
BPEL Orchestration of Secure WebMail
Saket Kaushik
ISE Department

George Mason University
Fairfax, VA 22030
+1-703-993-1632

skaushik@gmu.edu

Duminda Wijesekera
ISE Department

George Mason University
Fairfax, VA 22030
+1-703-993-1578

dwijesek@gmu.edu

Paul Ammann
ISE Department

George Mason University
Fairfax, VA 22030
+1-703-993-1660

pammann@gmu.edu

ABSTRACT
WebMail proposes to migrate existing SMTP-based mail systems to
Web-Services. We show how a verifiably-correct, generic mail
service that enables extensions of SMTP-based standard mail use
cases that avoids known misuse cases can be specified using WSDL
and orchestrated using BPEL.

Categories and Subject Descriptors
C.2.0 [Computer and Communication Networks]: General –
Security and Protection; C.2.2 [Network Protocols]: Applications;
D.2.4 [Software/Program Verification]: Applications

General Terms
Design, Security, Verification.

Keywords
WSEmail, WebMail, BPEL, SMTP use cases, SMTP misuse cases,
verification.

1. INTRODUCTION
The utility, security and trustworthiness of conventional email
system are being questioned on account of its increasing misuse by
‘spammers’ and fraudsters. Based on suggestions to replace existing
SMTP-based [12,13] system with a secure system – such as
WSEmail [17] – we propose using web services definition language
(WSDL) [7] to specify a web-based customizable emailsystem that
gives recipients control over email delivery. Consequently, the
proposed system enables more Use Cases than the conventional
SMTP-based mail. Given that conventional email and our
extensions can be used with mal-intent, we specify a collection of
Misuse Cases that are shown to be thwarted by our design. Example
standard Use Cases and Misuse Cases include the standard best-
effort asynchronous delivery, preventing SPAM etc.; we extend to
giving the recipient more control over message acceptance without
allowing the misuse of inferring exact acceptance criteria. Our
system, called WebMail, is a collection of web services that are

orchestrated using the Business Process Execution Language
(BPEL) [2].

In a similar effort, WSEmail [17] provides flexible means to
communication, such as, dynamically discovering and negotiating
communication protocols such as in Instant Messaging (IM), etc.
AMPol [1] extends WSEmail by separating policies from delivery
mechanisms, thereby achieving flexibility of operation. Our
previous feedback-based recipient controlled email framework [12]
extended traditional SMTP-based email flows, thereby alleviating
some annoying misuse cases of earlier systems. In this work, we
collect best of the two approaches, by designing a comprehensive
web-based solution using standard methods.

The rest of the paper is organized as follows. Section 2 specifies Use
cases enabled and Misuse Cases prevented in WebMail. Section 3
provides an overview of SMTP-based conventional email and
possible transmission using Web Services. Section 4 specifies
WebMail family of services using WSDL, and Section 5 presents
their process integration using BPEL. Section 6 shows how our
specification enables specified use cases and prevents described
Misuse Cases. Section 7 ensures process integrity as a distributed
system and Section 8 shows how inferring user preferences in mail
acceptance criteria can be prevented. Section 9 describes related
work and section 10 concludes the paper.

2. Use cases and Misuse cases
Known Use Cases enabled by conventional SMTP-based mail are as
follows:

Use Case 1: Best effort transmission of a text message from a
sender (the principal actor) to a recipient (the secondary actor)
through intermediate mail servers (auxiliary actors).

Use Case 2: Error reporting on transmission failure.

A message transmission – broken down into three logical steps, is
considered complete only if the message is routed to the recipient’s
mailbox. The steps are: from the sender to its email service
providers (SESP); from SESP to recipients’ email service provider
(RESP); and finally from RESP to the recipient’s mail box.
However, physically, multiple mail servers may be involved and are
subsumed under the logical entities – SESP and RESP. Message
transmission may not be complete due to many failures, upon which
the first point of failure detection is expected to inform the sender
using another email message.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SWS'06, November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-546-0/06/0011...$5.00.

Specialization of Use Cases: Above two use cases can be
specialized for a variety of message types and properties of
transmission channels. Standard use cases supported by SMTP
implementations are:

1. Best-effort transmission of enhanced content including text and
MIME messages [5].

2. Enforcing security mechanisms such as transmitting
authenticated message and using encrypted channel.

3. Best-effort transmission of message acknowledgements.

Best-effort relates to asynchronous transfer of messages across hosts
on the internet, because recipient process may not be active when
the sender process contacts them. In addition, SMTP ext- ensions [9,
18] include commands and replies for source auth- entication and
negotiations for establishing a secure channel for synchronous
transmission. Finally, SMTP also facilitates delivery receipts in the
form of another email. These Use Cases are supp-orted by
functionality built into communicating server processes.

Email delivery is subject to many misuse cases, including lack of
source authentication, loss of privacy and integrity of content,
receiving unsolicited commercial email (spam), email bombs [4],
etc, of which our design prevents the following:

1. Violating integrity and leaking or altering content: Allowing
unintended mal-actors to read message contents and alteration.

2. Impersonating senders: Allowing mal-actors to assume the
identity of another person in a mail message.

3. Email bombs: This is a variation of DoS attack on email
networks, where mail servers receive large number of messages,
leading to denial of email service.

4. Receiving undesirable email (spam): Allowing undesirable
email to reach recipients’ mailbox.

Although the STARTTLS [9] command exists in SMTP, most email
messages are sent in clear-text over the wire, and stored as such at
mail servers, thereby permitting the first misuse case to occur.
Similarly, although the SMTP AUTH [18] exists, it requires prior
exchange of secrets, which does not happen in most cases – thereby
being subjected to the second misuse through sender-address
spoofing. Current SMTP-like server designs result in being
subjected to the third misuse case, where lack of recipient control
over message delivery results in the last misuse case. Recent
attention to spam has resulted in some proposals to add automated
recipient controls to the message flow pipeline including, providing
feedback about rejected messages [12]. A drawback of delivery
controls is the inadvertent disclosure of acceptance criteria, that can
now be used to defeat its purpose [13]. We also add this misuse case
to the list of standard misuse cases and propose a solution in section
8.

3. Overview of message delivery
Figure 1 show a conventional email message originated by the
principal actor (i.e., sender) routed to the sender’s email service
provider (SESP) that transmits the message to the recipient’s service
provider (RESP). From here the recipient’s mail agent picks up the

delivered message [15]. Email service providers (ESPs) make this
model of mail delivery possible, and thereby alleviating the senders
and recipients to be online for synch-ronous message transfer. Also,
they add important functionality, such as, filtering mail, virus scans,
etc., and enhance scalability by lumping messages destined to the
same RESP to the same delivery attempt. Doing so brings the mail
pipeline under the control of several auxiliary actors such as,
reputation services (DCC [11], Cloudmark [10]) to check the ESP
credibility or escrow services (for attention bonds [16]), etc. These
interactions are represented by dotted double arrows in figure 1.

In a Web Services based message transmission, we replace each
actor by one or more Web Services. Together these Web Services
form a family referred to as the WebMail family. Here we show
different orchestrations of these Web Services providing many
flavors of email transmissions. We also show that earlier solutions
for conventional systems can be readily adapted for the Web
Services environment and possibly improved upon.

4. Web Services for Message Transmission
In this section we begin with the basic technical details of our
model. Three basic components are considered for our
specifications. First, we describe the types and parts of messages
that are exchanged between Web Services. Then, we specify various
Web Services that constitute the WebMail family. Finally, we
specify various orchestrations of the WebMail family using
abbreviated BPEL process specifications as done in [6].

4.1 Message Types
Message types define the protocol used for communication, i.e.,
service interfaces are understood in terms of their input and output
messages. Here, we limit the types of transported objects, however,
our list is extensible and it is possible to include the complete set of
MIME [8] objects. Basic types are described in table 1, and complex
(i.e., structural) types in table 2. We give these type definitions for
completion. We don’t intend to leverage on their type structure for
the purposes of this paper. Our code (shown later) can be modified
to be used with other typed structures as well. For instance, several
techniques use custom structures for ‘time’ or ‘credential’, etc., so
we simply refer to them using an XML namespace element. For
brevity, we omit the WSDL syntax for type definition. (For details,
see [21]).

Message flow

S

E

S

P

R

E

S

P

Third party services

R
E
C
I
P
I
E
N
T
S

Figure 1: Email Delivery Pipeline

S
E
N
D
E
R
S

Table 1: Basic types of message elements

Type Name Primitive Type Example
MIME ASCII string Application/PDF
PKISignature ASCII String 463hfd$&47654
Message ID Long Int 239809832092
MType Character string Urgent, Personal, …
AckRqd Boolean Yes/No
Number Positive Int 100
Nonce Positive Int 10000
Email Address ASCII string abc@xyz.com
Password ASCII string ******
Answer ASCII string Xy3

Table 2: Complex types of message elements

Type Name Type Structure Example
Time XmlNS=URI#Time 10:00 A.M EST
Key Pair IntXInt (53,97)
Credential XmlNS=URI#Cred Credential struct
Image XmlNS=URI#Jpeg JPEG struct
AObject Application/Type PDF file
Credential Chain Credential* Cred1, …, CredN
Currency Enum: {$, ₤} $, ₤
Bond XmlNS=URI#Bond $3.5 Cred 1
Turing test Image 10101..01,
Turing test reply ImageXAnswer (10101..01, xy3)
Content String?, AObject* “Example”, Image

4.2 Messages
Message types (summarized in table 5) are described next. Structure
of a mail message is presented first. This message contains routing
information, objects to be transmitted and additional attributes that
aid the delivery of the message. Message attributes are used by
downstream processes to make routing decisions [12]. Mail message
is described in WSDL format in listing 1. In the following listings
character ‘*’ signifies zero or more repetitions, ‘?’ zero or one
occurrence and ‘+’ means one or more repetitions.
1 <message name="MailMessage">
2 <part name="From" element="Email Address"/>+
3 <part name="To" element="Email Address"/>+
4 <part name="Date" element="Time"/>+
5 <part name="ID" element="Message ID"/>+
6 <part name="Surety" element="Bond"/>?
7 <part name="Pass" element="Password"/>*
8 <part name="Ack" element="AckRqd"/>*
9 <part name="Sign" element="PKISignature"/>*
10 <part name="RTT reply" element="Turing
11 Test Reply"/>*
12 <part name="MType" element="String"/>?
13 <part name="Subject" element="String"/>?
14 <part name="Body" element="Content"/>?
15 </message>

Listing 1: WSDL Mail Message
In addition to mail messages, clients and servers transmit several
other types of messages – enable underlying communication
protocols by informing the status of the communication, properties

of the transmission (QoS,) etc. Table 3 and 4 show their
(abbreviated) WSDL syntax.

Table 3: WSDL Application Data

Message Type Part , Multiplicity Part type
"Date" + "Time"
"ID" + "Message ID"ReceiptNotice
"Sign"* "PKISignature"
"Date" + "Time"
"ID" + "Message ID"
"Error"+ "Character string"FailNotice
"Sign"* "PKISignature"
"Date" + "Time"
"ID" + "Message ID"
"Eval Policy"+ "Policy"RejectNotice
"Sign"* "PKISignature"
"Date" + "Time"
"ID" + "Message ID"
"Surety"* "Bond"
"Sign"* "PKISignature"
"MType" ? "Character string"
"RTT"* "Turing Test"

RefinementMsg

"Body"* "Content"
"ID" + "Message ID"RefinementFailure "RError"+ "Character string"
"Date" + "Time"
"ID" + "Message ID"
"Information"+ "Character string"InformationMsg
"Sign"* "PKISignature"

Table 4: WSDL Control Data

Message Type Part, Multiplicity Part type
"Date" + "Time"
"NoOfMsgs " + " Number "MailIntent
"Sign"* "PKISignature"
"Date" + "Time"
"AllowedNo." + "Number"SLA
"Sign"* "PKISignature"
" Key " + " Credential "PKICertificate " Session "* " Nonce "
"Date" + "Time"
"Surety"* "Bond"
"Sign"* "PKISignature"
"MType" ? "Character string"
"RTT"* "Turing Test"

AcceptancePolicy

"Body"* "Content"

Table 5: Types of messages and their utility
Message Type Utility
Mail Message Message to be delivered
Receipt notice Notice of receipt and acceptance for delivery of
FailNotice Notice of delivery failure
RejectNotice Notice of delivery rejection
RefinementMsg Changes desired in a mail message
RefinementFailure Desired changes not possible
InformationMsg Third party message evaluations
MailIntent Indication of transmission intent
SLA QoS for invocations
AcceptancePolicy Acceptance rules advertisement
PKICertificate Proof of identity and data secrecy

Message definitions in table 3 determine the application data or the
payload for the message communications. Table 4 defines protocol
data exchanged for effectively completing the task at hand. In
particular, Mail Intent, message expresses the intent to send
messages, SLA message is a response to mail intent message
indicating number of messages allowed; while Acceptance Policy
message states acceptable message attributes.

4.3 WSEmail family of Web Services
Next, we design a family of Web Services that perform various
tasks to aid delivery of email messages. We list the set of externally
callable methods for each principal involved in message delivery.

Sender’s ESP (SESP): Sender’s email service provider is designed
to receive messages, route them to the destination, examine and
repair messages [12] before sending them, refine messages rejected
by RESP [12], etc.

1. SESPConnectPT 5. SESPMsgCallbackPT
2. SESPReceiveMsgPT 6. SESPImprovementPT
3. SESPAuthPT 7. SESPVirusExaminationPT
4. SESPDeliveryPT 8. SESPVirusRemovalPT

Sender: Sender’s may need to expose a callback interface to receive
rejection notices or notices for improving messages

1. SenderMsgCallbackPT 3. SenderPasswdCallbackPT
2. SenderMsgRefinementPT

Recipient’s ESP (RESP): Recipient’s ESP provides the following
set of services.

1. RESPHeloPT 6. RESPControlPT
2. RESP-TLSPT 7. RESPSanitizationPT
3. RESPReceiveMsgPT 8. RESPDeliveryPT
4. RESPVirusScanPT 9. RESPStoragePT
5 RESPFilterPT 10. RESPImprovementPT

Recipient: A recipient need not expose any service; however, some
recipients may allow their service providers to “push” messages to
the recipient’s host through RReceiveMsgPT.

In addition to SESP and RESP services, third party services may be
invoked during message transmission. Here we consider only two
Web Services, though this list could easily be extended.

Third party services: CheckSumPT can be invoked to verify if a
message is a bulk message and BondVerificationPT verifies the
authenticity of an attached monetary bond.

Tables 6, 7 and 8 describe the Web Service portypes.

Table 6: portTypes for SESP services
PortType Input Output Fault(s)
SESPReceiveMsgPT MailMessage ReceiptNotice FailNotice
SESPConnectPT MailMessage IntentMessage SLAFail
SESPAuthPT PKICertificate FailNotice
SESPDeliveryPT MailMessage ReceiptNotice FailNotice
SESPCallbackPT RefinementMsg FailNotice
SESPImprovemntPT RefinementMsg MailMessage FailNotice
SESPExaminationPT MailMessage InformatnMsg
SESPVRemovalPT MailMessage MailMessage

Table 7: portTypes for RESP services
PortType Input Output Fault(s)
RESPHeloPT MailIntent SLA
RESP-TLSPT PKICertificate PKICertificate FailNotice
RESPReceiveMsgPT MailMessage ReceiptNotice RejectNtc
RESPVirusScanPT MailMessage InformatnMsg TimeOut
RESPFilterPT MailMessage InformatnMsg TimeOut
RESPControlPT Sender InformatnMsg
RESPSanitizatnPT MailMessage MailMessage TimeOut
RESPDeliveryPT MailMessage ReceiptNotice FailNotice
RESPStoragePT MailMessage FailNotice
RESPImprovmtPT MailMessage RefinementMsg TimeOut

Table 8: portTypes for third party services

PortType Input Output Fault(s)
CheckSumPT MailMessage InformationMsg TimeOut
bondVerificatPT MailMessage InformationMsg TimeOut

5. BPEL Orchestration of WSEmail
In this section, we begin with a basic set of synchronized Web
Service invocations for mail delivery. We illustrate typical
activities, in the notation borrowed from BPEL specification manual
by Andrews, Curbera [1], et al. SESP is described in figure 2 and
RESP in figure 3, followed by their (abbreviated) process
descriptions (resp. listings 2 and 3).

5.1 SESP Process specification

Dotted lines in figure 2 (and 3) indicate sequential executions and
solid lines indicate control dependencies for synchronizing
concurrent activities. Note that the diagram does not give details
about exception handling. These cases are showcased in code later;
and are ignored here for the sake of clarity. In figure 2, Senders
invoke SESP’s ReceiveMsgPT, the initial activity. Next, SESP
process initiates two concurrent threads of execution, viz., virus scan
of message and UDDI location of RESP. The virus removal process
is run on infected messages. Finally, the SESP invokes the HeloPT
and RecieveMsgPT services of the RESP to begin message delivery.

Virus Scan

Virus Removal

UDDI Query

Get Service Level

Refinement

Figure 2: An SESP Orchestration

GetMessage

Complete Transmission

1 sequence
2 flow
3 sequence //New message from sender
4 receive “SESPReceiveMsgPT(M)"
5 sequence //Refined message retransmn
6 receive “SESPReceiveMsgPT(M)”
7 sequence // Call back service
8 receive “SESPCallbackPT(RefM)”>
9 “M” invoke “SESPImprovementPT(RefM)”
10 throw “FailureFault(RefM)”
11 reply “SESPReceiveMsgPT(M)”
12 flow // message preparation
13 links
14 “fix-deliver”
15 “UDDI-resn”
16 sequence
17 “Rlt” invoke “SESPExaminationPT(M)”
18 switch
19 case condition=“Rlt=true”
20 “M” invoke SESPVirusRemovalPT(M)”
21 source link=“fix-deliver”
22 otherwise
23 empty // do nothing
24 sequence // where to send message?
25 “IP” invoke “UDDIService(TO)”
26 source link=“UDDI-resn”
27 sequence // send message to RESP
28 “SLA” invoke “SESPConnectPT(M)”
29 target link=“UDDI-resn”
30 target link=“fix-deliver”
31 // begin delivery
32 while condition=“number < SLA”
33 flow
34 sequence
35 “R” invoke “SESPDeliveryPT(M)”
36 catch “RejectionFault”
37 reply SenderMsgCallbackPT(N)”

Listing 2: Example SESP Process

Listing 2 shows a typical SESP process in BPEL syntax. The code
has three main blocks: message reception (line 3–6); message
preparation (lines 12–26); and message delivery (lines 27–37). The
first part accepts messages from a sender, to be delivered to some
recipient. In addition, the SESP process allows its message callback
service to retransmit an earlier rejected (but now revised) message.
In other words, messages rejected earlier, say for lack of
authentication or other attributes desired by RESP, are repaired with
the help of this feedback. Next, each message enqueued for delivery
is subject to checks (like virus scan, etc.) to ensure quality of a
message. Finally, the message is sent across to the RESP.

5.2 RESP Process specification
Next, we define an RESP process that enforces a sample service
level agreement (SLA) and a reasonable message acceptance policy
(AP), given below.

Allow 10 messages per connection SLA
Allow Feedback for rejected messages
Accept IF No virus/worm is attached
message AND Filter allows receipt
 OR
 Distributed checksum allows receipt
Accept IF No virus/worm is attached
message AND Message bonded with value > b

AP

 AND Bond is verified by an escrow service

As shown in figure 3, upon invocation of RESP’s RecieveMsgPT
the message is transmitted to RESP. For each received message, the
RESP applies a message acceptance policy to accept or reject it. If
the transmitted mail fails to satisfy this policy, the RESP either
returns a rejection notice or a refinement message. The refinement
message suggests changing some parts of the message that may
make it acceptable to the RESP, while rejection notice is a
permanent rejection. As a result, refinement activity may begin at
the SESP. Note that based on its own policy, an SESP may decide
to ignore all advice, and consequently, the callback service interface
may not be exposed (the current strategy in existing SMTP
implementations). On the other extreme, if neither party stops the
refinement process, it may go on forever. Many such strategies have
been studied by researchers in other contexts (like automated trust
negotiation [20], etc.), and can be supported here. In the code
presented next, we restrict refining a message up to a fixed number
of times (5). This is because we haven’t seen the need yet for a more
complex strategy.

The RESP process is made up of four main parts, as shown in listing
3, viz, message reception from SESP (lines 3—5); invocation of
helper services to gauge message quality (lines 7—23); acceptance
policy evaluation based on message quality (lines 24—47) and
finally, computing feedback for rejected messages (lines 49—57).
The RESP waits for messages to arrive, and if they satisfy the
service level agreement (SLA), they are accepted (as shown in
listing 3). Next, the RESP makes concurrent calls to several ‘helper’
services, like Bayesian filtering service, bond verification service,
distributed checksums, virus scans, etc., to gauge the quality of an
incoming message. Each service evaluates a message and reports its
findings to the RESP process in an information message. On their
termination, the RESP process starts evaluating the concerned
message based on RESP’s acceptance policy and evaluations by
helper services. During this stage a message may be accepted or
rejected. Rejected messages may be returned to the SESP with
feedback on rejection. SESP (and sender) can then retry
transmission after making changes to the message such that it
satisfies RESP’s acceptance policy.

Virus Scan

Virus Removal

Message Delivery Service

Figure 3: An RESP Orchestration

GetMessage

SLA Evaluation

Filter Scan Invoke DCC

Policy Evaluation

Refinement Options

1 sequence
2 // logic for generating SLA
3 switch // Evaluate SLA
4 case condition=“number < 11”
5 receive “RESPReceiveMsgPT(M)”
6 flow // Invoke concurrent processes
7 sequence // Virus scanning
8 “Rlt” invoke “RESPExaminationPT(M)”
9 switch
10 case condition=“Rlt=true”
11 “M” invoke “RESPVirusRemovalPT(M)”
12 otherwise
13 empty
14 source link=“empty”
15 sequence // Distributed checksum
16 “checksumOK” invoke "CheckSumPT(M)”
17 source link=“dcc-deliver”
18 sequence // Verify bond
19 “V” invoke "bondVerificationPT(M)”
20 source link=“bond-verify”
21 sequence> // Bayesian filtering
22 “filterOK” invoke "RESPFilterPT(M)”
23 source link=“filtering”
24 <!— enforcing acceptance policy -->
25 sequence
26 switch
27 case condition=“(fixed OR empty)
28 AND (checksumOK OR filterOK))”
29 “N” invoke “RESPStoragePT(M)"
30 switch
31 case condition=“N==ReceiptNotice”
32 reply “SESPDeliveryPT(N)”
33 case condition=“N = FailNotice”
34 throw “FailFault”
35 otherwise empty // do nothing
36 case condition=“(fixed OR empty) AND
36 (verified AND bond > b)”>
37 “N” invoke “RESPStoragePT(M)"
38 switch
39 case condition=“ N = ReceiptNotice”
40 reply “SESPDeliveryPT(N)”
41 case condition=“N = FailNotice”
42 throw “FailFault”
43 otherwise
44 empty // do nothing
45 case condition=“NOT fixed OR NOT
46 (checksumOK AND filterOK)>
47 throw “RejectionFault”
48 otherwise
49 sequence
50 switch
51 case condition=“history > 5”
52 // maximum invocations = 5
53 “RM”invoke “RESPImprovementPT(M)”
54 // store M’s refinement history
55 invoke “SESPCallbackPT(RM)
56 otherwise
57 empty // do nothing

Listing 3: Example RESP Process

Example 1: Assume a mail message (M) that contains the following
appropriately initialized parts: From, To, Date, ID, Subject and
Body. We make the following assumptions:

• M does not contain any attached virus/worm
• M is the only message in queue
• RESP’s SLA accepts 10 messages per connection, and

provides feedback for rejected messages.

• Acceptance policy requires that no virus be attached to a
message, and either the message has a bond (“Surety”)
or satisfies the Bayesian filter.

• Message content may contain prohibited words.
According to the RESP described in listing 3, with the change

that above policy instead of the one shown in table 4 is evaluated, M
will not be accepted for delivery at the RESP (lines 24—47). This is
because it fails to satisfy both conditions – it doesn’t include a valid
bond and it doesn’t satisfy the Bayesian filter on account of the
prohibited words in its body. Next, (lines 51—54) the RESP process
initiates a call to the message improvement service (to allow the
sender to revise the message). The content of the refinement
message would include the following parts: Date, ID, Sign, Surety
and Body – the missing information that caused rejection.
Essentially, this response provides the sender acceptable values for
the parts Date, ID, Surety and Body. That is, the refinement
message identifies the deficiencies in M: no valid bond (or surety)
and presence of prohibited words. Once made aware, the sender
may choose to alter the rejected message, so that it reaches its
destination [12].

6. Coverage of use cases and misuse cases
We show next that the set of Web Service definitions, identified
above, satisfy all stated use cases and avoid all mis-uses. We give
our arguments in the form of (abbreviated) BPEL specifications as a
proof of our claims.

6.1 Coverage of standard use cases
Sender invokes SESP’s message delivery operation in line 4 –
listing 2 (resp. SESP invokes RESP’s delivery operation in line 5 –
listing 3). Input messages of type text or MIME messages
(identified in the type declarations – see [21]) are queued for
delivery. The SESP service interface (resp. RESP interface)
provides only best-effort delivery. As a result, if delivery fails at this
stage, an error is generated – line 36, listing 2 (resp. line 42 listing
3). If all prerequisites for delivery are satisfied, then both SESP and
RESP processes are guaranteed to attempt delivery. (Note, that the
listings include only one delivery attempt, but multiple delivery
attempts can be supported). Hence, the SESP and the RESP
processes satisfy both the requirements of standard use cases – best
effort transmission and error report on delivery failure.
Consequently, the services defined here are sufficient for supporting
standard use cases; additional proof is provided next.

Use Case: Authenticated message transmission
This use case is supported through invocations of the
SenderPasswdCallbackPT and SESPAuthPT services.

SESP process modification
Sequence
 Receive Message M
 Invoke SenderPasswdCallbackPT
 Switch
 Case: Password is correct
 … // proceed to other delivery tasks
 Otherwise
 Throw <Failure Fault, message: incorrect password>

RESP process modification
Sequence
 Receive RESPHeloPT
 Receive Message M

 Invoke SESPAuthPT
 Switch
 Case: Credential verified
 … // proceed to other delivery tasks
 Otherwise
 Throw <Failure Fault, message: invalid credential>

Code example above illustrates a simple (and scalable) way to
support authenticated messages. Here, messages are authent-icated
in two tiers, i.e., message senders are authenticated by their SESPs;
while SESP is authenticated (using AuthPT service) by the RESP.
It should be noted that this strategy provides only partial guarantees
to sender authentication (since the sender is never directly
authenticated by the RESP). More elaborate schemes, like, PKI or
secret key schemes like Kerberos are also possible, though we don’t
specify them here.

Use Case: Secure message transmission
This use case is supported through successive invocations of the
RESP-TLSPT

RESP Process modification
Sequence
 Receive RESPHeloPT
 Invoke RESP-TLSPT
 Switch
 Case: while SLA
 Receive Message M
 … // proceed to other delivery tasks
 Otherwise
 Throw <Failure Fault, message: not allowed>

At each successive hop of a message, the sending agent can invoke
transmission over TLS (or SSL) for privacy and integrity of data
over the wire. This use case completes the set of standard use cases
for email delivery.

6.2 Preventing misuse cases
Here we show that the set of Web Services we define are adequate
for preventing stated misuse cases. Again, we show coverage of all
misuse cases with abbreviated BPEL specifications. We use listings
2 and 3 to give informal proof sketches of our claim. In addition,
misuse cases like integrity, privacy, non-repudiation of message
initiation are dependent upon more basic misuses like lack of sender
authentication and absence of secure transmission. So, next we
show how basic misuses prevented, rather than the ones dependent
on them.

Misuse Case 1: Denial of Email Service (email bombs)
This misuse is prevented using service level agreement for incoming
mail connections. For instance, a service level agreement (SLA) can
restrict number of concurrent connections from a particular domain
and number of messages transmitted per connection (for instance,
listing 3, line 4 restricts an SESP to only 10 messages per
connection).

Misuse Case 2: Transmission in clear-text with no sender
authentication
These misuses are prevented using acceptance policies for incoming
messages. For instance, an acceptance policy requiring messages be
authenticated and transmitted over a secure channel is easily
encoded in BPEL as:

RESP Process modification
…
 Switch
 Case: “Password=correct AND channel= encrypted”
 Rnotice= Invoke RESPStoragePT(Msg)
 Otherwise
 RMsg = Invoke RESPImprovmentPT(Msg)
 Reply SESPCallBack(RMsg)
 End switch

Consider lines 24 onwards in listing 3, where messages attributes
are evaluated by the acceptance policy for the delivery session. The
above policy that checks for password based authentication and
encrypted channel can be applied in conjunction with other message
acceptance requirements. That is, prevention of this misuse is
possible by enforcing the correct acceptance policy.

Misuse Case 3: Controlling unwanted messages
Similar to the prevention of misuse case 2, this misuse is prevented
using acceptance policies. The difference with the previous case is
in the invocation of different Web Services like (FilterPT, DCC,
etc.) during acceptance policy evaluation. For instance, a policy that
requires the Bayesian filter and checksum service to approve a
message is coded in BPEL as follows:

RESP Process modification
…
 Switch
 Case: Filter = false && checksum = false
 Rnotice= Invoke RESPStoragePT(Msg)
 Otherwise
 RMsg = Invoke RESPImprovmentPT(Msg)
 Reply SESPCallBack(RMsg)
 End switch

As before, these conditions can be enforced in conjunction with
other conditions (or otherwise) in listing 3 (line 24 onwards).

7. Ensuring processes integrity
In this section we analyze SESP and RESP processes and informally
argue that they exhibit several desirable properties. SESP and RESP
processes include synchronized and parallel invocations of Web
Services. For correctness of these calls, we show that the processes
possess.

Deadlock freedom [3]: This property states that parallel invocations
of Web Services are independent of each other, i.e., they do not
block while waiting for the other to terminate or release a lock on
synchronized resources.
Interference freedom [3]: This property states that execution of
atomic steps of one component never falsify the properties enabled
because of another component.
Distributed Termination [3]: This property states that a process
terminates or stops executing after a finite amount of time.

Because of space limitations, we give informal arguments. Work on
formal proofs is in progress. In the following analysis, we categorize
pairs (or sets) of programs along the following terms:

Parallel but disjoint [3]: A pair of programs is considered parallel
but disjoint if one program cannot change variables accessed by
other program.
Parallel with shared variables [3]: A pair of programs is parallel
with shared variables if any one program can change variables
accessed by the other.
Parallel with shared variables and synchronization [3]: Parallel
programs with shared variables are also synchronized if they are
able to suspend their execution while waiting on another program
component to finish executing.

Before we begin arguing about the properties of our implementation
of SESP and RESP processes, we give the abbreviated BPEL
specification of the sender process.

Sender Process
Declarations: process, variables, faults
 Flow
 Invoke SESPReceiveMsgPT(M)
 Receive SenderCallbackPT
 Sequence
 // improve message
 invoke SESPReceiveMsgPT(M)

Note that Sender, SESP and RESP processes fall in the first
category stated above (parallel, disjoint processes). Also, we assume
that individual Web Service components that are disjoint and
recursion free and always satisfy their contracts. That is, assuming
that their preconditions are met, they always terminate satisfying all
their post conditions – their fault model is not included. Since
process specifications do not involve asynchronous invocations, self
recursion, and unbounded mutual recursion; therefore, following
properties follow easily.

Proposition 1: Following properties of processes hold
1. Sender process exhibits deadlock freedom and interference

freedom.
2. Sender process terminates.
3. SESP message transmission process is interference free and

terminates
4. The SESP process is deadlock free.
5. The RESP process is deadlock free.
6. RESP message transmission process is interference free and

terminates
Proof: See [21]

8. Privacy Leakages due to Feedback
Example 1 shows that providing feedback not only reveals the
policy that is being evaluated at the RESP to the sender, but also
leaks several other types of information. For instance, in example 1,
the sender could determine the expressions rejected by the RESP’s
Bayesian filter. This information can be misused by the sender to
send undesira-ble messages to the recipient by simply camouflaging
the `flagged’ expressions – using HTML tags, insertion of spaces
and other similar techniques. Other types of leakages [13] that
compromise recipient’s private information are also possible.

Leakages are categorized into two classes [13], viz, those due to
feedback provided in-band with the transmission channel, and those
due to out of band feedback channels. In the case of example 1, the
leakage of information occurs due to in band feedback channel.
These can by simply prevented in the SLA by prohibiting feedback.

Consequently, the message improvement service will not be
invoked. However, leakage is still possible, as shown next. Consider
a scenario where an acceptance policy requires that a message
satisfy the Bayesian filter and include a valid bond. Because of this
policy whenever the bond is seized by a recipient, causing out of
band monetary flow, it reveals the strength of the filter to the sender
as the sender gets the confirmation that the message satisfied the
Bayesian filter. Clearly, strength of the filter is sensitive information
that must be protected, as argued above.

In [13] we develop methods for preventing out of band privacy
leakages. These are directly applicable to the BPEL processes
described here. We translate their solution for logic programs to our
imperative programs. In addition, we show how process
synchronization can be used to enforce their solution, a study
missing in earlier work. First, we illustrate the problem with an
original (unsafe) policy and its BPEL specification.

Policy 1 [Original (Unsafe) Policy]: Consider the following
acceptance policy for accepting messages:

Accept IF Sender is not blacklisted and bond ≥ a
message OR Sender blacklisted and bond ≥ b (b>a)

As shown earlier[13], this is an unsafe policy since it introduces an out of
band feedback channel. For instance, if a sender sends a message bonded
with value c ∈ (a,b) and the bond is seized, then money transfer indicates to
the sender that he or she is not blacklisted by the particular recipient. BPEL
specification of this policy enforcement is as follows:

Policy evaluation block in RESP process

Sequence
 Switch
 Case: Sender ∉ blacklist AND bond > a
 Rnotice= Invoke RESPDeliveryPT(Msg)
 Case: Sender blacklist AND bond > b
 Rnotice= Invoke RESPDeliveryPT(Msg)
 Otherwise
 RMsg = Invoke RESPImprovmentPT(Msg)
 Reply SESPCallBack(RMsg)

8.1 Policy Transformation
Out of band leakages described above are harder to prevent

without discontinuing the use of Web Services that introduce the
leakage channel. That is, protection against privacy leakages
requires that recipients and RESPs disable the use of such Web
Services. However, this condition is too strict; an alternate solution
exists that achieves the same goal without requiring the recipients to
write truncated acceptance policies. This is done be automatically
generating two safe policies from the original: the necessary and the
sufficient policy.

Intuitively, the necessary policy is a weaker policy (truncated form
of original policy) that does not invoke leaky Web Services. On the
other hand, the sufficient policy is a strictly stronger policy that does
not invoke leaky Web Services. With the ability to automatically
construct these policies, a policy author can still enforce the original
policy with a trusted client; and use the necessary and sufficient
policies in tandem with a suspicious or an unknown client. Their
construction and use is detailed next.

For the transformation procedures below we assume that a policy
can be represented as a logical formula in disjunctive normal form
(DNF), i.e., it can be represented as d1∨d2∨…∨dn where each di
is a conjunction of Boolean conditions.

Policy 2 [Necessary Policy]: Consider the original policy, discussed in
Policy 1.

Accept IF Sender is not blacklisted and bond ≥ a
message OR Sender blacklisted and bond ≥ b (b>a)

Applying the NecessaryTransform procedure to the original unsafe policy
yields the following necessary policy:

Accept message IF Bond ≥ a
In this particular example, the contents of a blacklist are considered
sensitive. Consider the evaluation of this policy at RESP:

Policy evaluation block in RESP process
Sequence
 Switch
 Case: bond > a
 Rnotice= Invoke RESPDeliveryPT(Msg)
 Otherwise
 RMsg = Invoke RESPImprovmentPT(Msg)
 Reply SESPCallBack(RMsg)

As is evident from the code above, this policy accepts messages with a
minimum bond value, and assuming recipient will seize bonds for all
unwanted messages, the only information that this policy leaks is that the
recipient requires a bond value of a for messages to be accepted. No
information about content of recipient’s blacklist can be deduced.

Policy 3 [Sufficient Policy]: Consider the original policy, discussed in
Policy 1. Applying the SufficientTransform procedure to the original unsafe
policy yields the following necessary policy:

Sufficient policy:
Accept message IF Bond ≥ b

Consider the evaluation of this policy at RESP:

Policy evaluation block in RESP process
Begin Sequence
 Switch
 Case: bond > b
 Rnotice= Invoke RESPDeliveryPT(Msg)
 Otherwise
 Throw RejectFault(Msg)
 End switch
End Sequence

As in the previous case, the sufficient policy enforcement can only reveal to
the sender that the message requires a minimum bond value of b. No
information about the contents of the blacklist is divulged.

9. Related Work
Lux, May, et al in [17] introduce WSEmail, i.e., transmission of
messages using Web Services. Web Services lend additional
flexibility to the message transmission process, while avoiding
standard pitfalls, like, lack of sender authentication, susceptibility to
spam, etc. However, details regarding the standard SMTP use cases
are missing, as well are the details on orchestration of related Web
Services. Here we fill these gaps.

Next closely related work is by Afandi [1], where the author
discusses adaptive policies for messaging systems (like WSEmail).
The central idea is to separate policies from the mechanism to allow
flexibility in the behavior of network components involved in
message transmission; however, this work restricts to the design and
architecture of the system. Here, we complement AMPol by a
simple implementation using BPEL. Additionally, we provide
sufficient evidence that the alluded misuse cases (in [1]) will be
prevent by our orchestration.

Kaushik, Winsborough et al in [12, 13] solve similar problems in
conventional systems, and provide several alternative solutions. We
consider the applicability of their solutions, appropriately tailored,
to the new domain. In addition, we show how process
synchronization is used to enforce their solution, the piece missing
in all earlier works. Finally, we give informal proofs of correctness
of our implementation that uses parallel concurrent process for
achieving message transmission.
Chafle, Chandra et al [6] present an analysis for decentralized
orchestration of Web Services using BPEL. Though the problem we
consider here is not directly related, but our analysis takes a leaf out
of their synchronization analysis of BPEL orchestration.

10. Conclusion
In this paper we have analyzed an emerging Web Services based
application for internet messaging known as WSEmail and
compared it to the conventional messaging systems. Since the
existing specifications for WSEmail don’t consider all the standard
use cases of current message delivery infrastructure or the set of
misuse cases that must be prevented, we augment their architecture
with our additions. We provide a formal specification of each Web
Service considered and show that standard use cases are supported
with the family of Services we have identified; and all misuse cases
can be prevented with the same (extensible) set. We show how to
orchestrate this family of services securely to achieve the goal of

NecessaryTransform(Policy, private):
Input: A set of policy rules
Input: A set of sensitive information attributes
Output: A set of policy rules that protect sensitive
information
 if (Policy rules contains p ∈ private)
 Repeat till Policy does not contain any p ∈ private
1. choose a rule ∈ Policy | rule=∨i di and some di contain p
2. modify each such di such that it does not contain p
 else

 return

SufficientTransform(Policy, private):
Input: A set of policy rules
Input: A set of sensitive information attributes
Output: A set of policy rules that protect sensitive information
 if (Policy rules contains p ∈ private)
 Repeat till Policy does not contain any p ∈ private
1. choose a pair of rules ∈ Policy | rule1=∨i di and some di contain
p and rule2=∨j Dj and some Di contain NOT(p)
2. remove rule1 and rule2 and construct a new rule such that
 rule=(∨i di)∨(∨j Dj) except the disjuncts containing p
 else
 return

secure transmission of email messages, with no privacy leakages, a
piece missing in most other works. In addition, we prove correctness
of our specification.

11. REFERENCES
[1] R. N. Afandi, AMPOL: Adaptive Messaging Policy Based

System, Master's Thesis in Computer Science, University of
Illinois at Urbana-Champaigne, 2005.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F.
Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic
and S. Weerawarana, Business Process Execution Language for
Web Services, 2003.

[3] K. R. Apt and E. R. Olderog, Verification of Sequential and
Concurrent Programs, Springer-Verlag, 1997.

[4] T. Bass, A. Freyre and D. Gruber, E-Mail Bombs and
Countermeasures:Cyber Attacks on Availability and Brand
Integrity, IEEE Network, 12 (1998), pp. 10--17.

[5] N. Borenstein and N. Freed, RFC 1521 - MIME (Multipurpose
Internet Mail Extensions), 1993.

[6] G. Chafle, S. Chandra, V. Mann and M. G. Nanda,
Decentralized Orchestration of Composite Web Services,
Thirteenth international world wide web conference (WWW
2004), 2004.

[7] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana,
Web Services Description Language (WSDL) 1.1, 2001.

[8] N. Freed and N. Borenstein, Multipurpose Internet Mail
Extensions, RFC 2045, 1996.

[9] P. Hoffman, SMTP Service Extension for Secure SMTP over
Transport Layer Security, RFC 3207, 2002.

[10] http://www.cloudmark.com/, Cloudmark.

[11]http://www.rhyolite.com/anti-spam/dcc/, Distributed Checksum
Clearinghouse.

[12] S. Kaushik, W. Winsborough, D. Wijesekera and P. Ammann,
Email Feedback: A Policy-Based Approach to Overcoming
False Positives, 3rd ACM Workshop on Formal Methods in
Security Engineering: From Specifications to Code (FMSE
2005), Fairfax, VA, 2005, pp. 73--82.

[13] S. Kaushik, W. Winsborough, D. Wijesekera and P. Ammann,
Policy Transformations for Preventing Leakage of Sensitive
Information in Email Systems, in E. Damiani and P. Liu, eds.,
20th Annual IFIP WG 11.3 Working Conference on Data and
Applications Security, Springer Berlin / Heidelberg, Sophia
Antipolis, France, 2006.

[14] J. Klensin, Simple Mail Transfer Protocol, RFC 2821, 2001.

[15] J. F. Kurose and K. W. Ross, Computer Networking : A Top-
Down Approach Featuring the Internet, Addison Wesley, 2004.

[16] T. Loder, M. V. Alstyne and R. Walsh, An Economic Answer to
Unsolicited Communication 5th ACM conference on Electronic
Commerce, 2004, pp. 40-50.

[17] K. D. Lux, M. J. May, N. L. Bhattad and C. A. Gunter:,
WSEmail: Secure Internet Messaging Based on Web Services,
2005 IEEE International Conference on Web Services (ICWS
2005), Orlando, FL, 2005, pp. 75-82.

[18] J. Myers, SMTP Service Extension for Authentication, RFC
2554, 1999.

[19] A. S. Tanenbaum and M. v. Steen, Distributed Systems:
Principles and Paradigms, Prentice Hall, 2002.

[20] T. Yu, X. Ma and M. Winslett:, PRUNES: an efficient and
complete strategy for automated trust negotiation over the
Internet. , 7th ACM Conference on Computer and
Communications Security (CCS '00), Athens, Greece, 2000, pp.
210-219.

[21] S. Kaushik, D. Wijesekera and P. Ammann, BPEL
Orchestration of Secure WebMail, Technical Report ISE-TR-
06-08, George Mason University, Fairfax, VA, August 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

