discrete dynamics of the system
and their interactions. This framework, which is consistent
with many different modeling approaches, identifies four
transition phenomena common to hybrid systems:

• autonomous switching, where the continuous vector
field changes discontinuously when the state hits a
prescribed boundary

• autonomous impulses, where the continuous state
changes impulsively on hitting a prescribed region of
the state space

• controlled switching, where the continuous vector
field switches in response to a control command

• controlled impulses, where the continuous state jumps
in response to a control command.

Thus, a generic framework for hybrid systems should in-
clude the above transitions.

Most of the theoretical papers on hybrid systems say
little about the actual transition dynamics; that is, the be-
havior of the continuous-time system while it is
transitioning between the different discrete states. It is of-
ten assumed that these dynamics take place on a much
faster time scale so that the system spends relatively little
time in the transition.

On the other hand, many papers that employ some sort
of switched control for practical systems are concerned
with the transition. One approach pursued by Oishi and
Tomlin [19] creates a new discrete state for the transition
that incorporates the transition dynamics into it. This ap-
proach can create a large number of extra “transition states”
if the original hybrid system has a large number of discrete
states originally (consider all the combinations of discrete
states and the corresponding transitions between them).
Another approach to handling transition dynamics is to find
a means of smoothing the transition between discrete states
without deviating from the original set of discrete states. A
common method of achieving this goal is to smooth the con-
trol action. For example, in many gain-scheduled control al-
gorithms, controller parameters are switched based on the
state’s inclusion in regions about local operating points
[20]. When the state nears the boundary of two regions, the
parameters are “blended” to smooth the transition from one
region to the next. Another example of control smoothing is

used regularly in sliding mode control, which is a switching
control law where a switching surface is defined in the state
space. To reduce chatter, the discontinuous part of the con-
trol is smoothed in a region around the switching surface.

Toward developing software support for generic hybrid
control system mechanisms, we have identified several
transition strategies for hybrid controllers: discrete
switches, output blending, parameter blending, transient
compensation, and initialization.

• Discrete switch: The simplest of these strategies is a
discrete switch from one controller to another, as
shown in Figure 1. This transition strategy can lead to
discontinuous compensation signals that excite
high-frequency dynamics in the plant.

• Output blending: In the output blending strategy, the
system begins and ends in the configurations shown
in Figure 1(a) and (b), respectively. Between these two
stages, however, the system configuration is as shown
in Figure 2. An example of the use of this strategy is
gain scheduling of static compensators, where sched-
uling of the outputs is equivalent to scheduling of the
controller parameters. A more sophisticated output
blending transition strategy is described in [21],
where the blender itself has internal states and dy-
namics.

• Parameter blending: When two controllers have a very
similar structure, the parameters of the controllers
can be blended during the transition. For this case, an
additional parameter-setting schedule block must be
added to the transition configuration, as shown in Fig-
ure 3. The parameters (as well as the input, poten-
tially) may be scheduled based on time or on the
plant’s state. Gain scheduling [20] of dynamic com-
pensators is a simple, yet common, example of this
strategy.

• Transient management: Another strategy is transient
management [22], where a signal may be added to the
compensation signal to try to cancel out unwanted
transient characteristics. This configuration, shown
in Figure 4, includes a transient compensator block.
The reference signal, compensator signal, plant out-
put, and plant state may be used by this block to de-
termine the appropriate signal that should be added
to the compensator signal.

• State initialization: Finally, compensators might be ini-
tialized in a way that alleviates transients during the
transition. In particular, the state of dynamic compen-
sators must be initialized before the compensators
can be implemented. There are several approaches to
state initialization. The simplest one is to start with an
initial state of zero. This may not give a smooth transi-
tion, but it is easy to implement and does ensure that
the actuator does not start in saturation. The tran-
sient response can be improved if more thought is put
into the state initialization. If the controllers before

38 IEEE Control Systems Magazine February 2003

and after the switch have the same structure, an ap-
proach known as “state preserving” initializes the
state of the second controller to the final state of the
first controller, thus preserving continuity of the con-
troller state. By extending this idea to systems that do
not necessarily have the same structure, it is some-
times possible to match controller outputs, as well as
one or more derivatives of the output signal [23], [24].

Having identified some of the generic aspects of hybrid
system reconfiguration, the next step is to address the issue
of supporting the transition in software. Transitions from
one discrete state to another may be abrupt (such as a com-
ponent failure) or gradual (such as the blending of gains in a
gain-scheduled controller). Moreover, in the implementa-
tion of a hybrid controller, the transition from one discrete
state to another (and potentially, therefore, one control al-
gorithm to a different control algorithm) may require some
change in which inputs must be sent to the controller
and/or what outputs are generated. In the next section, we
describe a generic transition management pattern that ad-
dresses these issues.

Transition Management Pattern
We are developing generic reconfiguration support for the
common transition management strategies that we have
identified in hybrid control systems. This support is in the
form of an architectural pattern, called the TM pattern, that
captures standard reconfiguration plans, specifying how
one mode-related software configuration transitions into
another. These patterns provide a generic support struc-
ture for transition management strategies (e.g., for manag-
ing the collation and blending of signals during gradual
component transitions), which can then be instantiated
with application-specific functions.

To understand how the TM pattern works, consider a
simple example in which two sensor components are being
interchanged and their outputs need to be blended during
the transition from one to the other. For example, an un-
manned aerial vehicle might use GPS to measure altitude at
high altitudes, but it might use sonar at low altitudes where
sonar is more effective, as shown in Figure 5. As the vehicle
descends from a high to low altitude, it is not appropriate to
abruptly stop using data from the GPS before starting to rely
on the sonar altimeter. Rather, it is better to use a mixed
GPS/sonar measurement during the transition. The blend-
ing of the GPS and sonar data is more accurate at the in-be-
tween altitude range. At these altitudes, the onboard
computer should be able to perform sensor fusion by blend-
ing these data together to come up with a logical measure-
ment. The TM pattern can be used to coordinate how the
sonar and GPS components are connected and discon-
nected to/from consumers of the altitude data and to con-
trol the application of blending functions to maintain a
smooth output profile during the transition.

In particular, the pattern encapsulates the following as
separate modular entities that can be specified and easily
changed by the system designer:

1) signal transition/blender functions, which specify how
to collate and/or blend signals during a gradual transi-
tion between controller configurations or what tran-
sient compensation function to apply

2) signal transition coordinator, which includes the re-
configuration decision logic and determines when
transition functions should be applied (e.g., when to
start and end blending of signals)

February 2003 IEEE Control Systems Magazine 39

r
C1

C2

B

P

Figure 2. Blending controller outputs to smooth a transition.

Parameter Setting
Schedule

C P

r

Figure 3. Gain scheduling of dynamic compensators.

r
C1 P

(a)

r
C2 P

(b)

Figure 1. A discrete switch from (a) controller 1 to (b) controller 2.

Transient
Compensator

r
C P

P
lant

S
tate

+

Figure 4. Using a transient compensation signal to smooth
transient response.

3) signal configurations, which specify alternative ways
of structurally connecting components.

Open Control Platform
This generic support for TM is being developed at Georgia
Tech to support hybrid control systems as part of a larger ef-
fort (in collaboration with Boeing, Honeywell, and the Uni-
versity of California at Berkeley) to create an OCP [4]-[6]
based on object-oriented middleware and distributed ob-
ject computing. It coordinates distributed interaction
among diverse control system components and supports
dynamic reconfiguration and customization of the compo-
nents in real time. It specifically provides more comprehen-
sive support than existing tools for integrating distributed
components while hiding details of distributed computing
from the control system developer. It also moves beyond de-
velopment-only support to enabling the rapid run-time ad-
aptation and dynamic reconfiguration of control systems.
The OCP is being applied to the autonomous control of un-
manned aerial vehicles (UAVs) [25]-[28] at Georgia Tech.

The OCP consists of multiple layers
of application programmer interfaces
(APIs) that increase in abstraction and
become more domain specific at the
higher layers, as shown in Figure 6. At
each level, the abstract interfaces are
defined to provide access to the un-
derlying functionality while hiding de-
tails of how that functionality is
implemented. Each layer builds on the
components defined in lower layers.
The layers of the OCP are intended to
form a bridge from the controls do-
main to distributed computing and
reconfigurability technologies so that
controls engineers can exploit these
technologies without being experts in
computer science.

In the bottommost “core” layer, the
OCP leverages from and extends new
advances in real-time distributed ob-

ject computing that allow distributed components to com-
municate asynchronously in real time [29]-[33]. It also
supports highly decoupled interaction among the distrib-
uted components of the system, which tends to localize ar-
chitectural or configuration changes so that they can be
made quickly and with high reliability.

The middle “reconfigurable controls” layer provides ab-
stractions for integrating and reconfiguring control system
components; the abstractions bridge the gap between the
controls domain and the core distribution substrate [28]. The
abstract interface is based on familiar control engineering con-
cepts, such as block diagram components, input and output
ports, and measurement and command signals. It allows
real-time properties to be specified on signals that translate to
quality-of-service (QoS) constraints in the core real-time distri-
bution substrate. It also allows run-time changes to be made to
these signal properties, which are then handled by lower-level
dynamic scheduling and resource management mechanisms
[34], [35]. This layer raises the conceptual level at which the
controls engineer integrates and reconfigures complex, dis-
tributed control systems.

The third “hybrid controls” layer supports reconfigura-
tion management by making reconfiguration strategies and
rationale for reconfiguration decisions explicit and reus-
able. It contains generic patterns of integration and recon-
figuration that are found in hybrid, reconfigurable control
systems. The TM pattern, which is the focus of this article, is
found in the hybrid controls layer. It can be specialized with
logic for choosing reconfigurations as well as signal blend-
ing strategies for smoothly transitioning from one configu-
ration to another. This is critical to hybrid systems in which
continuous dynamics must be maintained between discrete
reconfiguration events and where multiple control and
blending strategies are applicable.

40 IEEE Control Systems Magazine February 2003

GPS Data
GPS and Sonar
Data Blended Sonar Data

Figure 5. GPS/sonar transition.

Hybrid Controls API
Reuse of Generic Patterns for Hybrid Control,

Configuration Transition Management

Reconfigurable Controls API
Components, Signals, QoS, Run-Time Changes

Core OCP
Real-Time Distributed Computing

Substrate with Dynamic Scheduling
and Adaptive Resource Management

Figure 6. Layers of the OCP.

Transition Management
Pattern Implementation
The three parts of the TM pattern (sig-
nal transition/blending functions, tran-
sition coordinator, and configurations)
all exist and run within an OCP compo-
nent, as shown in the center box of Fig-
ure 7. (Boxes labeled C1 through C6
represent components of a control sys-
tem, such as controllers, plants, sen-
sors, and models.)

The configuration is an important
TM constituent that is a composition of
low-level user-defined objects, such as
controllers, plant models, sensors, and
actuators, as shown in Figure 8. As its
name implies, each configuration de-
fines a specific layout of a hybrid control system. For exam-
ple, if we implement the system represented in Figure 1(a)
and (b), one configuration could implement what is repre-
sented in (a) and another could implement the layout in (b).
Configurations have references to the low-level compo-
nents (e.g., C1, C2, and P) so that components that occur in
more than one configuration (such as P) are not duplicated
in the system code. Configurations not only specify
low-level components but also the dataflow relationships
between them. For instance, the fact that C2 sends its out-
put to P has to be specified explicitly in that configuration.

Signal transition or blending functions are applied to two
or more signals and produce an output signal that is some
mathematical function of the inputs. For example, a signal
transition function that is responsible for blending the so-
nar and GPS data might take a weighted average of the sonar
and GPS inputs as in the following pseudocode:

void SignalTransitionFunction()

{Read GPS_Signal and Sonar_Signal;

GPS_weight = function(Signal values);

Sonar_weight = function(Signal values);

Output_Signal = GPS_Weight * GPS_Signal +

Sonar_Weight * Sonar_Signal;

Return Output_Signal;}

The transition coordinator is a user-specified entity that
decides when to start or end blending. It oversees the acti-
vations of different configurations. A coordinator typically
keeps one configuration active at a time, and, depending on
its state and the state of the input received, it may decide to
switch to another configuration. The coordinator
pseudocode for our sonar/GPS example is:

Update () {

Determine_Input_Signal_State();

Switch (Blending_State) {

Case CHANNEL 1:

if (Input_Signal = MEDIUM) then {

Switch_To_Configuration(CONFIG_BLEND);

Set_Blending_State(BLEND); }

Case BLEND:

if (Input_Signal = LOW) then {

Switch_To_Configuration

(CONFIG_CHANNEL_1);

Set_Blending_State(CHANNEL 1);

else if (Input_Signal = HIGH) then

Switch_To_Configuration

(CONFIG_CHANNEL_2);

Set_Blending_State(CHANNEL 2);

Case CHANNEL 2:

if (Input_Signal = MEDIUM) then

Switch_To_Configuration(CONFIG_BLEND);

Set_Blending_State(BLEND);

}}

The transition coordinator can be viewed as a finite state
machine. The signal state is a way of discretizing the input
data. The coordinator is responsible for assigning a signal
state to its own inputs. In our sonar/GPS example, the input
(from the GPS) can be low, high, or medium. The blending
state is the state of the coordinator, an indication of what
the hybrid control system is doing at a given time. In this ex-
ample, the hybrid system can be either transmitting from
Channel 1 (Sonar), Channel 2 (GPS), or blending data from
both channels. In each blender state, a different configura-
tion is active. Channel 1 and 2 configurations are just one-in-
put, one-output conduits. The blender configuration is a
two-input, one-output configuration that is responsible for
blending sonar and GPS data. Depending on its blending
state and the state of its input signals at the time of update,
the transition coordinator switches to another blending
state and activates the necessary configurations.

The TM pattern is implemented as a set of abstract
classes that are reused across applications by user-defined
specializations of methods for coordinating transitions and

February 2003 IEEE Control Systems Magazine 41

C1

C2

C3

C4

C5

C6

Transition
Coordinator

Configuration

Blender Function
Configuration

Blender Function

Output Ports

OCP Component

Input Ports

Figure 7. Structure of a transition manager.

blending data. The relationships among the classes of the
TM are shown in the unified modeling language (UML) [36],
[37] class diagram in Figure 9. In this diagram, the rectangles
signify the classes, some of which may be instantiated as ob-
jects in the C++ program. The edges with triangles represent
inheritance relationships, where the classes located by the
triangle are the parent or abstract classes and the classes on
the other end of the line are the derived or implementation
classes. The edges with diamonds represent ownership re-
lationships, where the classes next to the diamonds own or
contain the classes connected by the edge. For example, a
configuration is composed of a set of interconnected con-
trollers, plant models, sensors, etc. The numbers by the

class diagrams on the edge lines indicate the numbers of
class instances that participate in that relationship. Star (*)
means “zero or more” and (1..*) means “one or more.” For in-
stance, each coordinator object could have reference to one
or more configuration objects, but each configuration ob-
ject is referenced by only one coordinator object. The col-
ors in our diagram also have meanings, although coloring is
not a feature of UML class diagrams. The blue indicates
classes that are already defined by the TM system and al-
ready exist in the TM library. The green indicates classes
that must be created or modified by the user.

As can be seen from Figure 9, the user need only define
the user-defined coordinator to plug in the reconfiguration

decision logic. The user also has to de-
fine the configurations that serve as
compositions of user-defined objects
(such as low-level controllers) and
that also contain user-defined signal
transition functions.

The transition coordinator and the
configurations themselves may contain
state variables. This enables TM appli-
cation code to have internal states and
dynamics. For instance, the coordina-
tor in the sonar/GPS example keeps
track of information about the current
hybrid state of the system, which it in-
corporates into decisions about when
to initiate or end a transition. The state
transition function within the configu-
ration may also draw on internal states,
encapsulated in the configuration ob-
ject. For example, the blending may be
a mathematical function of output pa-
rameters of two controllers, weighted
by a factor that changes over time and
that is maintained as a state variable of
the configuration [38].

Distributed Transition
Management
A transition coordinator may some-
times oversee other coordinators,
even though they may be in separate
OCP processes. Such coordinators
communicate with each other using
their discrete state values. This is a
key feature of the TM system: it may be
distributed across different processes
in support of distributed hybrid con-
trol systems. This also makes it possi-
ble to implement TM in a hierarchy of
coordinators. Such a hierarchy would
enable coordinators to read the signal
and hybrid states of lower-level coor-

42 IEEE Control Systems Magazine February 2003

OCP Component

Input Ports

Configuration

Output Port

Coordinator

C1 Signal
Transition
Function

C2

C2

C1

Figure 8. An example with several configurations.

OCP Component

Controller

Plant

Sensor

...

*

*

*

1

1 1
*

1..*1

*

Coordinator

Update()

User-Defined
Coordinator

1 User-Defined
Configuration

Configuration

Signal_Transition
Function()

*

Figure 9. UML class diagram of transition manager.

dinators and adjust the hybrid states of themselves and
their subordinates. Distributing TM is beneficial to the con-
trols engineer in terms of reducing the cognitive burden of
the design. If the system design is more modular, it is much
easier to deal with complexity. Some systems themselves
can be distributed in their nature. For example, an array of
robot arms in a manufacturing plant would require an imple-
mentation of a distributed hybrid control system. Each ro-
bot arm would have its own branch TM components.
Higher-level coordinators can then be implemented to coor-
dinate the overall system by supervising the branch coordi-
nators in each robot arm.

Hybrid Controls API
to Transition Management
The hybrid controls API provides a high-level interface to
the TM pattern that allows a controls engineer to define the
signal transition/blending functions and the transition coor-
dination logic as a finite state machine (FSM). An example is
shown in Figure 10.

The first portion of Figure 10 specifies which signal
transition functions will be used and gives their signatures
(the type information for their inputs and outputs). The sig-
nal transition functions that are named refer to procedures
defined by the user. The second portion of the figure gives
the transition coordinator as a textual
description of a finite state machine
that specifies the coordination logic.
Using the hybrid controls API, a user
specifies TM strategies that can be
translated directly into OCP code
instantiating the TM pattern.

Hybrid Modeling
and Simulation
of TM Strategies
The TM pattern can be used by directly
encoding transition strategies in the
hybrid controls API (as in the excerpt
shown in Figure 10). However, we also
developed a higher-level, rapid
prototyping approach [38] that uses a
graphical hybrid modeling front end
(Ptolemy II) for specifying transition
strategies. This enables TM strategies
to be specified using familiar graphical
modeling representations, such as
FSMs, that controls engineers typically
use in describing hybrid systems be-
havior. Its primary advantage is that the
specified TM strategies can be vali-
dated early in the design process rather
than waiting for the full system imple-
mentation. Using hybrid modeling and
simulation to model TM can iron out in-

teractions between the behaviors of transition strategies in
the early stages of development, rather than discovering
them and trying to resolve them in the implementation, test-
ing, or later stages, where it is more difficult and costly. Fur-
thermore, we are developing code generation techniques
[38] to translate hybrid models of the transition strategies to
their implementation in the hybrid controls API (i.e., directly
to TM OCP code). This allows reconfiguration strategies to be
directly transferred into the control system software without
a separate, manual reimplementation step. Thus, model con-
tinuity [39], [40] is maintained from hybrid transitioning
models to code that preserves the decision logic and recon-
figuration strategies. This increases the likelihood that the
hybrid system implementation will behave as expected and
will avoid unwanted transients and instabilities.

The modeling front end we are using to specify TM strate-
gies is Ptolemy II [7], [8]. This is a heterogeneous modeling
and simulation environment developed by the University of
California, Berkeley, for modeling systems that embody
multiple models of computation (MoC), organized hierar-
chically. A model of computation describes how a set of
components execute and interact with each other. Example
MoCs are dataflow and discrete-event models. A hybrid sys-
tem can be described using a continuous-time (CT) MoC
that represents the low-level controllers and an FSM MoC

February 2003 IEEE Control Systems Magazine 43

<TransitionManagement OC P_Compone nt="HybridContr olle r">
…
<TM_Con figuration Nam e="Blender Func tion">

<InputPort N ame ="InPort1" Type="double"/>
<InputPort N ame ="InPort2" Type="double"/>
<OutputPort Name="OutPort1" Type= "double "/>
<Si gnal_Transit ion_Fu nction>

"factor = (((1-factor)*InPort1)+(factor*InPort2)-0.27)/0.6;
OutPort1 = ((1-factor)*InPor t1)+(factor*InPort2);" </ Signal_Transition_Function >

</TM_Configuration>

<TM_Coordinator Name= "PlantCoordinator" InitialState = "IN IT">
<InputPort N ame ="InPort1" Type="double"/>
<InputPort N ame ="InPort2" Type="double"/>
<OutputPort Name="OutPort1" Type= "double "/>
…

<TM_State N ame ="C1_R EF4" C onfigur ation= "Channel1Function">
<Transit ion N ewState="BLEND">

<Guard_Condit ion> " OutPort1>0.27" </ Guard_Condition>
<Set_A ction>

"Channel2Function.Controlle r2.CopyState (Channel1Func tion.Controller 1);"
</Set_A ction>

</Transit ion>
</ TM_State >
<TM_State N ame ="BLEN D" Configuration="BlenderFunction">

<Transition N ewState="C2_REF4">
<Guard_Condit ion> " OutPort1>0.33" </ Guard_Condition>

</Transition>

</ TM_State >
…

</TM_Coordi nator>

</TransitionManagement>

Figure 10. Hybrid controls API example.

that represents the high-level discrete coordination logic
governing the activation of the controllers.

An example of a hybrid control system designed using
Ptolemy II is shown in Figure 11. The upper left window in
the figure shows the hybrid FSM model consisting of the
continuous controller and the discrete FSM blocks. The re-
configuration behavior is specified in the FSM diagram in
the upper right. It models a gain scheduling transition strat-
egy, which is described further in the next section. The con-
troller is specified in the CT domain, as shown in the lower
left of Figure 11. The lower right portion of the figure shows a
plot of the simulation results generated by Ptolemy for this
example. The overall output of the system as one controller
is replaced by another is smoothed during the transition be-
tween controllers, as described in a later section.

Each of the states in the FSM diagram (upper right of Fig-
ure 11) corresponds to a controller in the CT domain by a re-
lationship, called a “refinement,” that is explicitly given in
the configuration of each finite state. The transition arcs be-
tween the finite states specify when and how controller
transitions will take place. The guard expression on each
transition specifies the conditions that must be true to en-
able a transition from one state to the next. The set actions
on the arcs specify actions to be taken during the transition,
such as the initialization of a controller. Usually, the output
of the FSM (and the output of the overall hybrid control sys-

tem) is simply the output from one of the active low-level
controllers; however, some transitions require the outputs
of several controllers to be blended together. This kind of
signal blending can be specified in the output actions of cer-
tain finite states, which we call blending states. Such blend-
ing states must be designed to have multiple active
controllers designated as refinements. (Extensions were
made by the Ptolemy group to allow multiple overlapping
refinements of states, which made this possible.) Thus, the
FSM specifies not only the coordination logic that deter-
mines when transitions occur but also the application of sig-
nal transition functions during the transitions.

Example Uses of TM Pattern
The TM provides a generic pattern that can be applied to the
implementation of a wide range of control techniques, includ-
ing sensor fusion (as shown in the GPS/sonar example given
earlier), simple switching controllers (such as sliding mode
control), and the more general class of hybrid controllers. In
this section, the utility of the TM is demonstrated by applying
it to the classical case of a gain-scheduled controller and to a
state-zeroing state initialization transition. It is also applica-
ble to the nonlinear control of a VSTOL aircraft [41] and to a
more sophisticated class of mode transition controllers
given in [21]. In [38], we also demonstrated its application to

44 IEEE Control Systems Magazine February 2003

Figure 11. Modeling a gain scheduling transition strategy in Ptolemy II.

February 2003 IEEE Control Systems Magazine 45

the composition of a state-preserving transition strategy
with an output-signal-blending transition strategy.

Gain-Scheduled Control
Consider a simple gain-scheduled controller, as shown in
Figure 12. A nonlinear system, given by & (,)x f x u= , has been
linearized about the operating points x 1 and x 2. For each of
these points, a corresponding state feedback control law,
u K xi i= , is assumed known. If the state is within a pre-
scribed region, Ri, about an operating point, x 1, the corre-
sponding feedback control law is used. When the state is
near the boundary of two operating regions, the gains of the
two controllers are scheduled to smooth the transition from
one operating region to the next.

In our model, the controller is parametrized by a vari-
able, α, depending on which hybrid state the plant of the
system is in. In this example, the discrete states corre-
spond to linearized regions corresponding to α = 0 and
α = 0 9. , respectively. When the system is between these
two linearized regions, the parameter α is linearly sched-
uled from 0 to 0.9, as shown in Figure 12. The intent of the
scheduling is to smooth the transition and protect the sys-
tem from step inputs resulting from a sudden change in
controllers.

The transition coordination logic, specified in the FSM in
Figure 13, chooses the active mechanism based on the prox-
imity of the current state to the operating regions.The signal
transition function applied in the transition region is also
specified in the FSM of Figure 13 in the output action of
blending state S3. The FSM description provides a graphical
modeling front end for conveniently specifying TM coordi-
nators and signal transition functions. Using Ptolemy to
capture these descriptions allows the designer to simulate
and validate the transition strategy before generating OCP
TM code implementing it [38].

This gain scheduling example pro-
vides a context in which to see how the
TM pattern helps to reduce the com-
plexity of managing transitions. In
complex applications, it may be neces-
sary to switch between many alterna-
tive controllers and use gain sched-
uling to smooth each transition. It
would be unrealistic to set up a sepa-
rate transition configuration specific
to each pair of controllers. Instead, we
can define a single generic transition
configuration that corresponds to a
gain scheduling transition and then
dynamically instantiate this configura-
tion at run time for a given specific pair
of controllers that are involved in the
transition. This collapses multiple
transition states having the same co-
ordination logic into a single state in

the coordinator and a single transition configuration in the
actual implementation. This also helps in reusing system de-
signs in the future; since gain scheduling is a common strat-
egy, the generic configurations created for one application
can be directly transferred to another, and the coordination
logic is encapsulated so that it can be easily modified for a
new application.

Validation
The results of running our gain scheduling example with
the TM OCP code are shown in Figure 14 (black curve).
These closely match the simulation results predicted by
Ptolemy II (see lower right screen in Figure 11). In contrast
to the smooth transitioning behavior shown in the black
curve, the red curve in Figure 14 shows the behavior of the
hybrid system when the controllers are transitioned using
a discrete switch rather than the gain scheduling TM strat-

α

α = 0.9

α = 0.0
Region

1

Transition

1-2

Region

2

System State

Figure 12. Linearized regions and controller parameter (α).

Figure 13. Transition coordination and blending logic for gain scheduling.

egy. When the TM strategy is not used, there is a damped
ringing in the plant output due to the sudden change of
controller parameters. The results using the transition
strategy display no ringing and a smoother output, as well
as improved rise time.

State Initialization
A second example using the TM pattern involves state ini-
tialization. In this scenario, there is a discrete switch be-
tween two different controllers. However, instead of trying
to blend the outputs in a transition state, the state of the sec-
ond controller is initialized in a manner that attempts to
minimize the impact of the sudden switch. State initializa-
tion is a useful transition technique in certain hybrid control
applications. Some implementations of low-level control-
lers may have their integrators saturated during run time. It
is advisable that when the system transitions to a new state
under such a condition, the new low-level controller starts
operating with a brand-new initial state, with all its integra-
tors at a preset initial level (e.g., a state-zeroing initialization
strategy would set them to zero).

Figure 15 shows the transition coordinator FSM diagram
for the state-zeroing state initialization strategy. In this ex-
ample, there is no intermediate or “blend” state. Instead,
there is a set action on the transition arc that initializes the
state of the second controller to zero. The transitions in the
state initialization strategies are triggered by either the cur-
rent time of operation of the overall system or the output
level of the plant that is controlled. In Figure 15, the transi-
tion occurs when the plant state variable X2 exceeds 0.1.

The coordinator is responsible for specifying a signal
transition function to use and when to use it. Each signal
transition function contains the code for initializing the inte-
grators of the low-level controller. The output action in the
transition shown in the FSM in Figure 15 gives an example of
a function for state zeroing.

Related Work
Recently, a variety of commercial tools have appeared on
the market for implementing real-time control systems, in-
cluding ControlShell/NDDS from Real-Time Innovations,
Inc. [42], MATLAB/Simulink from The MathWorks, Inc. [43],
and ARCSware from Advanced Realtime Control Systems,
Inc. [44]. Most provide simulation and code-generation ca-
pabilities that support primarily the development of con-
trol systems. They make available to the developer
repositories of prebuilt and preverified reusable compo-
nents (such as common types of controllers, filters, and ma-
trix computations) for efficient construction of systems.
The OCP complements the component-level reuse pro-
vided by commercial products with reuse of generic inte-
gration patterns and reconfiguration strategies found in
dynamically reconfigurable hybrid systems.

Simulink/Stateflow [43] is a popular commercial tool
suite for prototyping and generating hybrid control sys-
tems software. These tools use block diagrams and FSMs to
model hybrid systems. They share similarities with related
MoCs in Ptolemy II. Both use FSMs to model discrete transi-
tions, where the active state of the FSM enables (or refines)
a specified block (or actor) in the model. However, the abil-
ity of the FSM chart to change parameters of other blocks is
not inherently available using Simulink/Stateflow (as it is
with Ptolemy II). This ability is vital in some TM strategies,
particularly state initialization, where the state of the newly
active controller must be initialized based on the state of the
previously active controller.

Real-Time Workshop, an add-on product to Simulink,
generates code for deployment on processors or embed-
ded systems. However, the code is monolithic and not
meant for modification at the code level. In the context of
our UAV application, it is critical that the generated code
explicitly preserve the TM strategies and decision logic in
a modular, readable form so that they can be modified or
replaced (and the change more easily validated) after the
code is deployed. These complex systems are composed of
many components (newly created and legacy), some of
which have been generated using other simulation and
modeling platforms. It is important to integrate and recon-
figure these in a way that preserves TM and reconfigura-
tion decision logic in the code. TM code by its nature
cannot be treated as a monolithic black box in systems into
which it is integrated.

Software architecture-oriented approaches have been
proposed to manage run-time software evolution [45]-[47].
Oriezy et al. [46], [47] refer to standard reconfiguration
strategies as “change application policies,” which dictate
how to make changes without violating reliability, safety,
and consistency constraints. These policies are defined, but
no automated support is developed to enforce them.

Kramer and Magee [48], [49] performed seminal work
on managing change in distributed software architectures.
This work has been augmented by Taentzer, Goedicke, and

46 IEEE Control Systems Magazine February 2003

P
la

nt
O

ut
pu

t [
v]

1

0.8

0.6

0.4

0.2

0
0 10 20 30 40 50 60 70 80

Time [s]

Figure 14. OCP results of using gain scheduling transition
strategy (black curve); and without TM (red curve).

Meyer [50], [51], who formalize
change management using distrib-
uted graph transformation rules. Our
work differs from the existing work in
that these approaches typically as-
sume either discrete switches, in
which the switching time between
one configuration and another is not
significant to the application, or they
assume the components involved in
the architectural change are in a qui-
escent (or silent) state during the re-
configuration. In hybrid systems
applications, the transition between
configurations is often critical (e.g., in
avoiding sharp discontinuities in sig-
nals which could disrupt stability).
Therefore, we do not make these as-
sumptions but focus on the transition
period explicitly. The existing work also assumes a clean
separation between the interaction semantics of compo-
nents in one configuration versus another; there are no hy-
brid semantics defined for transition periods (because the
components are assumed not to be interacting). If we lift
the quiescence assumption, hybrid interaction semantics
are needed.

Conclusion and Future Work
We have applied the TM pattern to a wide range of hybrid
system reconfiguration examples involving discrete com-
ponent switches, collated-blending reconfigurations, and
transitions requiring component state initialization [41],
[52], [53]. Reconfiguration strategies involving transient
compensation transitions and transitions requiring com-
ponent warm-up periods are currently being developed as
well. This section discusses additional open areas of future
research.

Broadening Modeling Capabilities
FSMs in Stateflow/Simulink and in Ptolemy II allow us to ex-
press certain types of common transition strategies in hy-
brid systems. We would like to broaden the class of
transition and reconfiguration strategies that can be mod-
eled and validated. One of Ptolemy’s strengths is that it com-
poses heterogeneous models. An FSM model is just one of
the types of computation models that can be employed to
direct the behavior of controller components and how sig-
nals can be routed, rerouted, or blended. We would like to
express other types of strategies, e.g., involving real-time
QoS parameters and fault-tolerance constraints. These will
require using additional models of computation to specify
and validate the strategies (e.g., the newly developed timed
multitasking domain) [55].

Increasing Robustness
Efforts are ongoing to make the OCP TM software more ro-
bust to broken transmissions and time-outs at the inputs.
This work will benefit from integration with a new transition
service being developed by Boeing [4] for monitoring the
status of configuration changes and globally coordinating
them. To handle unexpected conditions that may arise dur-
ing a transition, it must also be possible to interrupt and
safely back out of a transition.

Additional Modeling Front Ends
In addition to Ptolemy II, there are other modeling front ends
that might be helpful in specifying TM behavior and dy-
namic reconfigurations. For example, like Ptolemy II, GME’s
[54] actor-based semantics fit very well with the compo-
nent-based OCP semantics. Stateflow/Simulink is also a can-
didate for certain types of strategies, as previously
discussed. Supporting multiple front ends would increase
the applicability and portability of the OCP’s hybrid con-
trols support, allowing controls engineers to work in a mod-
eling and simulation environment that is familiar to them.

Acknowledgments
We are grateful to Edward Lee, Jie Liu, and the members of
the Ptolemy group for their adaptations to Ptolemy II that
made it possible to model blending transitions. We would
also like to acknowledge the contributions of Cameron
Craddock, Eric Johnson, Suresh Kannan, Nidhi Kejriwal,
Freeman Rufus, J.V.R. Prasad, and Daniel Schrage of Georgia
Tech and Brian Mendel at Boeing. We also appreciate the in-
sightful comments from the anonymous reviewers of this
article. This work is supported by the DARPA Software-En-
abled Control (SEC) program under contracts
33615-98-C-1341 and 33615-99-C-1500 and by the NSF Em-
bedded and Hybrid Systems program under contract

February 2003 IEEE Control Systems Magazine 47

Figure 15. FSM diagram for state initialization.

CCR-0209179. We gratefully acknowledge DARPA, NSF, AFRL,
and Boeing Phantom Works for their continued support. We
have benefited greatly from the guidance of John Bay
(DARPA), Helen Gill (NSF), and Bill Koenig (AFRL).

References
[1] G.T. Heineman and W.T. Councill, Component-Based Software Engineering:
Putting the Pieces Together. Reading, MA: Addison-Wesley, 2001.

[2] C. Szyperski, Component Software: Beyond Object-Oriented Programming.
Reading, MA: Addison-Wesley, 1998.

[3] R. Johnson, E. Gamma, R. Helm, and J. Vlissides, Design Patterns, Elements
of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, Oct.
1998.

[4] J. Paunicka, D. Corman, and B. Mendel, “A CORBA-based middleware solu-
tion for UAVs,” in Proc. 4th IEEE Int. Symp. on Object-Oriented Real-Time Distrib-
uted Computing (ISORC 2001), Madgeburg, Germany, 2001.

[5] J. Paunicka, B. Mendel, and David Corman, “The OCP—An open
middleware solution for embedded systems,” in Proc. American Control Conf.,
Arlington, VA, 2001, pp. 3345-3350.

[6] L. Wills, S. Kannan, S. Sander, M. Guler, B. Heck, J. Prasad, D. Schrage, and
G. Vachtsevanos, “An open platform for reconfigurable control,” IEEE Contr.
Syst. Mag., pp. 49-64, June 2001.

[7] J. Liu, X. Liu, and E. Lee, “Modeling distributed hybrid systems in Ptolemy
II,” in Proc. 2001 American Control Conf., Arlington, VA, June 2001, pp.
4984-4985.

[8] X. Liu, J. Liu, J. Eker, and E. Lee, “Heterogeneous modeling and design of
control systems,” Software-Enabled Control: Information Technology for Dy-
namical Systems, T. Samad and G. Balas, Eds., New York: IEEE, 2003.

[9] P. Antsaklis and A. Nerode, “Hybrid control systems: An introductory dis-
cussion to the special issue,” IEEE Trans. Automat. Contr., vol. 43, pp. 457-460,
Apr. 1998.

[10] M. Branicky, V. Borkar, and S. Mitter, “A unified framework for hybrid con-
trol: Model and optimal control theory.” IEEE Trans. Automat. Contr., vol. 32,
pp. 31-45, Jan. 1998.

[11] R. Fierro, F. Lewis, and A. Lowe, “Hybrid control for a class of
underactuated mechanical systems,” IEEE Trans. Syst., Man, Cybern. A., vol.
29, pp. 649-654, Nov. 1999.

[12] E. Frazzoli, M. Dahleh, and E. Feron, “A hybrid control architecture for ag-
gressive maneuvering of autonomous helicopters,” in Proc. 38th Conf. Deci-
sion and Control, Phoenix, AZ, Dec. 1999, pp. 2471-2476.

[13] H. Garcia, A. Ray, and R. Edwards, “A reconfigurable hybrid system and
its application to power plant control,” IEEE Trans. Contr. Syst. Technol., vol. 3,
pp. 157-170, June 1995.

[14] X. Koutsoukos, “Supervisory control of hybrid systems,” Proc. IEEE, vol.
88, pp. 1026-1049, July 2000.

[15] Y.-H. Liu, K. Kitagaki, T. Ogasawara, and S. Arimoto, “Model-based adap-
tive hybrid control for manipulators under multiple geometric constraints,”
IEEE Trans. Contr. Syst. Technol., vol. 7, pp. 97-109, Jan. 1999.

[16] A. Nerode and W. Kohn, “Models for hybrid systems: Automata, topolo-
gies, controllability, observability,”in Hybrid Systems (Lecture Notes in Com-
puter Science, vol. 736), R. Grossman, A. Nerode, A. Ravn, and H. Rischel, Eds.
New York: Springer-Verlag, 1993, pp. 317-356.

[17] A. Arehart and W. Wolovich, “Bumpless switching in hybrid systems,” in
Hybrid Systems IV (Lecture Notes in Computer Science, vol. 1273), P. Antsaklis,
W. Kohn, A. Nerode, and S. Sastry, Eds. New York: Springer, 1997, pp. 1-17.

[18] D. Mignone, A. Bemporad, and M. Morari, “A framework for control, fault
detection, state estimation, and verification of hybrid systems,” in Proc.
American Control Conf., San Diego, CA, June 1999, pp.134-138.

[19] M. Oishi and C. Tomlin, “Switched nonlinear control of a VSTOL air-
craft,”in Proc. 38th Conf. Decision Contr., Phoenix, AZ, Dec. 1999, pp.
2685-2690.

[20] R. Nichols and R. Reichert, “Gain scheduling for H-infinity controllers: A
flight control example,” IEEE Trans. Contr. Syst. Technol., vol. 1, pp. 69-79, June
1993.

[21] F. Rufus and G. Vachtsevanos, “Design of mode-to-mode fuzzy control-
lers,” Int. J. Intell. Syst., vol. 15, no. 7, pp. 657-685, 2000.

[22] G. Simon, T. Kovacshazy, and G. Peceli, “Transient reduction in control
loops in case of joint plant-controller reconfiguration,” in Proc. IEEE Instru-
ment. Measure. Technol. Conf., Budapest, Hungary, May 21-23, 2001, pp.
1172-1176.

[23] G. Simon, T. Kovacshazy, and G. Peceli, “Transients in reconfigurable con-
trol loops,” in Proc. IEEE Instrument. Measure. Technol. Conf., IMTC/2000, Balti-
more, MD, vol. 3, May 1-4, 2000, pp. 1333-1337.

[24] G. Simon, T. Kovacshazy, and G. Peceli, “Transient management in recon-
figurable systems,” in Proc. IWSAS 2000 (Lecture Notes in Computer Science,
vol. 1936), P. Robertson, H. Shrobe, and R. Laddaga, Eds. New York:
Springer-Verlag, 2000, pp. 90-98.

[25] S. Kannan, C. Restrepo, I. Yavrucuk, L. Wills, D. Schrage, and J.V.R. Prasad,
“Control algorithm and flight simulation integration using the open control
platform for unmanned aerial vehicles,” in Proc. 18th Digital Avionics Systems
Conference (DASC), St. Louis, MO, Oct. 1999, pp. 6.A.3-1 - 6.A.3-10.

[26] F. Rufus, S. Clements, S. Sander, B. Heck, L. Wills, and G. Vachtsevanos,
“Software-enabled control technologies for autonomous aerial vehicles,” in
Proc. 18th Digital Avionics Systems Conf., St. Louis, Oct. 1999, pp. 6.A.5:1-8.

[27] D. Schrage and G. Vachtsevanos, “Software-enabled control for intelli-
gent UAV’s,” in Proc. 1999 Int. Conf. Contr. Applicat., HI, Aug. 22-27, 1999, pp.
528-532.

[28] L. Wills, S. Sander, S. Kannan, A. Kahn, J.V.R. Prasad, and D. Schrage, “An
open control platform for reconfigurable, distributed, hierarchical control
systems,” in Proc. 19th Digital Avionics Systems Conf. (DASC-2000), Philadel-
phia, PA, Oct. 2000, pp. 4.D.2-1 - 4.D.2-8.

[29] D. Levine, S. Mungee, and D. Schmidt, “The design and performance of
real-time object request brokers,” Comput. Commun., vol. 21, pp. 294-324, Apr.
1998.

[30] D. Levine, C. Gill, and D. Schmidt, “Dynamic scheduling strategies for avi-
onics mission computing,” in Proc. 17th Digital Avionics Syst. Conf., vol. 1, pp.
C15/1-8, 1998.

[31] D. Schmidt, D. Levine, and T. Harrison, “The design and performance of a
real-time CORBA event service,” in Proc. OOPSLA’97, Atlanta, GA, 1997, pp.
184-200.

[32] D. Schmidt and F. Kuhns, “An overview of the Real-Time CORBA specifica-
tion,” IEEE Computer, vol.33, pp. 56-63, June 2000.

[33] Object Management Group, “CORBA 2.2 common object services specifi-
cation,” [Online]. Available: http://www.omg.org

[34] M. Cardei, I. Cardei, R. Jha, and A. Pavan, “Hierarchical feedback adapta-
tion for real time sensor-based distributed applications,” in Proc. 3rd IEEE Int.
Symp. Object-Oriented Real-Time Distributed Comput., (ISORC), 2000,
pp.181-188.

[35] B. Doerr, T. Venturella, R. Jha, C. Gill, and D. Schmidt, “Adaptive schedul-
ing for real-time, embedded information systems,” in Proc. 18th Digital Avion-
ics Syst. Conf., St. Louis, MO, Oct. 1999, p.2.D.5/9.

[36] H. Eriksson and M. Penker, UML Toolkit. Somerset, NJ: Wiley, 1997.

[37] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language
User Guide. Reading, MA: Addison-Wesley, 1999.

[38] M. Guler, S. Clements, N. Kejriwal, L. Wills, B. Heck, and G. Vachtsevanos,
“Rapid prototyping of transition management code for reconfigurable con-
trol systems,” in Proc. 13th IEEE Int. Workshop on Rapid Systems Prototyping
(RSP), Darmstadt, Germany, July 2002, pp. 76-83.

[39] R. Janka, Specification and Design Methodology for Real-Time Embedded
Systems. Boston, MA: Kluwer Academic, 2001.

48 IEEE Control Systems Magazine February 2003

[40] R. Janka, L. Wills, and L. Baumstark, “Virtual benchmarking and model
continuity in prototyping embedded multiprocessor signal processing sys-
tems,” IEEE Trans. Software Eng., vol. 28, no. 9, pp. 832-846, Sept. 2002.

[41] M. Guler, S. Clements, L. Wills, B. Heck, and G. Vachtsevanos, “Generic
transition management for reconfigurable hybrid control systems,” in Proc.
20th Amer. Contr. Conf. (ACC-2001), Arlington, VA, June 2001 [CD-ROM].

[42] G. Pardo-Castellote and S. Schneider, “The network data delivery ser-
vice: Real-time data connectivity for distributed control applications,” in
Proc. IEEE Int. Conf. Robotics and Automation, vol. 4, pp. 2870-2876, 1994.

[43] The MathWorks: Real-Time Workshop [Online]. Available:
http://www.mathworks.com/products/rtw/

[44] Advanced Realtime Control Systems, Inc. Available: [Online], Sept. 29,
2000. http://www.arcsinc.com

[45] P. Feiler and J. Li, “Consistency in dynamic reconfiguration,” in Proc. 4th
Int. Conf. Configurable Distributed Systems (ICCDS), Annapolis, MD, 1998, pp.
189-196.

[46] P. Oreizy, N. Medvidovic, and R. Taylor, “Architecture-based runtime soft-
ware evolution,” in Proc. Int. Conf. Software Eng. (ICSE), Kyoto, Japan, 1998,
pp. 117-186.

[47] P. Oreizy, M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N.
Medvidovic, A. Quilici, D. Rosenblum, and A. Wolf, “An architecture-based ap-
proach to self-adaptive software,” IEEE Intell. Syst., vol. 14, pp. 54-62,
May/June 1999.

[48] J. Kramer and J. Magee, “The evolving philosophers problem: Dynamic
change management,” IEEE Trans. Software Eng., vol. SE-16:11, pp. 1293-1306,
1990.

[49] J. Kramer and J. Magee, “Analysing dynamic change in software architec-
tures: A case study,” Proc. 4th Int. Conf. Configurable Distributed Systems
(ICCDS), Annapolis, MD, 1998, pp. 91-100.

[50] G. Taentzer, M. Goedicke, and T. Meyer, “Dynamic change management
by distributed graph transformation: Towards configurable distributed sys-
tems, in Proc. TAGT, Paderborn, Germany, 1998, pp. 179-193.

[51] G. Taentzer, M. Goedicke, and T. Meyer, “Dynamic accommodation of
change: Automated architecture configuration of distributed systems,” in
Proc. Automated Software Engineering (ASE99), Cocoa Beach, FL, Oct. 1999,
pp. 287-290.

[52] M. Guler, L. Wills, S. Clements, B. Heck, and G. Vachtsevanos, “Support for
dynamic reconfiguration of hybrid systems for UAV control,” in Proc. OOPSLA
2001 Workshop on Engineering Complex Object-Oriented Systems for Evolution,
Tampa, FL, Oct. 2001 [Online]. Available: http://www.dsg.cs.tcd.ie/ecoose/
oopsla2001/papers.shtml

[53] M. Guler, L. Wills, S. Clements, B. Heck, and G. Vachtsevanos, “A pattern
for gradual transitioning during dynamic component replacement in extreme
performance UAV hybrid control systems,” in Proc. OOPSLA 2001 Workshop
on Patterns and Pattern Languages for Object-Oriented Distributed Real-Time
and Embedded Systems , Tampa, FL, 2001 [Online]. Available:
http://www.cs.wustl.edu/~mk1/realtimepatterns/oopsla2001/submis-
sions/muralguler.pdf

[54] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G.
Nordstrom, J. Sprinkle, and P. Volgyesi, “The generic modeling environment,”
in Proc. Workshop Intelligent Signal Processing, Budapest, Hungary, May 2001
[CD-ROM].

[55] J. Liu and E.A. Lee, “Timed multitasking for real-time embedded soft-
ware,” IEEE Contr. Syst. Mag., vol, 23, pp. 65-75, Feb. 2003.

Murat Guler is a Ph.D. candidate in the School of Electrical
and Computer Engineering at the Georgia Institute of Tech-
nology. He received a B.S. degree in electrical and computer
engineering from the Georgia Institute of Technology in 2000,
with highest honors. His research area is reconfigurable soft-
ware for real-time embedded and autonomous systems.

Scott Clements is a Ph.D. candidate in the School of Electri-
cal and Computer Engineering at the Georgia Institute of
Technology. He received an M.S. degree in electrical engi-
neering from the Georgia Institute of Technology in 1998 and
a B.S. degree in electrical engineering from Mississippi State
University in 1996. He is a member of the IEEE and IEEE Con-
trol Systems Society. His research interests are in fault-toler-
ant control and intelligent systems.

Linda M. Wills is an assistant professor of electrical and
computer engineering at the Georgia Institute of Technol-
ogy, where she holds the Demetrius T. Paris Professorship.
She received her S.B. (1985), S.M. (1986), and Ph.D. (1992)
degrees from the Massachusetts Institute of Technology.
She is general chair of the IEEE International Workshop on
Rapid System Prototyping (RSP2003) and served as pro-
gram chair of RSP2001. She has also served as general chair
and program chair of the Working Conference on Reverse
Engineering. She is a member of IEEE, ACM, and the IEEE
Computer Society. Her research interests are in automated
software reengineering and reuse, reconfigurable embed-
ded software, and software parallelization for portable mul-
timedia systems.

Bonnie S. Heck is professor of electrical and computer engi-
neering at the Georgia Institute of Technology. She received
her bachelor’s degree in electrical engineering from the Uni-
versity of Notre Dame in 1981. She received a master’s degree
in mechanical and aerospace engineering from Princeton
University in 1984 and a Ph.D. in electrical engineering from
Georgia Tech in 1988. She was an engineer at Honeywell Inc.
from 1983 to 1985. She has been a member of the IEEE Control
Systems Society since 1988 and has served in several organi-
zational capacities since that time, including serving on the
Board of Governors. Her research interests include industrial
applications, power electronics, real-time computing and
control, and nonlinear control design.

George J. Vachtsevanos is a professor of electrical and
computer engineering at the Georgia Institute of Technol-
ogy. He received a B.E.E. degree from the City College of New
York, an M.E.E. degree from New York University, and a Ph.D.
degree from the City University of New York. He directs the
Intelligent Control Systems Laboratory at Georgia Tech,
where faculty and students are conducting research in intel-
ligent control, diagnostics and prognostics for condi-
tioned-based maintenance, and vision-based inspection
and control of industrial and bioengineering systems and
manufacturing systems. He has published more than 250 pa-
pers in his area of expertise. He is a Senior Member of IEEE.
He serves as the associate editor of the International Journal
of Intelligent and Robotic Systems and is a consultant to gov-
ernment agencies and industrial organizations.

February 2003 IEEE Control Systems Magazine 49

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

