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This paper presents an empirical study on four techniques of language model adaptation, including a 
maximum a posteriori (MAP) method and three discriminative training models, in the application of 
Japanese Kana-Kanji conversion. We compare the performance of these methods from various angles by 
adapting the baseline model to four adaptation domains. In particular, we attempt to interpret the 
results given in terms of the character error rate (CER) by correlating them with the characteristics of 
the adaptation domain measured using the information-theoretic notion of cross entropy. We show that 
such a metric correlates well with the CER performance of the adaptation methods, and also show that 
the discriminative methods are not only superior to a MAP-based method in terms of achieving larger 
CER reduction, but are also superior in having fewer side effects, and more robust against the similarity 
of background and adaptation domains. 
 
Categories and Subject Descriptors: 1.2.7 [Artificial Intelligence]: Natural Language Processing – 
Language Models 
General Terms: Algorithm, Languages, Human Factors, Theory 
Additional Key Words and Phrases: statistical language modeling, discriminative training, Asian 
language text input, domain adaptation, entropy 
________________________________________________________________________ 
 
1. INTRODUCTION 

Language model (LM) adaptation attempts to adjust the parameters of a LM so 
that it performs well on a particular domain of data. This paper presents an em-
pirical study of several LM adaptation methods on the task of Japanese text input. 
In particular, we focus on the so-called cross-domain LM adaptation paradigm, i.e. 
to adapt a LM trained on one domain (which we call the background domain) to a 
different domain (adaptation domain), for which only a small amount of training 
data is available. 

The LM adaptation methods investigated in this paper can be grouped into two 
categories: maximum a posteriori (MAP) and discriminative training. Linear 
interpolation is representative of a MAP method [Bellagarda 2001]. The other three 
methods, including the boosting [Collins 2000] and perceptron [Collins 2002] 
algorithms and the minimum sample risk (MSR) method [Gao et al. 2005], are 
discriminative methods, each of which uses a different training algorithm. 

We carried out experiments over many training data sizes on four distinct 
adaptation corpora, the characteristics of which were measured using the 
information-theoretic notion of cross entropy. We found that discriminative 
training methods outperformed the linear interpolation method in all cases, with 
some additional desirable properties: they were not only better in terms of 
character error rate, but were also superior in having fewer side effects, and were 
                                                           
1 This research was conducted while the author was visiting Microsoft Research Asia.  
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more robust across different training sets of different domains and sizes. None of 
the discriminative training methods, however, was found to significantly 
outperform the others in our experiments. 

The rest of the paper is organized as follow. Section 2 introduces the task of IME 
and the role of LM. In Section 3, we review related work. After a description of the 
LM adaptation methods that are used in our experiments in Section 4, Sections 5 
and 6 present experimental results and their discussions. We conclude our paper 
in Section 7. 

2. LANGUAGE MODEL AND THE TASK OF IME 

Our study falls into the context of Asian language (Japanese in this study) text in-
put. The standard method for doing this is that the users first input phonetic 
strings, which are then converted into appropriate word strings by software. The 
task of automatic conversion has been the subject of language modeling research in 
the context of Pinyin-to-Character conversion in Chinese [Gao et al. 2002a] and Kana-
Kanji conversion in Japanese [Gao et al. 2002b]. In this paper, we call the task IME 
(Input Method Editor), based on the name of the commonly used Windows-based 
application. 

The performance of IME is typically measured in terms of the character error rate 
(CER), which is the number of characters wrongly converted from the phonetic 
string divided by the number of characters in the correct transcript. Current 
commercial Japanese IME systems exhibit about 5-15% CER in conversion of real-
world data in a wide variety of domains. 

In many ways, IME is a similar task to speech recognition. The most obvious 
similarity is that IME can also be viewed as a Bayesian decision problem: let A be 
the input phonetic string (which corresponds to the acoustic signal in speech); the 
task of IME is to choose the most likely word string W* among those candidates 
that could have been converted from A: 
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where GEN(A) denotes the candidate set given A. 
Unlike speech recognition, however, there is no acoustic ambiguity in IME, 

because the phonetic string is provided directly by users. Moreover, we can 
assume a unique mapping from W to A in IME, i.e., P(A|W) = 1. So the decision of 
Equation (1) depends solely upon P(W), i.e., the language model probability, 
making IME an ideal application for evaluating LM techniques. 2  Another 
advantage is that it is relatively easy to convert W to A, making it possible to 
obtain a large amount of training data for discriminative learning, as described 
later. 

From the perspective of LM adaptation, IME faces the same problem speech 
recognition does: the quality of the model depends heavily on the similarity of the 
training and test data. This poses a serious challenge to IME, as it is currently the 
most widely used method of inputting Chinese or Japanese characters, used by 
millions of users for inputting text of a wide variety of domains. LM adaptation in 
                                                           
2 For this reason, we have made the MSR-IME corpus [Suzuki and Gao 2005b] available for research 
purposes, in the hope that it will facilitate further LM research.   
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IME is therefore an imminent requirement for improving user experience, not only 
as we build static domain-specific LMs, but also in making online user adaptation 
possible in the future. 

3. RELATED WORK 

One of our goals in this paper is to quantify the characteristics of different domains 
of text, and to correlate them with the performance of various techniques for LM 
adaptation to compare their effectiveness and robustness. This relates our work to 
the study of domain similarity calculation and to different techniques for LM 
adaptation. 

3.1 Measuring Domain Similarity 

Statistical language modeling (SLM) assumes that language is generated from un-
derlying distributions. When we discuss different domains of text, we assume that 
the text from each of these domains is generated from a different underlying dis-
tribution. We therefore consider the problem of distributional similarity in this pa-
per. 

Cross entropy is a widely used measure in evaluating LM. Given a language L 
with its true underlying probability distribution p and another distribution q (e.g., 
a SLM) which attempts to model L, the cross entropy of L with respect to q is 
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where w1…wn is a word string in L. However, in reality, the underlying p is never 
known and the corpus size is never infinite. We therefore make the assumption 
that L is an ergodic and stationary process [Manning and Schütze 1999], and 
approximate the cross entropy by calculating it for a sufficiently large n instead of 
calculating it for the limit. 
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This measures how well a model approximates the language L.  
The Kullback-Leibler (KL) divergence, or relative entropy, is another measure 

of distributional similarity that has been widely used in natural language 
processing and information retrieval [Dagan et al. 1999]. Given the two 
distributions p and q above, the KL divergence is defined as 
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The cross entropy and the KL divergence are related notions. Given the 
notations of L, p and q above, Manning and Schütze [1999] show that   

)||()(),( qpDLHqLH +=  (5) 

In other words, the cross entropy takes into account both the similarity between 
two distributions (given by KL divergence) and the entropy of the corpus in 
question, both of which contribute to the complexity of a LM task. In this paper we 
are interested in measuring the complexity of the LM adaptation task. We 
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therefore define the similarity between two domains using the cross entropy. We 
will also use the metric that approximates the entropy of the corpus to capture the 
in-domain diversity of a corpus, as described in Section 5.2.3 

3.2 LM Adaptation Methods 

In this paper, two major approaches to cross-domain adaptation have been inves-
tigated: maximum a posteriori (MAP) estimation and discriminative training meth-
ods. 

In MAP estimation methods, adaptation data is used to adjust the parameters of 
the background model so as to maximize the likelihood of the adaptation data 
[Bellagarda 2001]. Discriminative training methods of LM adaptation, on the other 
hand, aim at using the adaptation data to directly minimize the errors on the 
adaptation data made by the background model. These techniques have been 
applied successfully to the task of language modeling in non-adaptation [Roark et 
al. 2004] as well as adaptation scenarios [Bacchiani et al. 2004] for speech 
recognition. But most of them focused on the investigation of performance of 
certain methods for LM adaptation, without analyzing in detail the underlying 
reasons of different performance achieved by different methods. In this paper we 
attempt to investigate the effectiveness of different discriminative methods in an 
IME adaptation scenario, with a particular emphasis on correlating their 
performance with the characteristics of adaptation domain. 

4. LM ADAPTATION METHODS 

We have implemented four methods in our experiments. The Linear Interpolation 
(LI) falls into the framework of MAP while the boosting, the perceptron and the 
MSR methods fall into that of discriminative training. 

4.1 Linear Interpolation Method 

In MAP estimation methods, adaptation data is used to adjust the parameters of 
the background model so as to maximize the likelihood of the adaptation data. 

The linear interpolation is a special case of MAP according to Bacchiani and 
Roark [2003]. At first, we generate trigram models on background data and 
adaptation data respectively. The two models are then combined into one as: 

)|()1()|()|( hwPhwPhwP iAiBi λλ −+=  (6) 

where PB is the probability of the background model, PA is the probability of the 
adaptation model and the history h corresponds to two preceding words. For 
simplicity, we chose a single λ for all histories and tune it on held-out data.  

4.2 Discriminative Training Methods 

This section describes three discriminative training methods we used in this study. 
For a detailed description of each algorithm, readers are referred to Collins [2000] 
for the boosting algorithm, Collins [2002] for the perceptron learning algorithm, 
and Gao et al. [2005] for the MSR method. 
                                                           
3  There are other well-known metrics of similarity within NLP literature, such as the mutual 
information or cosine similarity [Lee 1999], which we do not discuss in this paper.  
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4.2.1 Problem Definition 

All the three discriminative training methods follow the general framework of 
linear models [Duda et al. 2001; Collins 2002]. We use the following notation, 
adapted from Collins [2002], in the rest of the paper. 

• Training data is a set of example input/output pairs. In LM for IME, training 
samples are represented as {Ai, WiR}, for i = 1…M, where each Ai is an input 
phonetic string and WiR is the reference transcript of Ai. 

• We assume some way of generating a set of candidate word strings given A, 
denoted by GEN(A).  In our experiments, GEN(A) consists of top n word strings 
converted from A using a baseline IME system that uses only a word trigram 
model. 

• We assume a set of D+1 features fd(W), for d = 0…D. The features could be 
arbitrary functions that map W to real values. Using vector notation, we have 
f(W)∈ℜD+1, where f(W) = [f0(W), f1(W), …, fD(W)]T. f0(W) is called the base feature, 
and is defined in our case as the log probability that the word trigram model 
assigns to W. Other features (fd(W), for d = 1…D) are defined as the counts of word 
n-grams (n = 1 and 2 in our experiments) in W. 

• Finally, the parameters of the model form a vector of D+1 dimensions, each 
for one feature function, λ = [λ0, λ1, …, λD]. The score of a word string W can be 
written as  
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The decision rule of Equation (1) is rewritten as 
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Equation (8) views IME as a ranking problem, where the model gives the ranking 
score, not probabilities. We therefore do not evaluate the LM obtained using 
discriminative training via perplexity. 

Assume we can measure the number of conversion errors in W by comparing it 
with a reference transcript WR using an error function Er(WR,W), which is an edit 
distance function in our case. We call the sum of error counts over the training 
samples sample risk (SR). Discriminative training methods strive to minimize the SR 
by optimizing the model parameters, as defined in Equation (9), where Wi is 
determined by Equation (8), 
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However, SR(.) cannot be optimized easily since Er(.) is a piecewise constant (or 
step) function of λ and its gradient is undefined. Therefore, discriminative meth-
ods apply different approaches that optimize it approximately. As we shall de-
scribe below, the boosting and perceptron algorithms approximate SR(.) by loss 
functions that are suitable for optimization, while MSR uses a simple heuristic 
training procedure to minimize SR(.) directly without resorting to an approxi-
mated loss function. We now describe each of the discriminative methods in turn. 

4.2.2 The Boosting Algorithm 
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The boosting algorithm we used is based on Collins [2000]. It uses an exponential 
function to approximate SR(.). We define a ranking error in a case where an incor-
rect candidate conversion W gets a higher score than the correct conversion WR. 
The margin of the pair (WR, W) with respect to the model λ is estimated as 

),(),(),( λλ WScoreWScoreWWM RR −=   (10) 

The rank loss function (RLoss) is then defined as 
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where I[π] = 1 if π ≤ 0, and 0 otherwise. Note that RLoss takes into account all 
candidates in GEN(A). Since optimizing the RLoss in (11) is NP-complete, the 
boosting algorithm optimizes its upper bound, i.e., the exponential loss function 
(ExpLoss), as  
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Notice that ExpLoss is convex so there is no problem with local minima when op-
timizing it. It is shown in Freund et al. [1998] and Collins [2000] that there exist 
gradient search procedures (i.e., RankBoost and its variants) that converge to the 
right solution.  

Figure 1 summarizes the boosting algorithm we used. After initialization, Steps 
2 and 3 are repeated N times; at each iteration, a feature is chosen and its weight is 
updated. We used the following update for the dth feature fd:  
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where Cd+ is a value increasing exponentially with the sum of margins of (WR, W) 
pairs over the set where fd is seen in WR but not in W; Cd-  is the value related to the 
sum of margins over the set where fd is seen in W but not in WR. ε is a smoothing 
factor (whose value is optimized on held-out data) and Z is a normalization 
constant. 

In short, the boosting criterion ExpLoss approximates SR in two steps: using a 
ranking error loss function RLoss to approximate SR, and optimizing RLoss 
approximately by minimizing its upper bound function ExpLoss. 

4.2.3 The Perceptron Algorithm 

The perceptron algorithm can be viewed as a form of incremental training 
procedure (e.g., using stochastic approximation) that optimizes a minimum square 
error (MSE) loss function, which is an approximation of SR [Mitchell 1997]. 

1 Set λ0 = 1 and λd = 0 for d=1…D 
2 Select a feature fd which has largest estimated impact on reducing ExpLoss of 

Equation (12) 
3 Update λd = λd + δd, where δd is estimated by Equation (13), and return to Step 2 

Figure 1: The boosting algorithm 
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The MSE loss function is defined as  
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It is simply half the squared difference between the score of the correct conversion 
and the score of the incorrect one, summing over all training samples. It is useful to 
note that the MSE solution, under certain conditions, leads to approximations to 
maximum likelihood (ML) solution. The quality of the approximation depends 
upon the form of the linear discriminant functions (e.g., Equation (7)). While this 
property has a certain theoretical appeal, the discriminant function that best 
approximates the Bayes discriminant does not necessarily minimize the sample 
risk, as discussed in Duda et al. [2001]. In such a sense, similar to ExpLoss, 
MSELoss is also an approximation to SR. 

Despite this property, the MSE criterion has received considerable attention in 
the literature, and there are many solution procedures available. Here, we consider 
the delta rule, a training algorithm of an unthresholded perceptron. Below, we 
discuss the derivation of the delta rule, following the description in Mitchell [1997]. 

The delta rule in its component form is 

)( ddd G ληλλ ×−= , (15) 

where η is the step size, and G is the gradient of MSELoss. G can be estimated by 
differentiating the loss function of Equation (14) with respect to λd as 

d
dG

λ
λ

∂
∂

=
)MSELoss()( λ   

∑
=

−−=
Mi

id
R

idi
R

i WfWfWScoreWScore
...1

))()())(,(),(( λλ  (16) 

However, the objective function of Equation (14) in the context of our task has 
many local minima, and thus gradient descent is not guaranteed to find the global 
minimum. We therefore use a stochastic approximation to gradient descent. Whereas 
gradient descent computes parameter updates after summing over all training 
samples as shown in Equation (16), the stochastic approximation method updates 
parameters incrementally, following the calculation of the error for each individual 
training sample, as shown in Equation (17). 
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The stochastic approximation method can be viewed as optimizing a distinct 
loss function MSELossi(λ) defined for each individual training sample i as follows 
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The optimization algorithm we used in our experiments is shown in Figure 2. It 
takes T passes over the training set. All parameters (except for λ0) are initially set to 
be 0. Each training sample (i.e. phonetic string A) is converted using the current 
parameter settings. If the highest scoring word sequence under the current model 
is not correct, the parameters are updated in a simple additive fashion: to alter the 
parameters according to the gradient with respect to MSELossi(λ). Empirically, the 
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sequence of these updates, when iterated over all training samples, provides a rea-
sonable approximation to descending the gradient with respect to the original loss 
function of Equation (14). The algorithm is similar to the perceptron algorithm de-
scribed in Collins [2002]. The key difference is that instead of using the delta rule 
of (15) (as shown in Line 6 of Figure 2), Collins [2002] updates parameters using 
the rule: λd =λd + fd(WiR) - fd(Wi). Our pilot study shows that the delta rule leads to a 
slightly better performance. Following Collins [2002], we used the averaged per-
ceptron algorithm in our experiments, a simple refinement to the algorithm in Fig-
ure 2, which has been proved to be more robust. Let λdt,i be the value for the dth 
parameter after the ith training sample has been processed in pass t over the train-
ing data. Then the “averaged parameters” are defined as in Equation (19). 
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In short, there are two approximations embedded in the perceptron algorithm. 
One is the use of the MSE criterion that approximates the ML criterion. The other is 
the stochastic approximation that is introduced for parameter optimization. 
Though in theory these approximations could to some degree prevent the 
algorithm from attaining the original objective of minimizing the SR, they turn out 
to be an effective compromise empirically, as we shall show in Section 5. 

4.2.4 The Minimum Sample Risk Method 

The minimum sample risk (MSR) [Gao et al. 2005] training algorithm is motivated 
by analogy with the feature selection procedure for the boosting algorithm [Freund 
et al. 1998]. It is a greedy procedure for selecting a small subset of the features that 
have the largest contribution in reducing SR in a sequential manner.  

Conceptually, MSR operates like any multidimensional function optimization 
approach: the first direction (i.e., feature) is selected and SR is minimized along 
that direction using a line search, i.e., adjusting the parameter of the selected feature 
while keeping all other parameters fixed; then, from there along the second direc-
tion to its minimum, and so on, cycling through the whole set of directions as 
many times as necessary, until SR stops decreasing.  

This simple method can work properly under two assumptions. First, there 
exists an implementation of line search that optimizes the function along one 
direction efficiently. Second, the number of candidate features is not too large, and 
these features are not highly correlated. However, neither of the assumptions 
holds in our case. First of all, Er(.) in Equation (9) is a step function of λ, thus 
cannot be optimized directly by regular gradient- based procedures – a grid search 

1 Initialize all parameters in the model, i.e. λ0 = 1 and λd = 0 for d=1…D 
2 
3 
4 
5 
6 

For t = 1…T, where T is the total number of iterations 
For each training sample (Ai, WiR), i = 1…M 

Use current model λ to choose some Wi from GEN(Ai) by Equation (8) 
     For d = 1 … D 
        λd  = λd + η(Score (WiR, λ)- Score(Wi, λ))(fd (WiR)- fd (Wi)), where η is the size of 

the learning step 

Figure 2: The standard perceptron algorithm with delta rule  
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has to be used instead. However, there are problems with simple grid search: 
using a large grid could miss the optimal solution whereas using a fine-grained 
grid would lead to a very slow algorithm. Secondly, in the case of LM, there are 
millions of candidate features, some of which are highly correlated with each other. 
Below, we will address these issues respectively. 

Grid Line Search. Our implementation of a grid search is a modified version of 
that proposed in Och [2003]. The modifications are made to deal with the efficiency 
issue due to the fact that there is a very large number of features and training 
samples in our task, compared to only 8 features used in Och [2003]. Unlike a 
simple grid search where the intervals between any two adjacent grids are equal 
and fixed, we determine for each feature a sequence of grids with differently sized 
intervals, each corresponding to a different value of sample risk. 
 As shown in Equation (9), the sample risk over all training samples is the sum 
of the loss function (i.e. Er(.)) of each training sample. Therefore, we first explain 
how to minimize Er(.) of a training sample using the line search. Let λ be the 
current model parameter vector, and fd be the selected feature. The line search aims 
to find the optimal parameter λd* so as to minimize Er(.). For a training sample (A, 
WR), the score of each candidate word string W∈GEN(A), as in Equation (7), can be 
decomposed into two terms: 
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where the first term on the right hand side does not change with λd. Note that if 
several candidate word strings have the same feature value fd(W), their relative 
rank will remain the same for any λd. Since fd(W) takes integer values in our case 
(fd(W) is the count of a particular n-gram in W), we can group the candidates using 
fd(W) so that candidates in each group have the same value of fd(W). In each group, 
we define the candidate with the highest value of  

∑ ≠∨=

D

ddd dd Wf
'0' '' )(λ   

as the active candidate of the group because no matter what value λd takes, only 
this candidate could be selected according to Equation (8). 
 In this way, we can reduce GEN(A) to a much smaller list of active candidates. 
We can find a set of intervals for λd, within each of which a particular active 
candidate will be selected as W*. We can compute the Er(.) value of that candidate 
as the Er(.) value for the corresponding interval. As a result, for each training 
sample, we obtain a sequence of intervals and their corresponding Er(.) values. The 
optimal value λd* can then be found by traversing the sequence and taking the 
midpoint of the interval with the lowest Er(.) value. This process can be extended 
to the whole training set as follows. By merging the sequence of intervals of each 
training sample in the training set, we obtain a global sequence of intervals as well 
as their corresponding sample risk. We can then find the optimal value λd* as well 
as the minimal sample risk by traversing the global interval sequence. 
 In addition to reducing GEN(A) to an active candidate list described above, the 
efficiency of the line search can be further improved. We find that the line search 
only needs to traverse a small subset of training samples because the distribution 
of features among training samples is very sparse. Therefore, we built an inverted 
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index that lists for each feature all training samples that contain it. Our 
experiments show that the line search is very efficient even for a large training set 
with millions of candidate features. 

Feature Subset Selection. Reducing the number of features is essential for two 
reasons: to reduce computational complexity and to ensure the generalization 
property of the linear model. A large number of features lead to a large number of 
parameters of the resulting linear model. For a limited number of training samples, 
keeping the number of features sufficiently small should lead to a simpler model 
that is less likely to overfit to the training data.  

The first step of our feature selection algorithm treats the features independently. 
The effectiveness of a feature is measured in terms of the reduction of the sample 
risk on top of the base feature f0. Formally, let SR(f0) be the sample risk of using the 
base feature only, and SR(f0 + λdfd) be the sample risk of using both f0 and fd and the 
parameter λd that has been optimized using the line search. Then the effectiveness 
of fd, denoted by E(fd), is given by 
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where the denominator is a normalization term to ensure that E(f) ∈ [0, 1]. 
The feature selection procedure can be stated as follows: The value of E(.) is 

computed according to Equation (20) for each of the candidate features. Features 
are then ranked in the order of descending values of E(.). The top l features are 
selected to form the feature vector in the linear model.  

Treating features independently has the advantage of computational simplicity, 
but may not be effective for highly correlating features. For instance, although two 
features may carry rich discriminative information when treated separately, there 
may be very little gain if they are combined in a feature vector , if they are highly 
correlated with each other. Therefore, in what follows, we describe a technique of 
incorporating correlation information in the feature selection criterion.  

Let xmd, m = 1…M and d = 1…D, be a Boolean value: xmd = 1 if the sample risk 
reduction of using the d-th feature on the m-th training sample, computed by 
Equation (20), is larger than zero, and 0 otherwise. The cross correlation coefficient 
between two features fi and fj is estimated as 
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It can be shown that C(i, j) ∈ [0, 1]. Now, similar to Theodoridis and 
Koutroumbas [2003], the feature selection procedure consists of the following steps, 
where fi denotes any selected feature and fj denotes any candidate feature to be 
selected. 

Step 1. For each of the candidate features (fd, for d = 1…D), compute the value 
of E(f) according to Equation (20). Rank them in a descending order and choose the 
one with the highest E(.) value. Let us denote this feature as f1. 

Step 2. To select the second feature, compute the cross correlation coefficient 
between the selected feature f1 and each of the remaining M-1 features, according 
to Equation (21). 
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Step 3. Select the second feature f according to 

{ }),1()1()(maxarg*
...2

jCfEj j
Dj

αα −−=
=

 
 

where α is the weight that determines the relative importance we give to the two 
terms. The value of α is optimized on held-out data (0.8 in our experiments). This 
means that for the selection of the second feature, we take into account not only its 
impact of reducing the sample risk but also the correlation with the previously 
selected feature. It is expected that choosing features with less correlation gives 
better sample risk minimization. 

Step 4. Select k-th features, k = 3…K, according to 
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That is, we select the next feature by taking into account its average correlation 
with all previously selected features. 

Similarly to the case of line search, we need to deal with the efficiency issue in 
the feature selection method. As shown in Equation (22), the estimates of E(.) and 
C(.) need to be computed. Let D and K (K << D) be the number of all candidate 
features and the number of features in the resulting model, respectively. According 
to the feature selection method described above, we need to estimate E(.) for each 
of the D candidate features only once in Step 1. This is not very costly due to the 
efficiency of our line search algorithm. Unlike the case of E(.), O(K×D) estimates of 
C(.) are required in Step 4. This is computationally expensive even for a medium-
sized K. Therefore, every time a new feature is selected (in Step 4), we only 
estimate the value of C(.) between each of the selected features and each of the top 
N remaining features with the highest value of E(.). This reduces the number of 
estimates of C(.) to O(K×N). In our experiments we set N = 1000, which is much 
smaller than D. This reduces the computational cost significantly without 
producing any noticeable quality loss in the resulting model. 

The MSR algorithm used in our experiments is summarized in Figure 3. It 
consists of feature selection (line 2) and optimization (lines 3 - 5) steps. Readers are 
referred to Gao et al. [2005] for a complete description of the MSR implementation 
and the empirical justification for its performance. 

5. EXPERIMENTAL RESULTS 

5.1 Data 

 1 Set λ0 = 1 and λd = 0 for d=1…D 
2 Rank all features and select the top K features, using the feature subset selection 

method. 
3 For t = 1…T (T= total number of iterations) 
4 For each k = 1…K  
5    Update the parameter of fk using line search.  

Figure 3: The MSR algorithm 
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The data used in our experiments stem from five distinct sources of text. A 36-
million-word Nikkei newspaper corpus was used as the background domain. We 
used four adaptation domains: Yomiuri (newspaper corpus), TuneUp (balanced 
corpus containing newspaper and other sources of text), Encarta (encyclopedia) 
and Shincho (collection of novels).  

For the computation of domain characteristics (Section 5.2), we extracted 1 
million words from the training data of each domain respectively (corresponding 
to 13K to 78K sentences depending on the domain). For this experiment, we also 
used a lexicon consisting of the words in our baseline lexicon (167,107 words) plus 
all words in the corpora used for this experiment (that is, 1M words times 5 
domains), which included 216,565 entries. The use of such a lexicon was motivated 
by the need to eliminate the effect of out-of-vocabulary (OOV) items.  

For the experiment of LM adaptation (Section 5.3), we created training data 
consisting of 72K sentences (0.9M~1.7M words) and test data of 5K sentences 
(65K~120K words) from each adaptation domain. The first 800 and 8,000 sentences 
of each adaptation training data were also used to show how different sizes of 
adaptation training data affected the performances of various adaptation methods. 
Another 5K-sentence subset was used as held-out data for each domain. For 
domain adaptation experiments, we used our baseline lexicon consisting of 167,107 
entries. 

5.2 Computation of Domain Characteristics 

The first domain characteristic we computed was the similarity between two do-
mains for the task of LM. As discussed in Section 3, we used the cross entropy as 
the metric: we first trained a word trigram model using the system described in 
Gao et al. [2002a] on the 1-million-word corpus of domain B, and used it in the 
computations of the cross entropy H(LA, qB) following Equation (3). For simplicity, 
we denote H(LA, qB) as H(A,B).  

Table I displays the cross entropy between two domains of text. Note that the 
cross entropy is not symmetric, i.e., H(A,B) is not necessarily the same as H(B,A). In 
order to have a representative metric of similarity between two domains, we 
computed the average cross entropy between two domains, shown in Table II, and 
used this quantity as the metric for domain similarity. 

Along the main diagonal in Tables I and II, we also have the cross entropy 
computed for H(A,A), i.e., when two domains we compare are the same (in 
boldface). This value, which we call self entropy for convenience, is an 
approximation of the entropy of the corpus A, and measures the amount of 
information per word, i.e., the diversity of the corpus. Note that the self entropy 
increases in the order of Nikkei  Yomiuri  Encarta  TuneUp  Shincho. This 
indeed reflects the in-domain variability of text: Nikkei, Yomiuri and Encarta are 
highly edited text, following style guidelines; they also tend to have repetitious 
content. In contrast, Shincho is a collection of novels, on which no style or content 
restriction is imposed. We expect that the LM task to be more difficult as the 
corpus is more diverse; we will further discuss the effect of diversity in Section 6.4 
                                                           
4 Another derivative notion from Table I is the notion of balanced corpus. In Table I, the smallest cross 
entropy for each text domain (rows) is the self entropy (in boldface), as expected. Note, however, that 
the second smallest cross entropy (underlined) is always obtained from the TuneUp model (except for 
Nikkei, for which Yomiuri provides the second smallest cross entropy). This reflects the fact that the 
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5.3 Results of LM Adaptation 

We trained our baseline trigram model on our background (Nikkei) corpus using 
the system described in Gao et al. [2002a]. The CER (%) of this model on each ad-
aptation domain is in the second column of Table III. For the LI adaptation method 
(the third column of Table III), we trained a word trigram model on the adaptation 
data, and linearly combined it with the background model, as described in Equa-
tion (6).  

For the discriminative methods (the last three columns in Table III), we 
produced a candidate word lattice for each input phonetic string in the adaptation 
training set using the background trigram model mentioned above. For efficiency 
purposes, we kept only the best 20 hypotheses from the lattice as the candidate 
conversion set for discriminative training. The lowest CER hypothesis in the 
lattice, rather than the reference transcript, was used as the gold standard5. 

To compare the performances of different discriminative methods, we fixed the 
following parameter settings: we set the number of iterations N to be 2,000 for the 
boosting and MSR methods (i.e., at most 2,000 features in the final models); for the 
perceptron algorithm, we set T = 40 (in Figure 1). These settings might lead to an 
unfair comparison, as the perceptron algorithm will select far more features than 
the boosting and MSR algorithm. However, we used these settings as they all 
converged under these settings. All other parameters were tuned empirically on 
held-out data. 

In evaluating both MAP and discriminative methods, we used an N-best 
rescoring approach. That is, we created N-best hypotheses using the background 
trigram model (N=100 in our experiments) for each sentence in test data, and used 
domain-adapted models to rescore the N-best list. The oracle CERs (i.e., the 
                                                                                                                                                   
TuneUp corpus was created by collecting sentences from various sources of text, in order to create a 
representative test corpus. Using the notion of cross entropy, such a characteristic of a test corpus can 
also be quantified.  
5 This is an empirical decision which is also applied by other researchers e.g., Roark et al. [2004]. 

Table I. Cross entropy (rows: corpora; column: models) 

 Nikkei Yomiuri TuneUp Encarta Shincho 
Nikkei 3.94 7.46 7.65 9.81 10.10 
Yomiuri 7.93 4.09 7.62 9.26 9.97 
TuneUp 8.25 8.03 4.41 9.04 9.06 
Encarta 8.79 8.66 8.60 4.40 9.30 
Shincho 8.70 8.61 8.07 9.10 4.61 

Table II. Average cross entropy 

 Nikkei Yomiuri TuneUp Encarta Shincho 
Nikkei 3.94 7.69 7.95 9.30 9.40 
Yomiuri  4.09 7.82 8.96 9.29 
TuneUp   4.41 8.82 8.56 
Encarta    4.40 9.20 
Shincho     4.61 
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minimal possible CER given the hypotheses in the list) ranged from 1.45% to 5.09% 
depending on the adaptation domain. Table III summarizes the results of various 
adaptation methods in terms of CER (%) and CER reduction (in parentheses) over 
the baseline model. In the first column, the numbers in parentheses next to the 
domain name indicates the number of training sentences used for adaptation. 

6. DISCUSSION 

6.1 Domain Similarity and CER 

The first row of Table II shows that the average cross entropy with respect to the 
background domain (Nikkei) increases in the following order: Yomiuri  TuneUp 

 Encarta  Shincho. This indicates that among the adaptation domains, Yomiuri 
is the most similar to Nikkei, closely followed by TuneUp; Shincho and Encarta are 
the least similar to Nikkei. This is consistent with our intuition, since Nikkei and 
Yomiuri are both newspaper corpora, and TuneUp, which is a manually con-
structed corpus from various representative domains of text, contains newspaper 
articles.  

This metric of similarity correlates very well with the CER. Figure 4 plots the 
domain similarity, indicated by cross entropy, with Nikkei (the line graph, scaled 
on the right axis) along with CER when 8,000 training sentences were used in 
adaptation experiments (expressed in the bar graph, scaled on the left axis). The 
correlation between the domain similarity and the CER is directly observed from 
the graph: the correlation coefficient was r=0.94 using the Pearson product 
moment correlation coefficient using data from all sizes. In other words, the more 
similar the adaptation domain is to the background domain, the better the CER 
results are.  

Table III. CER (%) and CER reduction (%) over Baseline  
(Y=Yomiuri; T=TuneUp; E=Encarta; S=-Shincho) 

Domain Baseline LI Boosting Perceptron MSR 
Y (800) 3.70 3.70 (0.00) 3.13 (15.41) 3.18 (14.05) 3.17 (14.32) 
Y (8K) 3.70 3.69 (0.27) 2.88 (22.16) 2.85 (22.97) 2.88 (22.16) 
Y (72K) 3.70 3.69 (0.27) 2.78 (24.86) 2.78 (24.86) 2.73 (26.22) 
T (800) 5.81 5.81 (0.00) 5.69 (2.07) 5.69 (2.07) 5.70 (1.89) 
T (8K) 5.81 5.70 (1.89) 5.48 (5.85) 5.47 (5.85) 5.47 (5.85) 
T (72K) 5.81 5.47 (5.85) 5.33 (8.26) 5.20 (10.50) 5.15 (11.36) 
E (800) 10.24 9.60 (6.25) 9.82 (4.10) 9.43 (7.91) 9.44 (7.81) 
E (8K) 10.24 8.64 (15.63) 8.54 (16.60) 8.34 (18.55) 8.42 (17.77) 
E (72K) 10.24 7.98 (22.07) 7.53 (26.46) 7.44 (27.34) 7.40 (27.73) 
S (800) 12.18 11.86 (2.63) 11.91 (2.22) 11.90 (2.30) 11.89 (2.38) 
S (8K) 12.18 11.15 (8.46) 11.09 (8.95) 11.20 (8.05) 11.04 (9.36) 
S (72K) 12.18 10.76 (11.66) 10.25 (15.85) 10.18 (16.42) 10.16 (16.58) 
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6.2 Domain Similarity and the Robustness of Adaptation Methods 

The effectiveness of a LM adaptation method is measured by the relative CER re-
duction over the baseline model. Figure 5 shows the CER reduction of various 
methods for each domain when the training data size was 8K.6 

In Figure 5, the X-axis is arranged in the order of domain similarity with the 
background domain, i.e., Yomiuri  TuneUp  Encarta  Shincho. The first thing 
we notice is that the discriminative methods outperform LI in most cases: in fact, 
for all rows in Table III, MSR outperforms LI in a statistically significant manner (p 
< 0.01 using t-test);7 the differences among the three discriminative methods, on 
the other hand, are not statistically significant in most cases. 

We also note that the performance of LI is greatly influenced by domain 
similarity. More specifically, when the adaptation domain is similar to the 
background domain (i.e., for Yomiuri and TuneUp corpora), the contribution of 
the LI model is extremely limited. This can be explained as follows: if the 
adaptation data is too similar to the background, the difference between the two 
underlying distributions is so slight that adding adaptation data leads to no or 
very small improvements.  

Such a limitation is not observed with the discriminative methods. For example, 
all discriminative methods are quite effective on Yomiuri, achieving more than 
20% CER reduction. We therefore conclude that discriminative methods, unlike LI, 
are robust against the similarity between background and adaptations domains. 

It is worth noting that our results differ from Bacchiani et al. [2004] in that in 
our system, the perceptron algorithm alone achieved better results than MAP 
estimation. However, the difference may only be apparent, given different 
                                                           
6 Essentially the same trend is observed with other training data sizes.  
7 The only exception to this was Shincho (800).  
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experimental settings for the two studies. We used the N-best reranking approach 
with the same N-best list for both MAP estimation and discriminative training, 
while in Bacchiani et al. [2004], two different lattices were used: the perceptron 
model was applied to rerank the lattice created by the background model, while 
the MAP adaptation model was used to produce the lattice itself. The fact that the 
combination of these models (i.e., first use the MAP estimation to create 
hypotheses and then use the perceptron algorithm to rerank them) produced the 
best results [Bacchiani et al. 2004] indicates that given a candidate lattice, the 
perceptron algorithm is effective in candidate reranking, thus making our results 
compatible with theirs.  

6.3 Adaptation Data Size and CER Reduction 

Among the discriminative methods, an interesting characteristic regarding the 
CER reduction and the data size is observed. Figure 6 displays the self entropy of 
four adaptation corpora along the X-axis, and the improvement in CER reduction 
when 72K-sentence adaptation data is used over when 800 sentences are used 
along the Y-axis. In other words, for each adaptation method, each point in the fig-
ure corresponds to the CER reduction ratio on a domain (corresponding to Yomi-
uri, Encarta, TuneUp, Shincho from left to right) when 90 times more adaptation 
data was available.  

From this figure, we can see that there is a positive correlation between the 
diversity of the adaptation corpus and the benefit of having more training data 
available (r=0.9~0.94 depending on the training method).8 This has an intuitive 
explanation: the less diverse the adaptation data is, the less distinct training 
examples it will include for discriminative training. This result is useful in guiding 
the process of adaptation data collection. 

                                                           
8 The correlation is weaker in the boosting method than the other two discriminative methods for the 
reasons that are not clear to us at this moment.  
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6.4 Domain Characteristics and Error Ratio 

The results presented so far measure the performance of various adaptation 
techniques in terms of CER. However, CER is not the only metric that provides 
meaningful comparison among systems. Suzuki and Gao [2005a] discusses the 
metric of error ratio (ER), which measures the side effects of a new model, i.e., the 
number of newly introduced errors relative to the number of errors that were 
corrected by the new model.9 Such a metric should be useful in an actual software 
deployment scenario: if there are two new models with the same CER performance, 
the model with smaller error ratio should be desirable, as the software users are 
more intolerant to newly introduced errors than seeing errors that have always 
existed. In this section, we compare the adaptation methods using ER.  

According to Suzuki and Gao [2005a], error ratio is defined as 

||
||

B

A

E
EER = , 

 

where |EA| is the number of errors found only in the new (adaptation) model, and 
|EB| the number of errors corrected by the new model. Intuitively, this quantity 
captures the cost of improvement in the adaptation model, corresponding to the 
number of newly introduced errors per each improvement. The smaller the ratio is, 
the better the model is at the same CER: ER=0 if the adapted model introduces no 
new errors, ER<1 if the adapted model makes CER improvements, ER=1 if the CER 
improvement is zero (i.e., the adapted model makes as many new mistakes as it 
corrects old mistakes), and ER>1 when the adapted model has worse CER 
performance than the baseline model.  
                                                           
9 Gillick and Cox [1989] use these numbers to perform McNemar's test to obtain the statistical 
significance of the difference in performance of two speech recognition algorithms.  
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Figure 7 compares the performance of various MSR models at different 
iterations with linear interpolation models at various lambda values in four 
adaptation domains using the metric of error ratio. In each graph, the x-axis plots 
the relative error rate reduction (RER, i.e., the CER difference between the 
background and adapted models in %), and the y-axis the error ratio (max=1; 
min=0).  We can see that MSR models are better than linear interpolation models 
in all domains, as they achieve larger CER reduction (larger values on the x-axis) at 
smaller ER (smaller values on the y-axis). When the models achieve similar CER 
reduction, as they happen with Encarta and Shincho domains, the MSR models 
have smaller ER values. We can therefore conclude that a discriminative method 
(in this case MSR) is superior to linear interpolation not only in terms of CER 
reduction, but also of having fewer side effects. This desirable result is attributed 
to the nature of discriminative training, which works specifically to adjust feature 
weights so as to minimize errors. 

Figure 8 compares the three discriminative models with respect to RER/ER by 
plotting the best models for 8,000 training samples (i.e., models used to produce 
the results in Table III for 8,000 training samples) for each algorithm. Though they 
perform similarly in most cases, we can see some small differences: even though 
the boosting and perceptron algorithms have the same CER for Yomiuri and 
TuneUp from Table III, the perceptron is better in terms of ER; this may be due to 
the use of exponential loss function in the boosting algorithm which is less robust 
against noisy data (Hastie et al., 2001). We also observe that Yomiuri and Encarta 
do better in terms of side effects than TuneUp and Shincho for all algorithms, 
which can be explained by corpus diversity, as the former two sets are less 
stylistically diverse and thus more consistent within the domain.  

 

7. CONCLUSION AND FUTURE WORK 
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Figure 7: Relative error reduction/ER plot for all four domains 
x-axes: RER (%); y-axes: ER. ￮ : linear interpolation models; ×:MSR models 
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In this paper, we have examined the performance of various LM adaptation meth-
ods in terms of domain similarity and diversity. We have found that (1) the notion 
of cross-domain similarity, measured by the cross entropy, correlates with the CER 
of all models (Section 6.1), and (2) the notion of in-domain diversity, measured by 
the self entropy, correlates with the utility of more adaptation training data for dis-
criminative training methods (Section 6.3). In comparing discriminative methods 
with a MAP-based method, we have also found that (1) the former uniformly 
achieve better performance than the latter, not only in terms of CER reduction but 
also in having fewer side effects (Section 6.4), and (2) are more robust against the 
similarity of background and adaptation data (Section 6.2). 

One important direction of future research in language modeling is an online 
learning scenario, i.e., to incrementally build models using incoming data for 
adaptation, taking all previously available data as background corpus. Such a 
scenario is easily conceivable in the context of adapting to a user or to a newly 
introduced topic. We hope that the results obtained in this paper serve as a starting 
point for this direction of research.  
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