
ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

An Empirical Study on Language Model Adaptation
JIANFENG GAO
Microsoft Research

HISAMI SUZUKI
Microsoft Research

WEI YUAN1
Shanghai Jiao Tong University

__

This paper presents an empirical study on four techniques of language model adaptation, including a
maximum a posteriori (MAP) method and three discriminative training models, in the application of
Japanese Kana-Kanji conversion. We compare the performance of these methods from various angles by
adapting the baseline model to four adaptation domains. In particular, we attempt to interpret the
results given in terms of the character error rate (CER) by correlating them with the characteristics of
the adaptation domain measured using the information-theoretic notion of cross entropy. We show that
such a metric correlates well with the CER performance of the adaptation methods, and also show that
the discriminative methods are not only superior to a MAP-based method in terms of achieving larger
CER reduction, but are also superior in having fewer side effects, and more robust against the similarity
of background and adaptation domains.

Categories and Subject Descriptors: 1.2.7 [Artificial Intelligence]: Natural Language Processing –
Language Models
General Terms: Algorithm, Languages, Human Factors, Theory
Additional Key Words and Phrases: statistical language modeling, discriminative training, Asian
language text input, domain adaptation, entropy
__

1. INTRODUCTION

Language model (LM) adaptation attempts to adjust the parameters of a LM so
that it performs well on a particular domain of data. This paper presents an em-
pirical study of several LM adaptation methods on the task of Japanese text input.
In particular, we focus on the so-called cross-domain LM adaptation paradigm, i.e.
to adapt a LM trained on one domain (which we call the background domain) to a
different domain (adaptation domain), for which only a small amount of training
data is available.

The LM adaptation methods investigated in this paper can be grouped into two
categories: maximum a posteriori (MAP) and discriminative training. Linear
interpolation is representative of a MAP method [Bellagarda 2001]. The other three
methods, including the boosting [Collins 2000] and perceptron [Collins 2002]
algorithms and the minimum sample risk (MSR) method [Gao et al. 2005], are
discriminative methods, each of which uses a different training algorithm.

We carried out experiments over many training data sizes on four distinct
adaptation corpora, the characteristics of which were measured using the
information-theoretic notion of cross entropy. We found that discriminative
training methods outperformed the linear interpolation method in all cases, with
some additional desirable properties: they were not only better in terms of
character error rate, but were also superior in having fewer side effects, and were

1 This research was conducted while the author was visiting Microsoft Research Asia.

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

more robust across different training sets of different domains and sizes. None of
the discriminative training methods, however, was found to significantly
outperform the others in our experiments.

The rest of the paper is organized as follow. Section 2 introduces the task of IME
and the role of LM. In Section 3, we review related work. After a description of the
LM adaptation methods that are used in our experiments in Section 4, Sections 5
and 6 present experimental results and their discussions. We conclude our paper
in Section 7.

2. LANGUAGE MODEL AND THE TASK OF IME

Our study falls into the context of Asian language (Japanese in this study) text in-
put. The standard method for doing this is that the users first input phonetic
strings, which are then converted into appropriate word strings by software. The
task of automatic conversion has been the subject of language modeling research in
the context of Pinyin-to-Character conversion in Chinese [Gao et al. 2002a] and Kana-
Kanji conversion in Japanese [Gao et al. 2002b]. In this paper, we call the task IME
(Input Method Editor), based on the name of the commonly used Windows-based
application.

The performance of IME is typically measured in terms of the character error rate
(CER), which is the number of characters wrongly converted from the phonetic
string divided by the number of characters in the correct transcript. Current
commercial Japanese IME systems exhibit about 5-15% CER in conversion of real-
world data in a wide variety of domains.

In many ways, IME is a similar task to speech recognition. The most obvious
similarity is that IME can also be viewed as a Bayesian decision problem: let A be
the input phonetic string (which corresponds to the acoustic signal in speech); the
task of IME is to choose the most likely word string W* among those candidates
that could have been converted from A:

)|()(maxarg
)(

),(maxarg)|(maxarg*
)()()(

WAPWP
AP

AWPAWPW
AWAWAW GENGENGEN ∈∈∈

=== (1)

where GEN(A) denotes the candidate set given A.
Unlike speech recognition, however, there is no acoustic ambiguity in IME,

because the phonetic string is provided directly by users. Moreover, we can
assume a unique mapping from W to A in IME, i.e., P(A|W) = 1. So the decision of
Equation (1) depends solely upon P(W), i.e., the language model probability,
making IME an ideal application for evaluating LM techniques. 2 Another
advantage is that it is relatively easy to convert W to A, making it possible to
obtain a large amount of training data for discriminative learning, as described
later.

From the perspective of LM adaptation, IME faces the same problem speech
recognition does: the quality of the model depends heavily on the similarity of the
training and test data. This poses a serious challenge to IME, as it is currently the
most widely used method of inputting Chinese or Japanese characters, used by
millions of users for inputting text of a wide variety of domains. LM adaptation in

2 For this reason, we have made the MSR-IME corpus [Suzuki and Gao 2005b] available for research
purposes, in the hope that it will facilitate further LM research.

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

IME is therefore an imminent requirement for improving user experience, not only
as we build static domain-specific LMs, but also in making online user adaptation
possible in the future.

3. RELATED WORK

One of our goals in this paper is to quantify the characteristics of different domains
of text, and to correlate them with the performance of various techniques for LM
adaptation to compare their effectiveness and robustness. This relates our work to
the study of domain similarity calculation and to different techniques for LM
adaptation.

3.1 Measuring Domain Similarity

Statistical language modeling (SLM) assumes that language is generated from un-
derlying distributions. When we discuss different domains of text, we assume that
the text from each of these domains is generated from a different underlying dis-
tribution. We therefore consider the problem of distributional similarity in this pa-
per.

Cross entropy is a widely used measure in evaluating LM. Given a language L
with its true underlying probability distribution p and another distribution q (e.g.,
a SLM) which attempts to model L, the cross entropy of L with respect to q is

∑∞→
−=

nww
nnn

wwqwwp
n

qLH
...

11
1

)...(log)...(1lim),((2)

where w1…wn is a word string in L. However, in reality, the underlying p is never
known and the corpus size is never infinite. We therefore make the assumption
that L is an ergodic and stationary process [Manning and Schütze 1999], and
approximate the cross entropy by calculating it for a sufficiently large n instead of
calculating it for the limit.

)...(log1),(1 nwwq
n

qLH −≈ (3)

This measures how well a model approximates the language L.
The Kullback-Leibler (KL) divergence, or relative entropy, is another measure

of distributional similarity that has been widely used in natural language
processing and information retrieval [Dagan et al. 1999]. Given the two
distributions p and q above, the KL divergence is defined as

∑=
nww n

n
nnn wwq

wwpwwpwwqwwpD
... 1

1
111

1
)...(
)...(log)...())...(||)...(((4)

The cross entropy and the KL divergence are related notions. Given the
notations of L, p and q above, Manning and Schütze [1999] show that

)||()(),(qpDLHqLH += (5)

In other words, the cross entropy takes into account both the similarity between
two distributions (given by KL divergence) and the entropy of the corpus in
question, both of which contribute to the complexity of a LM task. In this paper we
are interested in measuring the complexity of the LM adaptation task. We

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

therefore define the similarity between two domains using the cross entropy. We
will also use the metric that approximates the entropy of the corpus to capture the
in-domain diversity of a corpus, as described in Section 5.2.3

3.2 LM Adaptation Methods

In this paper, two major approaches to cross-domain adaptation have been inves-
tigated: maximum a posteriori (MAP) estimation and discriminative training meth-
ods.

In MAP estimation methods, adaptation data is used to adjust the parameters of
the background model so as to maximize the likelihood of the adaptation data
[Bellagarda 2001]. Discriminative training methods of LM adaptation, on the other
hand, aim at using the adaptation data to directly minimize the errors on the
adaptation data made by the background model. These techniques have been
applied successfully to the task of language modeling in non-adaptation [Roark et
al. 2004] as well as adaptation scenarios [Bacchiani et al. 2004] for speech
recognition. But most of them focused on the investigation of performance of
certain methods for LM adaptation, without analyzing in detail the underlying
reasons of different performance achieved by different methods. In this paper we
attempt to investigate the effectiveness of different discriminative methods in an
IME adaptation scenario, with a particular emphasis on correlating their
performance with the characteristics of adaptation domain.

4. LM ADAPTATION METHODS

We have implemented four methods in our experiments. The Linear Interpolation
(LI) falls into the framework of MAP while the boosting, the perceptron and the
MSR methods fall into that of discriminative training.

4.1 Linear Interpolation Method

In MAP estimation methods, adaptation data is used to adjust the parameters of
the background model so as to maximize the likelihood of the adaptation data.

The linear interpolation is a special case of MAP according to Bacchiani and
Roark [2003]. At first, we generate trigram models on background data and
adaptation data respectively. The two models are then combined into one as:

)|()1()|()|(hwPhwPhwP iAiBi λλ −+= (6)

where PB is the probability of the background model, PA is the probability of the
adaptation model and the history h corresponds to two preceding words. For
simplicity, we chose a single λ for all histories and tune it on held-out data.

4.2 Discriminative Training Methods

This section describes three discriminative training methods we used in this study.
For a detailed description of each algorithm, readers are referred to Collins [2000]
for the boosting algorithm, Collins [2002] for the perceptron learning algorithm,
and Gao et al. [2005] for the MSR method.

3 There are other well-known metrics of similarity within NLP literature, such as the mutual
information or cosine similarity [Lee 1999], which we do not discuss in this paper.

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

4.2.1 Problem Definition

All the three discriminative training methods follow the general framework of
linear models [Duda et al. 2001; Collins 2002]. We use the following notation,
adapted from Collins [2002], in the rest of the paper.

• Training data is a set of example input/output pairs. In LM for IME, training
samples are represented as {Ai, WiR}, for i = 1…M, where each Ai is an input
phonetic string and WiR is the reference transcript of Ai.

• We assume some way of generating a set of candidate word strings given A,
denoted by GEN(A). In our experiments, GEN(A) consists of top n word strings
converted from A using a baseline IME system that uses only a word trigram
model.

• We assume a set of D+1 features fd(W), for d = 0…D. The features could be
arbitrary functions that map W to real values. Using vector notation, we have
f(W)∈ℜD+1, where f(W) = [f0(W), f1(W), …, fD(W)]T. f0(W) is called the base feature,
and is defined in our case as the log probability that the word trigram model
assigns to W. Other features (fd(W), for d = 1…D) are defined as the counts of word
n-grams (n = 1 and 2 in our experiments) in W.

• Finally, the parameters of the model form a vector of D+1 dimensions, each
for one feature function, λ = [λ0, λ1, …, λD]. The score of a word string W can be
written as

∑
=

==
D

d
dd WfWWScore

0
)()(),(λλfλ . (7)

The decision rule of Equation (1) is rewritten as

),(maxarg),(
(A)

* λλ
GEN

WScoreAW
W∈

= . (8)

Equation (8) views IME as a ranking problem, where the model gives the ranking
score, not probabilities. We therefore do not evaluate the LM obtained using
discriminative training via perplexity.

Assume we can measure the number of conversion errors in W by comparing it
with a reference transcript WR using an error function Er(WR,W), which is an edit
distance function in our case. We call the sum of error counts over the training
samples sample risk (SR). Discriminative training methods strive to minimize the SR
by optimizing the model parameters, as defined in Equation (9), where Wi is
determined by Equation (8),

∑
=

==
Mi

ii
R

i
* AWWErSR

...1
)),(,(minarg)(minarg λλλ

λλ

. (9)

However, SR(.) cannot be optimized easily since Er(.) is a piecewise constant (or
step) function of λ and its gradient is undefined. Therefore, discriminative meth-
ods apply different approaches that optimize it approximately. As we shall de-
scribe below, the boosting and perceptron algorithms approximate SR(.) by loss
functions that are suitable for optimization, while MSR uses a simple heuristic
training procedure to minimize SR(.) directly without resorting to an approxi-
mated loss function. We now describe each of the discriminative methods in turn.

4.2.2 The Boosting Algorithm

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

The boosting algorithm we used is based on Collins [2000]. It uses an exponential
function to approximate SR(.). We define a ranking error in a case where an incor-
rect candidate conversion W gets a higher score than the correct conversion WR.
The margin of the pair (WR, W) with respect to the model λ is estimated as

),(),(),(λλ WScoreWScoreWWM RR −= (10)

The rank loss function (RLoss) is then defined as

∑ ∑
= ∈

=
Mi AW

i
R

i
ii

WWMI
...1)(

)],([)RLoss(
GEN

λ (11)

where I[π] = 1 if π ≤ 0, and 0 otherwise. Note that RLoss takes into account all
candidates in GEN(A). Since optimizing the RLoss in (11) is NP-complete, the
boosting algorithm optimizes its upper bound, i.e., the exponential loss function
(ExpLoss), as

∑ ∑
= ∈

−=
Mi AW

i
R

i
ii

WWM
...1)(

)),(exp()ExpLoss(
GEN

λ (12)

Notice that ExpLoss is convex so there is no problem with local minima when op-
timizing it. It is shown in Freund et al. [1998] and Collins [2000] that there exist
gradient search procedures (i.e., RankBoost and its variants) that converge to the
right solution.

Figure 1 summarizes the boosting algorithm we used. After initialization, Steps
2 and 3 are repeated N times; at each iteration, a feature is chosen and its weight is
updated. We used the following update for the dth feature fd:

ZC
ZC

d

d
d ε

ε
δ

+
+

=
+

_log
2
1 (13)

where Cd+ is a value increasing exponentially with the sum of margins of (WR, W)
pairs over the set where fd is seen in WR but not in W; Cd- is the value related to the
sum of margins over the set where fd is seen in W but not in WR. ε is a smoothing
factor (whose value is optimized on held-out data) and Z is a normalization
constant.

In short, the boosting criterion ExpLoss approximates SR in two steps: using a
ranking error loss function RLoss to approximate SR, and optimizing RLoss
approximately by minimizing its upper bound function ExpLoss.

4.2.3 The Perceptron Algorithm

The perceptron algorithm can be viewed as a form of incremental training
procedure (e.g., using stochastic approximation) that optimizes a minimum square
error (MSE) loss function, which is an approximation of SR [Mitchell 1997].

1 Set λ0 = 1 and λd = 0 for d=1…D
2 Select a feature fd which has largest estimated impact on reducing ExpLoss of

Equation (12)
3 Update λd = λd + δd, where δd is estimated by Equation (13), and return to Step 2

Figure 1: The boosting algorithm

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

The MSE loss function is defined as

∑
=

−=
Mi

i
R

i WScoreWScore
...1

2)),(),((
2
1)MSELoss(λλλ (14)

It is simply half the squared difference between the score of the correct conversion
and the score of the incorrect one, summing over all training samples. It is useful to
note that the MSE solution, under certain conditions, leads to approximations to
maximum likelihood (ML) solution. The quality of the approximation depends
upon the form of the linear discriminant functions (e.g., Equation (7)). While this
property has a certain theoretical appeal, the discriminant function that best
approximates the Bayes discriminant does not necessarily minimize the sample
risk, as discussed in Duda et al. [2001]. In such a sense, similar to ExpLoss,
MSELoss is also an approximation to SR.

Despite this property, the MSE criterion has received considerable attention in
the literature, and there are many solution procedures available. Here, we consider
the delta rule, a training algorithm of an unthresholded perceptron. Below, we
discuss the derivation of the delta rule, following the description in Mitchell [1997].

The delta rule in its component form is

)(ddd G ληλλ ×−= , (15)

where η is the step size, and G is the gradient of MSELoss. G can be estimated by
differentiating the loss function of Equation (14) with respect to λd as

d
dG

λ
λ

∂
∂

=
)MSELoss()(λ

∑
=

−−=
Mi

id
R

idi
R

i WfWfWScoreWScore
...1

))()())(,(),((λλ (16)

However, the objective function of Equation (14) in the context of our task has
many local minima, and thus gradient descent is not guaranteed to find the global
minimum. We therefore use a stochastic approximation to gradient descent. Whereas
gradient descent computes parameter updates after summing over all training
samples as shown in Equation (16), the stochastic approximation method updates
parameters incrementally, following the calculation of the error for each individual
training sample, as shown in Equation (17).

))()())(,(),(()(id
R

idi
R

id WfWfWScoreWScoreG −−= λλλ (17)

The stochastic approximation method can be viewed as optimizing a distinct
loss function MSELossi(λ) defined for each individual training sample i as follows

2)),(),((
2
1)(MSELoss λλλ i

R
ii WScoreWScore −= (18)

The optimization algorithm we used in our experiments is shown in Figure 2. It
takes T passes over the training set. All parameters (except for λ0) are initially set to
be 0. Each training sample (i.e. phonetic string A) is converted using the current
parameter settings. If the highest scoring word sequence under the current model
is not correct, the parameters are updated in a simple additive fashion: to alter the
parameters according to the gradient with respect to MSELossi(λ). Empirically, the

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

sequence of these updates, when iterated over all training samples, provides a rea-
sonable approximation to descending the gradient with respect to the original loss
function of Equation (14). The algorithm is similar to the perceptron algorithm de-
scribed in Collins [2002]. The key difference is that instead of using the delta rule
of (15) (as shown in Line 6 of Figure 2), Collins [2002] updates parameters using
the rule: λd =λd + fd(WiR) - fd(Wi). Our pilot study shows that the delta rule leads to a
slightly better performance. Following Collins [2002], we used the averaged per-
ceptron algorithm in our experiments, a simple refinement to the algorithm in Fig-
ure 2, which has been proved to be more robust. Let λdt,i be the value for the dth
parameter after the ith training sample has been processed in pass t over the train-
ing data. Then the “averaged parameters” are defined as in Equation (19).

)/()()(
1 1

, MT
T

t

M

i

it
davgd ⋅= ∑∑

= =

λλ (19)

In short, there are two approximations embedded in the perceptron algorithm.
One is the use of the MSE criterion that approximates the ML criterion. The other is
the stochastic approximation that is introduced for parameter optimization.
Though in theory these approximations could to some degree prevent the
algorithm from attaining the original objective of minimizing the SR, they turn out
to be an effective compromise empirically, as we shall show in Section 5.

4.2.4 The Minimum Sample Risk Method

The minimum sample risk (MSR) [Gao et al. 2005] training algorithm is motivated
by analogy with the feature selection procedure for the boosting algorithm [Freund
et al. 1998]. It is a greedy procedure for selecting a small subset of the features that
have the largest contribution in reducing SR in a sequential manner.

Conceptually, MSR operates like any multidimensional function optimization
approach: the first direction (i.e., feature) is selected and SR is minimized along
that direction using a line search, i.e., adjusting the parameter of the selected feature
while keeping all other parameters fixed; then, from there along the second direc-
tion to its minimum, and so on, cycling through the whole set of directions as
many times as necessary, until SR stops decreasing.

This simple method can work properly under two assumptions. First, there
exists an implementation of line search that optimizes the function along one
direction efficiently. Second, the number of candidate features is not too large, and
these features are not highly correlated. However, neither of the assumptions
holds in our case. First of all, Er(.) in Equation (9) is a step function of λ, thus
cannot be optimized directly by regular gradient- based procedures – a grid search

1 Initialize all parameters in the model, i.e. λ0 = 1 and λd = 0 for d=1…D
2
3
4
5
6

For t = 1…T, where T is the total number of iterations
For each training sample (Ai, WiR), i = 1…M

Use current model λ to choose some Wi from GEN(Ai) by Equation (8)
 For d = 1 … D
 λd = λd + η(Score (WiR, λ)- Score(Wi, λ))(fd (WiR)- fd (Wi)), where η is the size of

the learning step

Figure 2: The standard perceptron algorithm with delta rule

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

has to be used instead. However, there are problems with simple grid search:
using a large grid could miss the optimal solution whereas using a fine-grained
grid would lead to a very slow algorithm. Secondly, in the case of LM, there are
millions of candidate features, some of which are highly correlated with each other.
Below, we will address these issues respectively.

Grid Line Search. Our implementation of a grid search is a modified version of
that proposed in Och [2003]. The modifications are made to deal with the efficiency
issue due to the fact that there is a very large number of features and training
samples in our task, compared to only 8 features used in Och [2003]. Unlike a
simple grid search where the intervals between any two adjacent grids are equal
and fixed, we determine for each feature a sequence of grids with differently sized
intervals, each corresponding to a different value of sample risk.
 As shown in Equation (9), the sample risk over all training samples is the sum
of the loss function (i.e. Er(.)) of each training sample. Therefore, we first explain
how to minimize Er(.) of a training sample using the line search. Let λ be the
current model parameter vector, and fd be the selected feature. The line search aims
to find the optimal parameter λd* so as to minimize Er(.). For a training sample (A,
WR), the score of each candidate word string W∈GEN(A), as in Equation (7), can be
decomposed into two terms:

)(+)(=)(=),(∑
≠'∨0='

'' WfλWfλWWScore dd

D

ddd
ddλfλ ,

where the first term on the right hand side does not change with λd. Note that if
several candidate word strings have the same feature value fd(W), their relative
rank will remain the same for any λd. Since fd(W) takes integer values in our case
(fd(W) is the count of a particular n-gram in W), we can group the candidates using
fd(W) so that candidates in each group have the same value of fd(W). In each group,
we define the candidate with the highest value of

∑ ≠∨=

D

ddd dd Wf
'0' '')(λ

as the active candidate of the group because no matter what value λd takes, only
this candidate could be selected according to Equation (8).
 In this way, we can reduce GEN(A) to a much smaller list of active candidates.
We can find a set of intervals for λd, within each of which a particular active
candidate will be selected as W*. We can compute the Er(.) value of that candidate
as the Er(.) value for the corresponding interval. As a result, for each training
sample, we obtain a sequence of intervals and their corresponding Er(.) values. The
optimal value λd* can then be found by traversing the sequence and taking the
midpoint of the interval with the lowest Er(.) value. This process can be extended
to the whole training set as follows. By merging the sequence of intervals of each
training sample in the training set, we obtain a global sequence of intervals as well
as their corresponding sample risk. We can then find the optimal value λd* as well
as the minimal sample risk by traversing the global interval sequence.
 In addition to reducing GEN(A) to an active candidate list described above, the
efficiency of the line search can be further improved. We find that the line search
only needs to traverse a small subset of training samples because the distribution
of features among training samples is very sparse. Therefore, we built an inverted

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

index that lists for each feature all training samples that contain it. Our
experiments show that the line search is very efficient even for a large training set
with millions of candidate features.

Feature Subset Selection. Reducing the number of features is essential for two
reasons: to reduce computational complexity and to ensure the generalization
property of the linear model. A large number of features lead to a large number of
parameters of the resulting linear model. For a limited number of training samples,
keeping the number of features sufficiently small should lead to a simpler model
that is less likely to overfit to the training data.

The first step of our feature selection algorithm treats the features independently.
The effectiveness of a feature is measured in terms of the reduction of the sample
risk on top of the base feature f0. Formally, let SR(f0) be the sample risk of using the
base feature only, and SR(f0 + λdfd) be the sample risk of using both f0 and fd and the
parameter λd that has been optimized using the line search. Then the effectiveness
of fd, denoted by E(fd), is given by

))SR()(SR(max
)SR()SR(

)(
00...1,

00

iiDif

dd
d fff

fff
fE

i

λ
λ
+−

+−
=

=

, (20)

where the denominator is a normalization term to ensure that E(f) ∈ [0, 1].
The feature selection procedure can be stated as follows: The value of E(.) is

computed according to Equation (20) for each of the candidate features. Features
are then ranked in the order of descending values of E(.). The top l features are
selected to form the feature vector in the linear model.

Treating features independently has the advantage of computational simplicity,
but may not be effective for highly correlating features. For instance, although two
features may carry rich discriminative information when treated separately, there
may be very little gain if they are combined in a feature vector , if they are highly
correlated with each other. Therefore, in what follows, we describe a technique of
incorporating correlation information in the feature selection criterion.

Let xmd, m = 1…M and d = 1…D, be a Boolean value: xmd = 1 if the sample risk
reduction of using the d-th feature on the m-th training sample, computed by
Equation (20), is larger than zero, and 0 otherwise. The cross correlation coefficient
between two features fi and fj is estimated as

∑∑
∑

==

==
M

m mj
M

m mi

M

m mjmi

xx

xx
jiC

1
2

1
2

1),((21)

It can be shown that C(i, j) ∈ [0, 1]. Now, similar to Theodoridis and
Koutroumbas [2003], the feature selection procedure consists of the following steps,
where fi denotes any selected feature and fj denotes any candidate feature to be
selected.

Step 1. For each of the candidate features (fd, for d = 1…D), compute the value
of E(f) according to Equation (20). Rank them in a descending order and choose the
one with the highest E(.) value. Let us denote this feature as f1.

Step 2. To select the second feature, compute the cross correlation coefficient
between the selected feature f1 and each of the remaining M-1 features, according
to Equation (21).

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

Step 3. Select the second feature f according to

{ }),1()1()(maxarg*
...2

jCfEj j
Dj

αα −−=
=

where α is the weight that determines the relative importance we give to the two
terms. The value of α is optimized on held-out data (0.8 in our experiments). This
means that for the selection of the second feature, we take into account not only its
impact of reducing the sample risk but also the correlation with the previously
selected feature. It is expected that choosing features with less correlation gives
better sample risk minimization.

Step 4. Select k-th features, k = 3…K, according to

⎭
⎬
⎫

⎩
⎨
⎧

−
−

−= ∑
−

=

1

1
),(

1
1)(maxarg*

k

i
j

j
jiC

k
fEj αα (22)

That is, we select the next feature by taking into account its average correlation
with all previously selected features.

Similarly to the case of line search, we need to deal with the efficiency issue in
the feature selection method. As shown in Equation (22), the estimates of E(.) and
C(.) need to be computed. Let D and K (K << D) be the number of all candidate
features and the number of features in the resulting model, respectively. According
to the feature selection method described above, we need to estimate E(.) for each
of the D candidate features only once in Step 1. This is not very costly due to the
efficiency of our line search algorithm. Unlike the case of E(.), O(K×D) estimates of
C(.) are required in Step 4. This is computationally expensive even for a medium-
sized K. Therefore, every time a new feature is selected (in Step 4), we only
estimate the value of C(.) between each of the selected features and each of the top
N remaining features with the highest value of E(.). This reduces the number of
estimates of C(.) to O(K×N). In our experiments we set N = 1000, which is much
smaller than D. This reduces the computational cost significantly without
producing any noticeable quality loss in the resulting model.

The MSR algorithm used in our experiments is summarized in Figure 3. It
consists of feature selection (line 2) and optimization (lines 3 - 5) steps. Readers are
referred to Gao et al. [2005] for a complete description of the MSR implementation
and the empirical justification for its performance.

5. EXPERIMENTAL RESULTS

5.1 Data

 1 Set λ0 = 1 and λd = 0 for d=1…D
2 Rank all features and select the top K features, using the feature subset selection

method.
3 For t = 1…T (T= total number of iterations)
4 For each k = 1…K
5 Update the parameter of fk using line search.

Figure 3: The MSR algorithm

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

The data used in our experiments stem from five distinct sources of text. A 36-
million-word Nikkei newspaper corpus was used as the background domain. We
used four adaptation domains: Yomiuri (newspaper corpus), TuneUp (balanced
corpus containing newspaper and other sources of text), Encarta (encyclopedia)
and Shincho (collection of novels).

For the computation of domain characteristics (Section 5.2), we extracted 1
million words from the training data of each domain respectively (corresponding
to 13K to 78K sentences depending on the domain). For this experiment, we also
used a lexicon consisting of the words in our baseline lexicon (167,107 words) plus
all words in the corpora used for this experiment (that is, 1M words times 5
domains), which included 216,565 entries. The use of such a lexicon was motivated
by the need to eliminate the effect of out-of-vocabulary (OOV) items.

For the experiment of LM adaptation (Section 5.3), we created training data
consisting of 72K sentences (0.9M~1.7M words) and test data of 5K sentences
(65K~120K words) from each adaptation domain. The first 800 and 8,000 sentences
of each adaptation training data were also used to show how different sizes of
adaptation training data affected the performances of various adaptation methods.
Another 5K-sentence subset was used as held-out data for each domain. For
domain adaptation experiments, we used our baseline lexicon consisting of 167,107
entries.

5.2 Computation of Domain Characteristics

The first domain characteristic we computed was the similarity between two do-
mains for the task of LM. As discussed in Section 3, we used the cross entropy as
the metric: we first trained a word trigram model using the system described in
Gao et al. [2002a] on the 1-million-word corpus of domain B, and used it in the
computations of the cross entropy H(LA, qB) following Equation (3). For simplicity,
we denote H(LA, qB) as H(A,B).

Table I displays the cross entropy between two domains of text. Note that the
cross entropy is not symmetric, i.e., H(A,B) is not necessarily the same as H(B,A). In
order to have a representative metric of similarity between two domains, we
computed the average cross entropy between two domains, shown in Table II, and
used this quantity as the metric for domain similarity.

Along the main diagonal in Tables I and II, we also have the cross entropy
computed for H(A,A), i.e., when two domains we compare are the same (in
boldface). This value, which we call self entropy for convenience, is an
approximation of the entropy of the corpus A, and measures the amount of
information per word, i.e., the diversity of the corpus. Note that the self entropy
increases in the order of Nikkei Yomiuri Encarta TuneUp Shincho. This
indeed reflects the in-domain variability of text: Nikkei, Yomiuri and Encarta are
highly edited text, following style guidelines; they also tend to have repetitious
content. In contrast, Shincho is a collection of novels, on which no style or content
restriction is imposed. We expect that the LM task to be more difficult as the
corpus is more diverse; we will further discuss the effect of diversity in Section 6.4

4 Another derivative notion from Table I is the notion of balanced corpus. In Table I, the smallest cross
entropy for each text domain (rows) is the self entropy (in boldface), as expected. Note, however, that
the second smallest cross entropy (underlined) is always obtained from the TuneUp model (except for
Nikkei, for which Yomiuri provides the second smallest cross entropy). This reflects the fact that the

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

5.3 Results of LM Adaptation

We trained our baseline trigram model on our background (Nikkei) corpus using
the system described in Gao et al. [2002a]. The CER (%) of this model on each ad-
aptation domain is in the second column of Table III. For the LI adaptation method
(the third column of Table III), we trained a word trigram model on the adaptation
data, and linearly combined it with the background model, as described in Equa-
tion (6).

For the discriminative methods (the last three columns in Table III), we
produced a candidate word lattice for each input phonetic string in the adaptation
training set using the background trigram model mentioned above. For efficiency
purposes, we kept only the best 20 hypotheses from the lattice as the candidate
conversion set for discriminative training. The lowest CER hypothesis in the
lattice, rather than the reference transcript, was used as the gold standard5.

To compare the performances of different discriminative methods, we fixed the
following parameter settings: we set the number of iterations N to be 2,000 for the
boosting and MSR methods (i.e., at most 2,000 features in the final models); for the
perceptron algorithm, we set T = 40 (in Figure 1). These settings might lead to an
unfair comparison, as the perceptron algorithm will select far more features than
the boosting and MSR algorithm. However, we used these settings as they all
converged under these settings. All other parameters were tuned empirically on
held-out data.

In evaluating both MAP and discriminative methods, we used an N-best
rescoring approach. That is, we created N-best hypotheses using the background
trigram model (N=100 in our experiments) for each sentence in test data, and used
domain-adapted models to rescore the N-best list. The oracle CERs (i.e., the

TuneUp corpus was created by collecting sentences from various sources of text, in order to create a
representative test corpus. Using the notion of cross entropy, such a characteristic of a test corpus can
also be quantified.
5 This is an empirical decision which is also applied by other researchers e.g., Roark et al. [2004].

Table I. Cross entropy (rows: corpora; column: models)

 Nikkei Yomiuri TuneUp Encarta Shincho
Nikkei 3.94 7.46 7.65 9.81 10.10
Yomiuri 7.93 4.09 7.62 9.26 9.97
TuneUp 8.25 8.03 4.41 9.04 9.06
Encarta 8.79 8.66 8.60 4.40 9.30
Shincho 8.70 8.61 8.07 9.10 4.61

Table II. Average cross entropy

 Nikkei Yomiuri TuneUp Encarta Shincho
Nikkei 3.94 7.69 7.95 9.30 9.40
Yomiuri 4.09 7.82 8.96 9.29
TuneUp 4.41 8.82 8.56
Encarta 4.40 9.20
Shincho 4.61

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

minimal possible CER given the hypotheses in the list) ranged from 1.45% to 5.09%
depending on the adaptation domain. Table III summarizes the results of various
adaptation methods in terms of CER (%) and CER reduction (in parentheses) over
the baseline model. In the first column, the numbers in parentheses next to the
domain name indicates the number of training sentences used for adaptation.

6. DISCUSSION

6.1 Domain Similarity and CER

The first row of Table II shows that the average cross entropy with respect to the
background domain (Nikkei) increases in the following order: Yomiuri TuneUp

 Encarta Shincho. This indicates that among the adaptation domains, Yomiuri
is the most similar to Nikkei, closely followed by TuneUp; Shincho and Encarta are
the least similar to Nikkei. This is consistent with our intuition, since Nikkei and
Yomiuri are both newspaper corpora, and TuneUp, which is a manually con-
structed corpus from various representative domains of text, contains newspaper
articles.

This metric of similarity correlates very well with the CER. Figure 4 plots the
domain similarity, indicated by cross entropy, with Nikkei (the line graph, scaled
on the right axis) along with CER when 8,000 training sentences were used in
adaptation experiments (expressed in the bar graph, scaled on the left axis). The
correlation between the domain similarity and the CER is directly observed from
the graph: the correlation coefficient was r=0.94 using the Pearson product
moment correlation coefficient using data from all sizes. In other words, the more
similar the adaptation domain is to the background domain, the better the CER
results are.

Table III. CER (%) and CER reduction (%) over Baseline
(Y=Yomiuri; T=TuneUp; E=Encarta; S=-Shincho)

Domain Baseline LI Boosting Perceptron MSR
Y (800) 3.70 3.70 (0.00) 3.13 (15.41) 3.18 (14.05) 3.17 (14.32)
Y (8K) 3.70 3.69 (0.27) 2.88 (22.16) 2.85 (22.97) 2.88 (22.16)
Y (72K) 3.70 3.69 (0.27) 2.78 (24.86) 2.78 (24.86) 2.73 (26.22)
T (800) 5.81 5.81 (0.00) 5.69 (2.07) 5.69 (2.07) 5.70 (1.89)
T (8K) 5.81 5.70 (1.89) 5.48 (5.85) 5.47 (5.85) 5.47 (5.85)
T (72K) 5.81 5.47 (5.85) 5.33 (8.26) 5.20 (10.50) 5.15 (11.36)
E (800) 10.24 9.60 (6.25) 9.82 (4.10) 9.43 (7.91) 9.44 (7.81)
E (8K) 10.24 8.64 (15.63) 8.54 (16.60) 8.34 (18.55) 8.42 (17.77)
E (72K) 10.24 7.98 (22.07) 7.53 (26.46) 7.44 (27.34) 7.40 (27.73)
S (800) 12.18 11.86 (2.63) 11.91 (2.22) 11.90 (2.30) 11.89 (2.38)
S (8K) 12.18 11.15 (8.46) 11.09 (8.95) 11.20 (8.05) 11.04 (9.36)
S (72K) 12.18 10.76 (11.66) 10.25 (15.85) 10.18 (16.42) 10.16 (16.58)

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

6.2 Domain Similarity and the Robustness of Adaptation Methods

The effectiveness of a LM adaptation method is measured by the relative CER re-
duction over the baseline model. Figure 5 shows the CER reduction of various
methods for each domain when the training data size was 8K.6

In Figure 5, the X-axis is arranged in the order of domain similarity with the
background domain, i.e., Yomiuri TuneUp Encarta Shincho. The first thing
we notice is that the discriminative methods outperform LI in most cases: in fact,
for all rows in Table III, MSR outperforms LI in a statistically significant manner (p
< 0.01 using t-test);7 the differences among the three discriminative methods, on
the other hand, are not statistically significant in most cases.

We also note that the performance of LI is greatly influenced by domain
similarity. More specifically, when the adaptation domain is similar to the
background domain (i.e., for Yomiuri and TuneUp corpora), the contribution of
the LI model is extremely limited. This can be explained as follows: if the
adaptation data is too similar to the background, the difference between the two
underlying distributions is so slight that adding adaptation data leads to no or
very small improvements.

Such a limitation is not observed with the discriminative methods. For example,
all discriminative methods are quite effective on Yomiuri, achieving more than
20% CER reduction. We therefore conclude that discriminative methods, unlike LI,
are robust against the similarity between background and adaptations domains.

It is worth noting that our results differ from Bacchiani et al. [2004] in that in
our system, the perceptron algorithm alone achieved better results than MAP
estimation. However, the difference may only be apparent, given different

6 Essentially the same trend is observed with other training data sizes.
7 The only exception to this was Shincho (800).

0

2

4

6

8

10

12

14

Yomiuri TuneUp Encarta Shincho

Domain

C
E

R
 (%

)

7

7.5

8

8.5

9

9.5

10

cr
os

s
en

tro
py

Baseline
LI
Boosting
Perceptron
MSR
cross entropy

Figure 4: CER and domain similarity

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

experimental settings for the two studies. We used the N-best reranking approach
with the same N-best list for both MAP estimation and discriminative training,
while in Bacchiani et al. [2004], two different lattices were used: the perceptron
model was applied to rerank the lattice created by the background model, while
the MAP adaptation model was used to produce the lattice itself. The fact that the
combination of these models (i.e., first use the MAP estimation to create
hypotheses and then use the perceptron algorithm to rerank them) produced the
best results [Bacchiani et al. 2004] indicates that given a candidate lattice, the
perceptron algorithm is effective in candidate reranking, thus making our results
compatible with theirs.

6.3 Adaptation Data Size and CER Reduction

Among the discriminative methods, an interesting characteristic regarding the
CER reduction and the data size is observed. Figure 6 displays the self entropy of
four adaptation corpora along the X-axis, and the improvement in CER reduction
when 72K-sentence adaptation data is used over when 800 sentences are used
along the Y-axis. In other words, for each adaptation method, each point in the fig-
ure corresponds to the CER reduction ratio on a domain (corresponding to Yomi-
uri, Encarta, TuneUp, Shincho from left to right) when 90 times more adaptation
data was available.

From this figure, we can see that there is a positive correlation between the
diversity of the adaptation corpus and the benefit of having more training data
available (r=0.9~0.94 depending on the training method).8 This has an intuitive
explanation: the less diverse the adaptation data is, the less distinct training
examples it will include for discriminative training. This result is useful in guiding
the process of adaptation data collection.

8 The correlation is weaker in the boosting method than the other two discriminative methods for the
reasons that are not clear to us at this moment.

0

5

10

15

20

25

Yomiuri TuneUp Encarta Shincho

Domain

C
E

R
 re

du
ct

io
n

(%
)

LI
Boosting
Perceptron
MSR

Figure 5: CER reduction by different adaptation methods

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

6.4 Domain Characteristics and Error Ratio

The results presented so far measure the performance of various adaptation
techniques in terms of CER. However, CER is not the only metric that provides
meaningful comparison among systems. Suzuki and Gao [2005a] discusses the
metric of error ratio (ER), which measures the side effects of a new model, i.e., the
number of newly introduced errors relative to the number of errors that were
corrected by the new model.9 Such a metric should be useful in an actual software
deployment scenario: if there are two new models with the same CER performance,
the model with smaller error ratio should be desirable, as the software users are
more intolerant to newly introduced errors than seeing errors that have always
existed. In this section, we compare the adaptation methods using ER.

According to Suzuki and Gao [2005a], error ratio is defined as

||
||

B

A

E
EER = ,

where |EA| is the number of errors found only in the new (adaptation) model, and
|EB| the number of errors corrected by the new model. Intuitively, this quantity
captures the cost of improvement in the adaptation model, corresponding to the
number of newly introduced errors per each improvement. The smaller the ratio is,
the better the model is at the same CER: ER=0 if the adapted model introduces no
new errors, ER<1 if the adapted model makes CER improvements, ER=1 if the CER
improvement is zero (i.e., the adapted model makes as many new mistakes as it
corrects old mistakes), and ER>1 when the adapted model has worse CER
performance than the baseline model.

9 Gillick and Cox [1989] use these numbers to perform McNemar's test to obtain the statistical
significance of the difference in performance of two speech recognition algorithms.

0

1

2

3

4

5

6

7

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7

diversity

C
E

R
 re

du
ct

io
n

ra
tio

 (%
)

Boosting
Perceptron
MSR

Figure 6: Improvement in CER reduction for discriminative methods by

increasing the adaptation data size from 800 to 72K sentences

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

Figure 7 compares the performance of various MSR models at different
iterations with linear interpolation models at various lambda values in four
adaptation domains using the metric of error ratio. In each graph, the x-axis plots
the relative error rate reduction (RER, i.e., the CER difference between the
background and adapted models in %), and the y-axis the error ratio (max=1;
min=0). We can see that MSR models are better than linear interpolation models
in all domains, as they achieve larger CER reduction (larger values on the x-axis) at
smaller ER (smaller values on the y-axis). When the models achieve similar CER
reduction, as they happen with Encarta and Shincho domains, the MSR models
have smaller ER values. We can therefore conclude that a discriminative method
(in this case MSR) is superior to linear interpolation not only in terms of CER
reduction, but also of having fewer side effects. This desirable result is attributed
to the nature of discriminative training, which works specifically to adjust feature
weights so as to minimize errors.

Figure 8 compares the three discriminative models with respect to RER/ER by
plotting the best models for 8,000 training samples (i.e., models used to produce
the results in Table III for 8,000 training samples) for each algorithm. Though they
perform similarly in most cases, we can see some small differences: even though
the boosting and perceptron algorithms have the same CER for Yomiuri and
TuneUp from Table III, the perceptron is better in terms of ER; this may be due to
the use of exponential loss function in the boosting algorithm which is less robust
against noisy data (Hastie et al., 2001). We also observe that Yomiuri and Encarta
do better in terms of side effects than TuneUp and Shincho for all algorithms,
which can be explained by corpus diversity, as the former two sets are less
stylistically diverse and thus more consistent within the domain.

7. CONCLUSION AND FUTURE WORK

�

���

���

���

���

���

���

��	

��

���

�

� ��� ��� ��� ��
 � ��� ��� ��� ��
 �

�

���

���

���

���

���

���

��	

��

���

�

� ���� ��� ���� ��� ���� ��� ����

�

���

���

���

���

���

���

��	

��

���

�

� ��� ��� ��� ��
 � ���

�

���

���

���

���

���

���

��	

��

���

�

� ��� ��� ��� ��� ��� ��� ��	 ��
 ���

������ ������

������� ������

Figure 7: Relative error reduction/ER plot for all four domains
x-axes: RER (%); y-axes: ER. ￮ : linear interpolation models; ×:MSR models

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

In this paper, we have examined the performance of various LM adaptation meth-
ods in terms of domain similarity and diversity. We have found that (1) the notion
of cross-domain similarity, measured by the cross entropy, correlates with the CER
of all models (Section 6.1), and (2) the notion of in-domain diversity, measured by
the self entropy, correlates with the utility of more adaptation training data for dis-
criminative training methods (Section 6.3). In comparing discriminative methods
with a MAP-based method, we have also found that (1) the former uniformly
achieve better performance than the latter, not only in terms of CER reduction but
also in having fewer side effects (Section 6.4), and (2) are more robust against the
similarity of background and adaptation data (Section 6.2).

One important direction of future research in language modeling is an online
learning scenario, i.e., to incrementally build models using incoming data for
adaptation, taking all previously available data as background corpus. Such a
scenario is easily conceivable in the context of adapting to a user or to a newly
introduced topic. We hope that the results obtained in this paper serve as a starting
point for this direction of research.

REFERENCES

Bacchiani, M. and Roark, B. 2003. Unsupervised language model adaptation. In ICASSP
2003. 224-227

Bacchiani, M., Roark, B., and Saraçlar, M. 2004. Language model adaptation with MAP es-
timation and the perceptron algorithm. In HLT-NAACL 2004. 21-24.

Bellagarda, J. 2001. An overview of statistical language model adaptation. In ITRW on Adap-
tation Methods for Speech Recognition 2001. 165-174.

Collins, M. 2000. Discriminative reranking for natural language parsing. In ICML 2000. 175-
182.

Collins, M. 2002. Discriminative training methods for Hidden Markov Models: theory and
experiments with perceptron algorithms. In EMNLP 2002. 1-8.

Dagan, I., Lee, L., and Pereira, F. 1999. Similarity-based models of co-occurrence probabili-
ties. Machine Learning, 34(1-3). 43-69.

Figure 8: RER/ER plot for MSR, boosting and perceptron models

(X-axis is normalized to represent relative error rate reduction)

ACM Transactions on Asian Language Information Processing, Vol. ?, No. ?, December 2005, Pages ??

Duda, Richard O, Hart, Peter E. and Stork, David G. 2001. Pattern classification. John Wiley &
Sons, Inc.

Freund, Y, Iyer, R., Schapire, R. E., and Singer, Y. 1998. An efficient boosting algorithm for
combining preferences. In ICML’98. 170-178.

Gao, J., Goodman, J., Li, M., and Lee. K.-F. 2002a. Toward a unified approach to statistical
language modeling for Chinese. ACM Transactions on Asian Language Information Process-
ing, 1-1: 3-33.

Gao, J., Suzuki, H., and Wen, Y. 2002b. Using headword dependency and predictive cluster-
ing for language modeling. In EMNLP 2002. 248-256.

Gao. J., Yu, H., Yuan, W., and Xu, P. 2005. Minimum sample risk methods for language
modeling. In HLT/EMNLP 2005. 209-216.

Gillick, L. and Cox, J. 1989. Some statistical issues in the comparison of speech recognition
algorithms. In IEEE Conference on Acoustics, Speech and Signal Processing. 532-535.

Hastie, T., Tibshirani, R., and Friedman, J. 2001. The Elements of Statistical Learning. Springer-
Verlag, New York.

Lee, L. 1999. Measures of distributional similarity. In ACL 1999. 25-32.
Manning, C.D., and Schütze, H. 1999. Foundations of Statistical Natural Language Processing.

The MIT Press.
Mitchell, T. M. 1997. Machine Learning. The McGraw-Hill Companies, Inc.
Och, F.J. 2003. Minimum error rate training in statistical machine translation. In ACL 2003.

160-167.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. Numerical Recipes

In C: The Art of Scientific Computing. New York: Cambridge Univ. Press.
Roark, B., Saraclar, M., and Collins, M. 2004. Corrective language modeling for large vo-

cabulary ASR with the perceptron algorithm. In ICASSP 2004. 749-752.
Suzuki, H. and Gao, J. 2005a. A comparative study on language model adaptation tech-

niques using new evaluation metrics. In HLT/EMNLP 2005. 265-272.
Suzuki, H. and Gao, J. 2005b. Microsoft Research IME corpus. Microsoft Research Technical

Report, TR-2005-168.
Theodoridis, S. and Koutroumbas, K. 2003. Pattern Recognition. Elsevier.

Authors' addresses: Jianfeng Gao, Microsoft Research, One Microsoft Way, Redmond. WA. 98052,
U.S.A. Email: jfgao@microsoft.com. Hisami Suzuki, Microsoft Research, One Microsoft Way, Redmond.
WA. 98052, U.S.A. Email: hisamis@microsoft.com. Wei Yuan, Shanghai Jiao Tong University, 1954
Huashan Road, Shanghai 200230, China. Email: sunnyuanovo@sjtu.edu.cn
Permission to make digital/hard copy of part of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage,
the copyright notice, the title of the publication, and its date of appear, and notice is given that copying
is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee.
© 2006 ACM 1073-0516/01/0300-0034 $5.00

