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Abstract—Remote sensing imagery has relatively low spatial 

resolution. Since different materials/objects may be present in the 

area covered by a pixel, the pixel reflectance can be considered as 

the linear mixture of reflectance of these materials/objects (i.e., 

endmembers). Thus in remote sensing image processing we deal 

with mixed pixels instead of pure pixels as in traditional digital 

image processing. A multi-spectral or hyper-spectral image has 

tens to hundreds of spectral bands. How to display the plentiful 

information contained in such a 3D image cube is a challenging 

problem. In this paper, we will propose a visualization technique 

that employs two layers to integrate the mixture information (i.e., 

endmembers and their functional abundances) in each pixel. With 

user-friendly interactive tools, images can be displayed at any 

desired level of details.   

Keywords: Hyperspectral image visualization; unsupervised 

classification; Linear unmixing. 

 

I. INTRODUCTION 
A hyperspectral imaging sensor uses hundreds of 

co-register channels to acquire images from the same area on 
the earth. Although a hyperspectral sensor offers high spectral 
resolution, its spatial resolution is still limited as in other 
remote sensing devices. Therefore, different materials or 
objects may be presented in the area which is covered by a 
single pixel, and the pixel reflectance can be taken as the linear 
reflectance combination of different materials or objects (i.e., 
endmembers). It is a challenging work to display the plenty of 
information contained in these hundreds of spectral bands.  

Remote sensing visualization can be considered as a 
multi-variant visualization problem. Currently existing 
techniques can be divided into two categories: one includes 
pre-processing approaches, and the other post-processing 

approaches. The most common method in the first category is 
gray mapping. Gray mapping is useful to display only one 
band. One way to solving this problem is to introduce “color” 
into images. In Jacobson’s work [1], fixed linear spectral 
weighting envelopes were introduced to create natural-looking 
imagery that provides the display consistency for materials in 
the original data. This approach can provide good 
classification result when a remote region is combined by 
solid “blocks”, but it is difficult to provide the endmembers 
relationship if the region is mixed. As a post-processing 
method, a false color strategy has been introduced based on 
the first three principal components using principal component 
analysis (PCA) [2]. This approach can help observers make a 
quick classification and clustering decisions about different 
material/object distribution. But it is difficult to provide 
accurate classification information.  

Multi-variant visualization has been researched for 
decades [3, 4]. In [3], high variants are mapped to different 
textures and it is displayed several variants successfully in one 
surface. 3D surface shape and texture mapping have been 
employed to displayed multi-variants data in [4]. Automatic 
color indices were assigned to hierarchically structured 
classified images [5]. All of these methods take the 
multi-variants as independent variables. Therefore, these 
methods cannot reveal the relationship between the variables.   

In this paper we present a new approach that uses double 
layers to visualize remote sensing image. It employs two 
layers to visualize the mixed pixel information with different 
levels of details. Since it uses the processing result of linear 
unmixing, it is a post-processing approach. This approach 
reveals more accurate classification information, and displays 
the relationship between endmembers (i.e., multi-variants) at 
the subpixel level.  
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II. CLASSIFICATION 

A. Linear Mixture Model (LMM) 

Linear mixture analysis is a widely used method to classify 
and quantify multispectral/hyperspectral imagery. Since a 
pixel contains components acquired at different spectral 
wavelengths, each pixel in hyperspectral imagery can be 
represented as a vector r whose dimension is l×1, where l is 
the number of spectral bands. Assume the number of 
endmember materials is n. Let M be the signature matrix of 
these materials donated as M = [m1 m2 … mn], where mj is an 
l×1 vector corresponding to the signature of the j-th material. 
According to the linear mixture model (LMM), the pixel r can 
be represented as  

                   r = Mp + n                   (1) 

where ( )T
ni ppp ,,,,1=p is n×1 column vector called 

fractional abundance (FA) vector, whose i-the element 
represents the proportion of the i-th endmember materials in 
the pixel r. Here, n is an l×1 column vector which is an 
additive noise or senor measurement error.  

 Since p represents the proportion of endmembers, pi for 
1≤ i≤ n should be a position number. Also, the whole pixel is 
constructed by all of endmembers. Hence, p should be 
constrained by: 

     ∑
=

=
n

i
ip

1

1 and 10 ≤≤ ip             (2)  

B. Iterative Error Analysis(IEA) 

LMM constrained by (2) can be taken as fully constrained 
LMM model. IEA is a successful method to find the optimal 
results for the fully constrained LMM. The procedure of this 
approach can be described as follows. 

1. Randomly select two pixels with the maximum and 
minimum norm from the image, and donate them as m1 

and m2, then use quadratic programming to solve the p1 
and p2 that satisfy Eq. (2).  

2. Calculate the error, e, between the reflectance vector, r, 
and its estimate: e = | r – Mp|. 

3. Find the pixel that produces the maximum reconstruction 
error, take it as the next endmember, and add into the 

signature matrix, i.e., M =[m1 m2 m3]. Then use the 
quadratic programming again to estimate fractional 
abundances in p.  

4. Go to step 2 for error calculation and repeat step 3 for a 
new endmember, until the error is less than a given 
threshold ξ or reach the maximum number of 
endmembers.   

III. VISUALIZATION 

The resulting FAs from the linear mixture analysis in 
Section II provide the spatial distribution of each endmember 
material in the image scene. Traditionally, each FA is 
displayed as a gray scale image. If there are n endmember 
materials, then n FA images will be generated. The drawback 
for visualizing FA image as separate gray scale image is that 
viewers need to observe the n FA images side by side.  

Comparing to gray scale images, it is more intuitive to 
display FA images by a color image. Although the 
visualization by color works very well for pure pixels, it 
cannot display the proportional details of endmembers for 
mixed pixels. In this section we will introduce a novel 
approach to display classified images by using double layers, 
where layer I is to display the general information of FA 
images and layer II is for the details of each pixel in FA 
images. The overall image display is generated by overlaying 
Layer II on Layer I. This approach is particularly useful for 
the visualization of mixed pixels, which are dominant in a 
remote sensing image. 

A. Layer I --- Background Layer 

Layer I, referred to as the background layer, is formed by 
pre-assigning a color to each of the n FA images and merging 
them using a linear transformation. In order to make the 
endmembers more distinguished in the final image, colors are 
chosen in different color category [7].  

Each pixel in FA images can be presented as a vector 

( )T
ni ppp ,,,,1=p  constrained by (2). A color satisfying 

the rule in [7] was selected to represent pi, which is a 3×1 

vector, denoted as ( )T
iiii bgr   =c . Then a color matrix for FA 

image color display can be constructed as: 
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The final color for pixel p in layer I can be achieved by 
multiply the pixel vector and color matrix, i.e., 

                         Cpc T= .               (4)   

Since p was constrained by (2), the final color will be within 
the normal range of color components.   

B. Layer II --- Detail Layer 

In Layer II, referred to as detail layer, each endmember is 
represented by a fan chart. Without the pre-knowledge about 
the classification endmembers, each member is considered as 
equally important. Therefore, the endmember can be randomly 
assigned to the i-th fan region.  

In general, the first endmember is chosen to assign the first 
region, and so on. The area of a fan-shaped region for the i-th 
endmember is proportional to the angle θi, which is 
determined by its fractional abundance pi, i.e., 

°⋅= 360ii pθ      (5) 

Its starting and ending positions can be represented as 
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respectively. They can be related by s
i

e
ii ββθ −= , and 

°= 01
sβ . Because p are constrained by (2), a pixel is shown 

as a full disk, i.e, °= 360e
nβ .  

C. Blending 

After colors have been assigned to the two layers, the color 
in the final image is automatically blending in OpenGL. The 
blending equation is described as: 

                  IIIfinal ccc  )1( αα −+=             (7) 

where α is within the range [0, 1]. Therefore, the color of the 
final image is between the [cI, cII]. α is associated with the 
zooming parameter to display the overall distribution and 
mixed detail information at the same time.  

IV. INTERACTION 

Interactive operation is designed for observers to look 
through the details of the data. By selecting a region of interest 
(ROI) one can obtain the desired degree of details. For 
example, by selecting a large area, Layer I will dominate the 
display, whereas the mixing details of each pixel are more 
visible if a small ROI is chosen. If a very small area is selected, 
the precise quantitative mixing information of each individual 
pixel can be seen. A sample viewer to allow an analyst to 
interactively select a ROI has been developed. 

As requested by observers, a legend box can be displayed 
to indicate the endmember spectral information, the associated 
materials, etc. 

       

       
Figure 1:  The abundance images of six materials. 

V. EXPERIMENT 

A subimage (200× 200) of AVIRIS Lunar Lake data was 
used to illustrate the proposed approach. After water 
absorption bands and low SNR bands were removed, 158 
bands remained for processing. Fig. 1 shows the gray scale 
images of the six material abundances which were found by 
the IEA algorithm in Section II. The images were shown in 
gray scale, and a bright pixel means a large abundance of the 
specific material resident in this location. Although the general 
distribution of one particular material is clearly displayed, it is 
difficult to visualize the construction of a pixel. 

An easy way to solve this problem is to use color image. 
Fig. 2 is the color image, in which each material was assigned 
a different color. In Fig. 2, the six materials can be easily 
distinguished by color, such as white, blue, red, yellow, green, 
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and cyan. In particular, an anomaly was detected in Fig. 1 and 
shown in blue in Fig. 2. Fig. 2 can display the overall material 
distribution and the fuzzy memberships of a pixel.  

However, such a color display still cannot represent the 
detailed portions of materials within each pixel. For example, 
in the white area, it is difficult to see if other materials exist in 
this area and their portions. These cannot be resolved by only 
one color image. By introducing a second layer, such detailed 
information can be revealed.  

 

Figure 2:  The color image displays the abundance of six materials. 

Fig. 3 shows the visualized images of Layer I, Layer II, 
and double layers. The first column is when only Layer I was 
used to visualize the six endmembers; the second column is 
when only Layer II was used, and the third column is the 
results which was visualized by double layers. Fig. 3(a) shows 
the overall images using different layers, and Fig. 3(b) is the 
zoomed-in image, where some disks were popped out. As 
described in Section III, each disk represents one pixel, and 
the fan charts in the disk represents the abundance of 
materials. We can see that Layer I conveys the overall 
distributions of the endmembers, Layer II displays the details 
of the materials abundances in individual pixels, and the 
double layers can displays the overall distribution and pixel 
details at the same time. 

VI. CONCLUSION 

Compared to the traditional one-layer image display, the 
proposed double-layer remote sensing image visualization 
technique can simultaneously display the overall endmember 
spatial distribution and their composition at the sub-pixel level. 
Since the visualization is based on the unsupervised linear 
unmixing result, where noise and interference information in 
the original image has been well suppressed, it creates 
informative and detailed images that provide the necessary 
information in a succinct form for practical decision-making.  

     
3(a) Overall images 

     
3(b) Details of pixels (the anomaly and its neighboring pixels) 

Figure 3: Visualization results (from left to right: Layer I, II, Double Layers). 
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