
Lightweight Set Buffer: Low Power Data Cache for
Multimedia Application

Jun Yang Jia Yu Youtao Zhang
Computer Science and Engineering Department

Universitv of California, Riverside
Computer Science Department

Riterside, CA 92521
email: {junyang,jiayu) @cs.ucr.edu

ABSTRACT
A new architectural technique to reduce power dissipation
in data caches is proposed. In multimedia applications, a
major portion of data cache accesses hit in the same cache
set continuously before going to a different set. This feature
allows us to remove unnecessary driving power in data arrays
as long as the same cache set is accessed incessantly. Power
saving is achieved through buffering and accessing the cache
set instead of the main data array. The proposed technique
does not incur performance degradation and accomplishes
up to 57% of power reduction for data caches.

Categories and Subject Descriptors

General Terms

Keywords

B.3.2 [Hardware]: Memory Structure-Design Styles

Design, Performance, Experiment

Low power, cache, multimedia

1. INTRODUCTION
As the speed gap between the memory and CPU con-

tinues to increase, modern processors tend to enlarge their
on-chip caches to reduce the number of accesses to long la-
tency memories. For this reason, the on-chip caches remain
as a major chip power consumer. For example, the Intel
Pentium Pro dissipates 33% [3] and the StrongARM 110 dis-
sipates 42% [7] of its total power in caches. Consequently,
there have been increasing interests in designing low-power
on chip caches.

The multimedia applications have become an important
workload for general-purpose processors nowadays. Through
study, we found that multimedia applications present high
set-wise access loca l i tya set is continuously accessed for a
period of time. For direct-mapped caches, it means cache

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED'03, August 25-27,2003, Seoul, Korea.
Copyright 2003 ACM 1-581 13-682-X/03/0008 ... $5.00.

The University of Texas at Dallas
Richardson, TX 75083

email: zhangyt @ utdallas.edu

access switch to a different line after several continuous ac-
cesses. For set-associative caches, there should be a slight
increase in set-access locality since a set contains multiple
lines. Figure 1 shows the set-wise access locality for a 32KB
cache with different set-associativities running MediaBench
benchmarks [6]. On average, we observe around 37% of total
cache accesses hit in the last accessed set for associativities
ranging from 1 to 32.

.a* Q * 8 * Q @ a ",@*
,@&@ .&*& ea"" eb & a" Q' ."*&> a

Figure 1: Percentages of accesses that hit in last
accessed cache set.

With this feature, we propose to use lzghtwezght set buffer
that stores the last accessed cache set. The set buffer is
lightweight because we made use of existing internal latches
inside the cache with only minor modifications. Power is
saved when an access is directed to the set buffer instead
of the entire data array. The direction is guided by a sin-
gle bit per set which indicates whether this set is last ac-
cessed or not. A true bit value will lead access to the set
buffer and block data array driving. This technique does
not slow down the cache access, nor does it require exces-
sive amount of extra hardware. Our experiments show an
average of 23%/26%/29% of power savings on a 8KB direct-
mapped/lGKB 2-way/32KB 4-way set associative cache.

The rest of the paper is organized as follows. Section 2
reviews previous research in line buffering. In section 3, de-
tailed design of the proposed set buffer is illustrated. Section
4 gives the energy model of our design. The experimental re-
sults are presented in section 5 . Finally, section 6 concludes
this paper.

2. RELATED RESEARCH
The notion of line buffer has previously appeared in litera-

ture [8, 21. Su and Despain proposed in-cache two-level hier-

270

mailto:cs.ucr.edu
http://utdallas.edu

archies in which a single line buffer, serving as the first level
"cache", is accessed before the main cache [8]. This design
is essentially a single-entry filter cache within the original
cache. Consequently, a line buffer miss requires additional
cycles to access the main cache, degrading the overall pro-
gram performance. Moreover, the overall energy consump-
tion may increase if the line buffer miss rate is high. To
overcome those defects, Chose and Kamble [2] introduced a
concurrent version of line buffers in which cache lines in the
same set is organized in one wider line buffer (WLB), and
they keep multiple such buffers. Buffering multiple WLB
aims at improving WLB hit rate and concurrent accessing
with the main cache does not impact performance. The
proposed WLB is effectively a fully-associative cache placed
on the side of the level one data cache. Both caches are
inquired simultaneously, and a hit in WLB cancels the on-
going access in the main cache assuming that the former is
resovled earlier. The major overhead of this design come
from (1)the power dissipated in the (fully-associative) WLB
on buffer misses, including miss detection and the line re-
placement, (2)the power spent in initial main cache driving
on WLB hits, and (3)the comparisons of both setindex and
tag in WLB on each potential hit.

The deficiency in both of the above techniques lies in the
possibility of increasing total power when the line buffer or
WLB hit ratio is low. This calls for an ultra low-overhead
buffering technique that reduces power consumption when
the hit ratio is high, and barely increases power when the
hit ratio is very low. Our proposed lightweight set buffer
design fits into this category. We attach an extra single bit
to each cache set to indicate whether or not this set is the
latest accessed. Using this bit, we perform a concurrent
gated probing to the cache and set buffer-the bit automat-
ically chooses the access between the main cache and the set
buffer. This implies that in the worst case, the bit guides
every access t o the main cache and we pay only the power
maintaining each bit, which turns out to be almost negli-
gible. As we will explain in section 3, this design does not
incur performance degradation either.

3. THE LIGHTWEIGHT SET BUFFER
In a conventional m-way set-associative cache, the set-index

portion of the address is first extracted to index m tag and
the data arrays. Next, the m cache lines are read out and
steered into m line buffers waiting for tag-compare results.
If it is a cache hit, the target word will be selected out from
one of m line buffers and returned to the CPU. Notice that
if the next cache access hits in the same set, the entire pro-
cedure repeats and the same cache set is driven into the line
buffers which already contain the needed information. The
development of lightweight set buffer stems from this obser-
vation and incorporates minimum amount of hardware to
remove unnecessary activities. Our set buffer is merely the
collection of those already existing line buffers.

3.1 The Structure
Figure 2 depicts the logic design of the lightweight set

buffer, an additional supporting bit array and how they in-
teract with the standard tag and data array. To be clear,
we omit the decoder logic, tag compare and select, and data
output driving logic since they comply with standard im-
plementations. The shaded boxes in the graph represent
multiple cache ways and we focus our description on only a

single way since the rest are repetitive. All the newly added
lines, gates and bit arrays are highlighted in bold lines.

Figure 3: Circuit
Figure 2: The design of Changes to Word-
a normal data cache with line Drivers-
lightweight set buffer.

As mentioned before, we add a single bit to each cache
set to indicate whether the set is latest accessed or not.
These bits form the Latest Accessed Bit (LAB) arrays and
are accessed by the same set-index address field as being
used for both tag and data arrays. If an LAB is set, the
corresponding cache set should already have been steered
into the set buffer by the last access. Therefore, the word
line driving in the data array is gated off by an inverter as
shown in the broken lines in the graph. This can guarantee
that the data array is not activated. Meanwhile, the set
buffer is driven to get ready for data access, as shown in
solid lines in the graph. It is now clear to see when the LAB
is set, power saving is achieved through not activating the
entire data array.

In reality, what is added may not be an inverter. Fig-
ure 3 illustrates what can be modified on the path from the
decoder to wordline driving. The upper portion is an exam-
ple of the gates between the end of the decoder, an NOR
gate, to the beginning of a wordline, an inverter serving as
a wordline driver [5] . To incorporate the LAB signal, it is
only necessary to replace the wordline driver with an NOR
gate. An NOR gate at this place will not conduct if the
LAB is high and will translate to an inverter if the LAB is
low. As we can see that, the modifications required in the
cache control circuits is minimal.

3.2 Maintaining the LABS
In this section, we will first describe how to fill and update

the LAB arrays, and then analyze their power overhead.
Since the LAB indicates the last accessed set, we can observe
that at anytime, there can be one and only one bit that is
set in the LAB array.

To ensure the above property, one must clear the bits that
were set before the last access. This is achieved by remem-
bering the setindex portion of the last but one address. If
the last access hit an LAB that is set, no action needs to be
taken since the bit is already set and should stay set for the
next time. If it is unset, use the stored set index to clear
its corresponding LAB and set the current LAB using the
current set-indez. On a cache miss, the LAB array should
be flushed and we do not attempt to reflect the cache line
fill in the set bufer.

The LAB update operation should be done in a timely
manner. This is important since the next cache access may
come right next clock cycle, which means the LAB should
get ready for the new request by then. This can be ensured
by updating the LAB as soon as 0 is detected since from
this point on the cache behaves normally. Thus, updating
LAB is carried in parallel with data array driving and can

27 1

be finished before the current cache access is over. On a
cache miss, however, the miss detection will not reveal until
near the end of the access, therefore updating the LAB can
only be done after the current access. However, this will not
impact the performace since the next cache access will not
benefit from the current miss anyway (we do not attempt
to reflect the cache refill in the set buffer). Therefore, our
solution is that on every cache access that follows a miss,
the LAB is used solely for updating.

8-way
16-way
32-way

Power Overhead The LAB array and the necessary addi-
tional register for set indez bring only marginal extra power.
We used the power and timing evaluation tool XCACTI [4]
to measure the additional power dissipation due to the extra
hardware. The LAB’S read and write power in permillage
of the original cache are shown in Figure 4. As we can
see, reading LAB consumes negligible power while writing
is more demanding. This is because updating an LAB re-
quires extra decoding of the stored set indez. Most of the
numbers are around or well below 1%. And configurations
with more bits in set-indez tend to have higher permillage
of LAB power. Also note that although LAB read happens
on nearly every cache access, LAB write happens only when
the LAB is unset and on cache misses. Therefore, the accu-
mulative power overhead due to LAB-read and LAB-write
has less impact on power savings than the data shown here.
We will present the overall power savings in section 5.

0.5,0.6 1.3,1.3 0.4,0.4 0.3,0.3
1.7,1.7 1.4,1.4 0.3,0.3 0.8,0.8
0.9,O.g 0.8,0.8 0.7,0.7 0.2,0.2

I read.write I 8KB I 16KB I 32KB I 64KB 1

4-way 0.2,lO.O 1.6,9.7 1.5,15.2
%way 0.1,3.7 1.4,5.6 0.2,7.2
16-wav 2.6,3.6 2.5.3.7 0.1.1.6

I

1-way 1 0.1,19.3 1 0.1,18.2 1 0.1,22.5 1 1.1,14.7
2-wav 1 0.4.17.6 I 1.0.14.9 I 1.0.11.2 I 1.0.27.7

0.6,ll.O
0.2,5.5
2.1.4.5

cache

32-way I 2.3,2.6 I 2.7,3.3 I 2.5,3.1 I 1.2,1.6

cache read (1) set buffer hit (LAB=l)
hit not hit (2) set buffer miss (LAB=O)

following write (3) set buffer hit (LAB=l)
a miss hit (4) set buffer miss (LAB=O’I

Figure 4: Additional power consumed by LAB ar-
rays and set-zndez buffers (in permillage of original
cache).

3.3 Complications on Write Operations
The write operations need to proceed with care. This is

because a line buffer becomes dirty on a write hit. The
updates in the line buffer will be present in the data array
sooner or later. There are two approaches to the timing of
the updates:

0 Write-Through: Every write hit in line buffer is also
written in data array.

0 Write-Back: Only when a new line (including a differ-
ent line in the same set or a different set) is inquired,
does the dirty line buffer update the data array.

There are obvious tradeoffs between the two designs. The
write-through version has no impact on performance but
does not benefit as much as the write-back version. The
latter saves power in a more aggressive way since multiple
writes can be coalesced in a single write back, but may suf-
fer from performance loss. This is because a new access
may need to wait until the write-back finishes. This can
be overcome through adopting the pipelined writes mecha-
nism used by Alpha AXP 21064 and other machines. On
such pipelined writing, a line buffer first copies the line into
a write delay buffer and the actual write-back takes place

cache miss not
followine: a miss

when next time a new write operation is comparing its tag.
In other words, on every write access, the cache always per-
form tag compare for current request but writes data from
the write delay buffer. Therefore, this approach does not
introduce extra cycles on cache accesses. The only overhead
in this approach is the extra write delay buffer. Note that
on every read access, this write delay buffer needs to be
inquired. To see the power budget of the delay buffer, we
measured it using XCACTI tool for various cache configura-
tions. Figure 5 shows the results in permillage of a normal
cache. For all the configurations we tested, the extra power
is within two permillage of the original cache. Thus, having
the write delay buffers will help reduce the overall power
consumption. In section 5, we will adopt this approach and
present the measurements.

(5) LAB=l
(6) LAB=O

read,write I 8KB I 16KB I 32KB I 64KB
I 1.5.1.7 1 1.1.1.2 1 0.7.0.7 1 0.7.0.8 1-wav

2-way 1 1.2,1.3 1 1.5,1.6 I 1.1,l.l I 0.7,0.7
4-wav I 0.5.0.6 I 1.7.1.8 I 1.3.1.3 1 0.6.0.6

Figure 5: Additional power consumed by write delay
buffers (in permillage of original cache).

4. ENERGY MODELING

I (7) rest access I

Figure 6: Power Consumption Components

In category 1/3/5, we save the energy of reading the en-
tire data array, which specifically are the energy consumed
in cache wordline, bitline and sense amplifier. As we men-
tioned, we also need to pay the energy overhead for access-
ing and updating LAB. In category 1-6, we pay the energy
overhead for accessing LAB. In category 2/4/7, we pay the
energy overhead for LAB update.

5. EXPERIMENT EVALUATION
We implemented our proposed lightweight set buffer tech-

nique in an execution driven simulation tool Simplescalar
[l] with cache power model extension XCACTI [4]. We
evaluated our design through running a subset of Media-
Bench benchmark [6] suite (currently there are 11 programs
that are running correctly in our system), then we used
XCACTI to calculate the energy saving on L1 data cache.
Without loss of generality, we varied the cache size and set-
associativity to cover a range of realistic cache configura-
tions. In order to show the advantage of our design, we
compare the energy saving with previous work, Wider Line
Buffer approach [a].

272

8 KB Cache LIm-

In this set of experiments, we used the following cache
. parameters for L1 data cache: 8KB direct-mapped, 16KB

2-way set-associative, and 32KB 4-way set-associative, all
with 32B line size. Our purpose is to compare with the
WLB design [2] and see if our lightweight set buffer is more
efficient. Our first set of experiments measures the power re-
duction percentage for both designs. The results are shown
in Figure 7 in three separate graphs for three cache configu-
rations. For all the configurations we tested, our lightweight
set buffer outperforms the WLB. On average, we achieve
23%/26%/29% power savings for 8KB/16KB/32KB cache
respectively. We observed that with about the same amount
of set buffer hit ratio (Figure l), highly associative caches
tend to benefit more since their total number of sense ampli-
fiers used in the data arrays is higher, The sense amplifiers
in the caches usually consume the bulk of overall power [4].
Reducing the data array activity directly translate to reduc-
ing sense amplifier power. Therefore, the set buffer are more
effective for highly associative caches.

The WLB design works well for medium or large cache
sizes as we can see from the figure. For small direct-mapped
cache, it increases the overall power because the it is not
worth complicating the logic and controls in small simple
structured caches. The WLB in these caches is simply an
overkill. On average, the WLB design reduces 14% and 13%
for 16KB and 32KB cache respectively, but increases the
8KB cache power consumption by 4.9%. From our experi-
ments, the WLB hit ratio is about twice as much as our set
buffer. However, the power savings is lower than our design
because of the over complex disign. We attribute this results
to the “simpler is better” rule.

Our lightweight set buffer design has another valuable fea-
ture in that it does not increase the overall power consump-
tion even when the set buffer hit ratio is very low. However,
the WLB is not as fortunate. To verify this observation, we
performed another set of experiments in which we intention-
ally preset the set buffer and WLB hit ratio a low number,
e.g. 3% of total cache accesses in which 1% are write hits.
The results are shown in Figure 8. Not to our surprise, the
WLB data for almost all the benchmarks are negative. While
in our design, we keep a minor but steady power saving per-
centages, 1.8%, 1.1%, and 0.6% for 8KB, 16KB, and 32KB
respectively. The LAB overhead as shown in Figure 4 is
so low that its effect is not even noticeable across different
benchmarks.

We believe the above feature is very appealing since this
results a safe low power cache design. In such a scenario, the
cache saves significant amount of power while the program
presents high set-wise access locality. On the other hand,
the cache can seamlessly turn to a “power safe mode” where
even low set-wise access locality can yield some amount of
savings.

6. CONCLUSION
In this paper, we designed a lightweight set buffer in data

cache to achieve favorable power savings without perfor-
mance degradation. The proposed technique works well for
multimedia applications that have high set-wise access lo-
cality. Compared to previous approaches, our technique re-
quires much less hardware overhead yet still yields better
results. Moreover, the lightweight set buffer does not over-
spend power even when the set-wise access locality is low.
This is a accomplishment that could not be achieved previ-

Figure 7: Overall Figure 8: Power vari-
power reduction corn- ations when set buffer
pared with WLB. WLB hit ratio is low.

ously.

7. REFERENCES
[l] D. Burger and T. Austin, “The SimpleScalar Tool Set,

Version 2.0,” Technical Report 1342, Uniu. of
Wisconsin-Madison, Comp. Sci. Dept., 1997.

[2] K. Ghose, M. B. Kamble, “Reducing Power in
Superscalar Processor Caches using Subbanking,
Multiple Line Buffers and Bit-Line Segmentation,”
ISLPED’99, pp. 70-75, 1999.

[3] S. Gunther and S. Rajgopal, Personal communication.
[4] M. Huang, J. Renau, S. M. Yoo, J. Torrellas, “L1 Data

Cache Decomposition for Energy Efficiency,”
ISLPED’Oi, pp. 10-15, 2001.

[5] N. P. Jouppi and S. J.E. Wilton, “An Enhanced Access
and Cycle Time Model for On-Chip Caches,” Research
Report 93/5, Compact Western Research Lab, July 1994.

“MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications,” MICRO-30, pp.

[7] Montenaro J. Et al., “A 16OMHz 32b 0.5W CMOS

[6] C. Lee, M. Potkonjak, W. H. Mangione-Smith,

330-335, 1997.

RISC Microprocessor,” International Solid-State Circuits
Conference, 1996.

and Performance 0ptimixation:A Case Study,”
[SI C. Su, A. Despain, “Cache Design Tradeoffs for Power

ISLPED’95, pp. 63-68, 1995.

273

