
R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 732 – 749, 2005.
© Springer-Verlag Berlin Heidelberg 2005

GREEN: A Configurable and Re-configurable
Publish-Subscribe Middleware for Pervasive Computing

Thirunavukkarasu Sivaharan, Gordon Blair, and Geoff Coulson

Computing Department, Lancaster University, Lancaster, LA1 4YR, UK
{t.sivaharan, gordon, geoff}@comp.lancs.ac.uk

Abstract. In this paper we present GREEN a highly configurable and re-
configurable publish-subscribe middleware to support pervasive computing
applications. Such applications must embrace both heterogeneous networks and
heterogeneous devices: from embedded devices in wireless ad-hoc networks to
high-power computers in the Internet. Publish-subscribe is a paradigm well
suited to applications in this domain. However, present-day publish-subscribe
middleware does not adequately address the configurability and re-
configurability requirements of such heterogeneous and changing
environments. As one prime example, current platforms can-not be configured
to operate in diverse network types (e.g. infrastructure based fixed networks and
mobile ad-hoc networks). Hence, we present the design and implementation of
GREEN (Generic & Re-configurable EvEnt Notification service), a next
generation publish-subscribe middleware that addresses this particular
deficiency. We demonstrate the configurability and re-configurability of
GREEN through a worked example: consisting of a vehicular ad-hoc network
for safe driving coupled with a fixed wide area network for vehicular traffic
monitoring. Finally, we evaluate the performance of this highly dynamic
middleware under different environmental conditions.

1 Introduction

Recent advance in wireless network technologies (e.g IEEE 802.11) and
computational devices (e.g. PDA, PC) have created opportunities for the vision of
pervasive computing applications [1], which embrace both fixed infrastructure based
(wired and wireless) networks and wireless ad-hoc networks. Event based
communication based upon the publish-subscribe model is well-suited to pervasive
computing applications, as it presents an asynchronous and decoupled communication
model [2], [3],[4],[44]. Notably, pervasive computing applications operate across
highly heterogeneous environments in terms of network types (e.g. WAN, MANET)
and device types. However, many publish-subscribe middleware have specifically
targeted fixed infrastructure based networks e.g SIENA [5], Gryphon [6], Hermes [7]
and JEDI [8]. At the other extreme STEAM [9] is specifically designed for wireless
ad-hoc networks. We argue that publish-subscribe middleware that operates over a
single homogenous network environment (i.e. WAN or MANET) and offers a single
(or fixed) interaction type (i.e topic based or content based) cannot cope with the
diversity of environmental constraints and requirements presented by pervasive
computing applications. Dealing with such extreme heterogeneity is a fundamental

 GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware 733

challenge for future publish-subscribe middleware and one that is demonstrably not
addressed by existing platforms. To overcome this problem we believe it is necessary
to build highly configurable and dynamically reconfigurable publish-subscribe
middleware which can be deployed in heterogeneous network types and
heterogeneous device types and meet application and environment specific
requirements.

This paper presents GREEN, a deployment and run-time reconfigurable publish-
subscribe middleware. GREEN follows the well established approach to the
development of reflective middleware [10], [11]; it uses the marriage of OpenCOM
components [12],[13], reflection [14] and component frameworks (CFs) [15] to yield
a configurable, reconfigurable and evolvable publish-subscribe middleware
architecture. In particular, GREEN is configurable to operate over heterogeneous
network types (e.g. MANET and WAN) and supports pluggable publish-subscribe
interaction types (i.e. topic based, content based, context, composite events). Further,
the underlying event routing mechanisms are reconfigurable to support selected
interaction type in different network types. The distributed event routing and event
filtering is underpinned by pluggable distributed event broker overlays; we create
overlays of event brokers to suit contrasting network types.

In the remainder of this paper we first, in section 2, describes our approach to
building reconfigurable middleware. Then, in section 3, we present the GREEN
architecture. In section 4, we describe the implementations of GREEN configurations
based upon a case study and then in section 5, provide performance results of our
work to date. Finally we survey related work in section 6, and present our conclusions
in section 7.

2 Building Re-configurable Middleware: Lancaster Approach

It is clear that GREEN middleware must accommodate an increasing diverse range of
requirements arising from the needs of both applications and underlying systems (e.g
device types, network types). Moreover, it is clear that to achieve this accommodation
GREEN must be capable of both deployment-time configurability and run-time re-
configurability. Unfortunately, the current generation of mainstream middleware is, to
a large extent, heavyweight, monolithic and inflexible and, thus, fails to properly
address such requirements. It is important to note, the approach for achieving re-
configurability is important in itself. Therefore, this section describes the approach
taken by GREEN to address these requirements. GREEN follows Lancaster’s well-
founded approach to building re-configurable middleware platforms [10],[11].
GREEN is built using our well founded lightweight component model [12],[13], uses
reflective techniques [10] to facilitate re-configuration, and employs the notion of
component frameworks (CF) to manage and constrain the scope of reconfiguration
operations.

Component technology [15] has emerged as a promising approach to the
construction of configurable software systems. With component technology, one can
configure and reconfigure systems by adding, removing or replacing their constituent
components. Importantly, components are packages in a binary form and can be
dynamically deployed within an address space. Additional benefits of component
technology include increased reusability, dynamic extensibility, improved
understandability and better support for long term system evolution. It should be

734 T. Sivaharan, G. Blair, and G. Coulson

noted, however, that current component models (e.g. Enterprise JavaBeans, Microsoft
COM) provide little or no support for integrity management; system integrity can be
easily compromised if run-time reconfiguration operations are not carried out with
great care. In our previous work we have addressed this problem and presented our
component model known as OpenCOM [12], [13]. OpenCOM is a lightweight, non-
distributed, language independent component model that is independent of any
infrastructures, thereby enabling GREEN middleware itself to be built using
components. Figure 1 shows the basic elements of the component model. Components
interact with other components through interfaces and receptacles. Interfaces are
expressed in terms of sets of operation signatures provided by the component.
Receptacles are required interfaces that are used to make explicit the dependencies of
a component on the other components. Bindings are associations between a single
interface and a single receptacle (within an address space).

Fig. 1. Basic elements of OpenCOM component model

Furthermore, our component model is highly reflective [10]; in other words, the

component configurations that comprise the middleware are associated with causally
connected data structures (called meta-structures) that represent (or, in reflection
terminology, ‘reify’) aspects of the component configurations, and offer meta-
interfaces through which these reified aspects can be inspected, adapted and extended.
The use of reflection facilities the management of run-time reconfiguration of the
middleware, and also helps address the issue of integrity management referred above.

The second key underpinning of GREEN is the adoption of the concept of
component frameworks (CFs) to architect and build GREEN. CF was originally
defined by [15] as ‘collections of rules and interfaces that govern the interaction of a
set of components plugged into them’. Each CF targets a specific domain and
embodies ‘rules, interfaces and components’ that make sense in that domain. The
rules define valid configurations (or graph) of components. Crucially CFs actively
police attempts to plug-in or swap new components according to these rules. It is
important to note, GREEN architecture consists, a set of hierarchically composed
component frameworks (more on this later). Furthermore GREEN applies our notion
of deep middleware [11], [46] in which the middleware platform reaches down into
the (heterogeneous) network to provide flexible communications services with which
to support a range of publish-subscribe interaction types at the application level.

3 The GREEN Architecture

3.1 Overview

This section describes the GREEN architecture, a generic, configurable,
reconfigurable and reflective publish-subscribe middleware to support pervasive
computing application development. GREEN uses OpenCOM as its component

Component Component
Binding

Interface

Receptacle

Single address space

 GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware 735

technology, is built as a set of component frameworks (CFs), and is based upon the
generic middleware framework proposed in [46]. This generic middleware framework
developed at Lancaster offers a two layered architecture, where the higher layer is an
interaction framework that takes plug-in interaction types (e.g publish-subscribe,
RPC, tuple-space); the lower layer is an overlay framework which takes plug-in
overlay implementations (e.g application level multicast overlays).

Fig. 2. The overall architecture

This approach separates middleware interaction types from the underlying overlay

network implementations as seen in figure 2, providing configurability, re-
configurability and re-use. Importantly, GREEN concentrates on ‘publish-subscribe’
based interaction types and ‘event broker overlays’.

Fig. 3. GREEN Architecture

The GREEN architecture consists of two main component frameworks (CFs); 1)

publish-subscribe interaction CF and 2) an event broker overlay CF (see figure 3).
The publish-subscribe interaction CF is configured by plugging in different publish-
subscribe interaction type implementations e.g. topic based, content based etc. The
event broker overlay CF is similarly configured by plugging in different overlay
protocol implementations, e.g. probabilistic multicast overlay for ad-hoc networks
and the Scribe [19] overlay for WAN etc; where overlay networks are virtual
communication structures that are logically laid over an underlying physical network
such as Internet or ad-hoc networks [17].

Finally, the GREEN top level CF (see figure 3) which is itself composed of two
layers of the above mentioned CFs; mandates the appropriate layer composition
between interaction CF and overlay CF and configures the two CFs to provide
distinct implementations of GREEN configuration(s). For example, 1) proximity and
content based publish-subscribe interaction type underpinned by probabilistic

Interaction Framework
Overlay Framework

Event models & Subscription languages plug-ins
Pub/Sub Interaction CF

Interaction Type API plug-ins
Event Filter engine plug-ins

Event Broker Overlay CF
Overlay plug-ins

Multiple dependencies

GREEN Top Level CF Control plug-ins Forward plug-ins State plug-ins

QoS Monitor plug-ins

Plug-ins

CF

736 T. Sivaharan, G. Blair, and G. Coulson

multicast overlay for ad-hoc networks and 2) a content based publish-subscribe
underpinned by Scribe [19] overlay for wide area networks (WAN) etc.

3.2 Publish-Subscribe Interaction Component Framework

The main function of the pub-sub interaction CF is to provide various pub-sub
interaction types such as topic based and content based etc. Therefore, over time the
framework may be configured as a topic based pub-sub personality where subscribers
can make topic based subscriptions, or change to content based pub-sub personality
for highly expressive content based subscriptions, or, context based system (e.g.
location and proximity based as in [9], [22]). Within the pub-sub interaction CF
changes can be made at distinct levels (illustrated in figure 3). Firstly each interaction
type API plug-in can be replaced; e.g. topic based interaction type API is replaced by
content based interaction type API. This re-configuration is performed according to
application requirements. Secondly, different subscription language plug-ins such as
FEL (described later) and XPATH [45], event data models (e.g. strings, sequences of
values (tuples), name-value pairs, XML based, objects) and the associated event filter
engine implementations can be plugged-in. The decision on the subscription language
plug-in and the event data model to configure, can be made in light of device context,
e.g. resource scarce embedded devices can use simple strings as event data model
instead of verbose XML. Furthermore, run-time reconfigurations can be made in
light of changes in the quality of service (e.g. throughput). For example, content based
interaction personality can be replaced by a topic based interaction to help obtain high
event throughput in the system.

In order to test and evaluate the pub-sub interaction CF, we have implemented 1)
interaction type API plug-ins (i.e topic based, content based and proximity based), 2)
an extensible subscription language known as FEL and its associated event filter
engine plug-ins and CLIPS -a composite event specification plug-in and 3) QoS
monitor plug-ins (i.e. TCB – discussed later).

Fig. 4. a) Grammar of FEL b) Grammar of extended FEL for Context

 Example subscriptions FEL Filter Type plug-in

1) //stock/[]
2) //stock/[%name%=IBM&%exchange%=$NYSE$&%price%>50]
3) //RoadTraffic/[%type%=$TrafficLight$]?#DISTANCE#<15

Topic
Topic+Content
Topic+Content+Context

Fig. 5. Example subscription types in FEL

Exp : : = a S b | a S b [T]
 S : : = { Subject names , * }
 T : : = t | t & T
 t : : = % name % operator $ value $
 name = { attributes names }
 operator = { = , > , < }
 value = { string or numeric values }
 a = // , b = / , * = Any subject
 Exp - Filter expression

 Exp : : = a S b ?#CONTEXT#operator$value$ |

 a S b [T]?#CONTEXT#operator$value$
 S : : = { Subject names , * }
 T : : = t | t & T
 t : : = % name % operator $ value $
 name = { attributes names }
operator = { = , > , < }
value = { string or numeric values }
 a = // , b = / , * = all subjects ,
CONTEXT = {DISTANCE , …..}

 GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware 737

FEL (Filter Expression Language) is an ‘extensible’ language that we have defined
and implemented, which enables the definition of topic filters, content filters and
context filters depending on the configured FEL plug-in type. The grammar of the
subscription language is illustrated in figure 4. A few example subscriptions in FEL
are illustrated in figure 5. Notably, example three is a context based subscription,
specifically a location context (i.e. proximity) and enables the subscriber (e.g. vehicle
) to receive ‘traffic light information generated from traffic lights which are located
within 15m distance‘. The context filter plug-in transparently handles adding context
data (e.g. GPS location coordinates) to the original events published by the
application. Importantly, the application programmer need not deal with context data.

The XML based event data model was chosen in the implementations as it’s easily
extensible, interoperable and it is platform and programming language independent,
however it suffers from high processing overhead. The FEL subscription language
plug-in is suited for individual event notifications. However, in some applications
subscribers may require to specify interest in the occurrence of multiple related
events. Specifying interest in composite events on top of a content based publish-
subscribe system is a powerful interaction type for many distributed applications [23].
Therefore, the popular rule-based inference engine CLIPS(C Language Integrated
Production System) [26] is provided as a additional plug-in in the framework for
applications which require rule-based composite events specification support. When
the CLIPS plug-in is configured, a subscriber can submit ‘event-condition-action’
based subscriptions. Some of the benefits of using CLIPS language are its platform
and language independence and the high efficiency of the inference engine. The
internal implementation of CLIPS is based upon RETE nets [27]. Furthermore, it is
feasible for new subscription languages and event data models to be dynamically
integrated into the framework at a later date.

3.3 Event Broker Overlay Component Framework

The primary function of the event broker overlay framework is to provide the
underlying distributed event routing and filtering implementations for the selected
interaction type plug-ins (see figure 3). The framework can be configured to provide
different overlay implementations depending on the network type (e.g. MANET,
WAN) and the interaction type of the personality. The overlay plug-in configured for
a particular pub-sub personality heavily influences 1) the suitability of the personality
to the network environment such as WAN, MANET, 2) scalability and 3) fault
tolerance properties of the system. The overlay CF provides pluggable overlays for
diverse environments (e.g. probabilistic multicast overlay for MANET and Scribe
overlay for WAN etc). The framework is configurable based on environmental
context such as the mobility model of the network, for example MAODV[31] overlay
implementation can be configured for ad-hoc networks with low mobility pattern and
can then be reconfigured to probabilistic multicast overlay if the ad-hoc network
becomes highly mobile.

In terms of design, the overlay CFs per-host overlay plug-ins are implemented in
terms of three standard component plug-ins (i.e. control, forwarding, state, see figure
3). The control component cooperates with its peer brokers on other hosts to build and
maintain the broker network topology. It is in charge of managing the overlay event
broker network. It encapsulates the distributed algorithms used to establish and
maintain the broker overlay structure. The forwarding component routes events over

738 T. Sivaharan, G. Blair, and G. Coulson

the broker network. This component enables pluggable event forwarding strategies.
For example, the simplest approach is to forward the event to all other brokers along
the broker tree overlay. Subscriptions are never propagated beyond the broker
receiving them. An alternative strategy is subscription forwarding: when a broker
receives a subscription from one of its neighbors, it stores the subscription in a
subscription table and forwards the subscription to all its remaining neighboring
brokers. This effectively sets event forwarding routes through the reverse path
followed by subscriptions. Finally, the state component encapsulates key states such
as nearest broker neighbours lists, connected clients lists (i.e. publishers, subscribers).

In order to test and evaluate the event broker overlay CF, we have populated the
framework with three alternative overlay plug-in implementations: probabilistic
multicast overlay for configuring pub-sub personality over mobile ad-hoc network,
Scribe overlay implementations for wide area networks and IP multicast for local area
networks (LAN) and infrastructure based wireless LAN. Furthermore, it is feasible for
new overlays to be dynamically integrated into the framework at a later date, in
addition to currently available overlay plug-ins.

4 Implementations of GREEN: A Case Study

In this section we consider a pervasive computing application case study and describe
how GREEN implementations are configured and reconfigured to meet the
requirements imposed by the application and the underlying heterogeneous
environment.

4.1 Application Scenario

The scenario embraces vehicular ad-hoc networks (VANET) and wide area fixed
network, to facilitate: 1) the autonomous inter-vehicle cooperation over VANET and 2)
the monitoring and control of vehicular traffic over a wide area network. The
experimental test-bed consists of a small number of robot vehicles augmented with
wireless LAN (IEEE 802.11b), GPS, ultrasonic sensors, magnetic compass and on-
board PDA. The laptops with WLAN placed on the roadside act as the bridge between
the VANET and the Internet. The autonomous vehicles travel along a given path,
defined by a set of GPS waypoints (a ‘virtual’ circuit). Every vehicle discovers and
cooperates with other vehicles in its proximity to travel safely and avoid collisions. The
vehicles in close proximity form a VANET. Furthermore, sensor data generated by
vehicles (i.e location, speed, bearings, time stamp) are relayed via WLAN to road-side
base stations placed only at strategic points on the road network. These base stations
connected to the Internet form a large scale wide area sensor network, thus facilitating
traffic monitoring and control. Users in the Internet may query traffic information
derived from vehicular sensor data (e.g. slow speed may imply high road traffic). The
vehicles approaching a base station needs to temporally reconfigure the personality to
operate over from the default WLAN ad-hoc mode to infrastructure mode to relay
sensor data to the base station. This application clearly embraces heterogeneous
networks and heterogeneous devices and presents two main requirements on GREEN 1)
QoS aware event-based middleware suited for mobile ad-hoc networks to enable inter-
vehicle communication 2) event-based middleware suited for fixed wide area network
to enable dissemination of vehicular sensor data to enable traffic monitoring and
control. More details of the VANET test-bed can be found in [28], [29].

 GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware 739

4.2 The GREEN Configuration for Mobile Ad-Hoc Networks

The GREEN configuration for MANET is specifically configured to address the
following requirements and constraints of the VANET environment:

• support inter-vehicle events communication in a mobile ad-hoc network
• end-to-end event channel QoS monitoring in ad-hoc networks
• content , proximity based interaction and composite events specification

Publish-Subscribe Interaction CF plug-ins for MANET
The GREEN configuration for MANET is illustrated in figure 6. It shows the
composition of the component plug-ins within the interaction CF. Similarly it shows
the composition of the component plug-ins in the overlay CF. It can be seen the
interaction CF is layered on top of the overlay CF by the GREEN top level CF, which
is not shown in the figure to simplify the presentation. The publish component (i.e.
the one that exports the IPublish interface) and the subscribe component (featuring the
ISubscribe interface) publish XML based events and subscribe to events of interest
respectively. ISubscribe interface supports a context (i.e proximity) based
subscriptions in addition to topic and content based subscriptions in FEL. The
proximity plug-in encapsulates the FEL context filter engine extended for location
context.

Fig. 6. GREEN configuration for MANET

Furthermore, subscribers can specify rule-based composite events using ICLIPS

interface. Subscribers specify composite events in the CLIPS language [26] as scripts
in a text file and load using the ICLIPS interface. The script files can be (un-)loaded
dynamically. The CLIPS component plug-in encapsulates the implementation of
CLIPS inference engine. Furthermore, clients can specify quality-of-service (QoS)
monitoring requirements using ITCB interface, particularly event delivery deadlines
and assign them to particular event types (i.e. event channels). For example, ‘event

ISubscribe

Interaction CF

IPublis
h

Publish

SOAP Messaging Proximity. Filter

IFilter

Subscribe

Event Dispatcher

TCB

ITCB

CLIPS

ICLIPS

IGroup

IDeliver

State Control Forward

Prob. Multicast Overlay
State Control Forward

IP. Multicast

IGroup
IDelive

Overlay CF

740 T. Sivaharan, G. Blair, and G. Coulson

channel a: event delivery deadline 300ms’ and ‘event channel b: event delivery
deadline 1000ms’. The callback function on the ITCB interface notifies the publisher
or subscriber(s) regarding event delivery deadline failures in a guaranteed time bound.
The event channel QoS monitoring functionality is implemented by University of
Lisboa’s Timely Computing Base (TCB) [30] plug-in. The TCB plug-in is configured
in this personality, as end-to-end event channel QoS monitoring and fail safety is a
crucial requirement in VANET for safe driving. Note though that TCB requires a
predictable MAC protocol for wireless ad-hoc networks such as TBMAC [32] and
also a real-time operating system. Interested readers can refer to [30] for more details
on the design of TCB.

Event Broker Overlay CF Plug-ins for MANET
The event broker overlay plug-in must address the unique challenge of MANET
environment (i.e. the topology of the network is highly dynamic). There are no fixed
infrastructures to place event brokers in MANET. Hence, a fully distributed event
broker overlay is implemented; where all mobile nodes perform partial event
brokering functionality (i.e event routing, filtering). Notably, producer side and
consumer side event filtering is supported. Event producers define the event type and
scope of event propagation. Subscriptions (content filters) are deployed only at the
consumer side unlike the common approach of subscription forwarding [5]. In
subscription forwarding strategy, the subscriptions (content filter) form a reverse path
for content based event forwarding. However forwarding subscriptions is not suitable
in VANET as reverse path(s) quickly become redundant as the network topology is
highly dynamic. Hence, in this overlay plug-in, event forwarding is based on event
type (i.e. topic) and proximity; each event type is hashed to a underlying multicast
group address. Events are forwarded from producers to consumers using the
underlying multicast overlay. Scalability has been identified as a drawback with the
aforementioned approach in WANs [5], [8]. We address this by allowing producers to
define proximity of the event propagation (e.g the proximity radius can be set to
25m), coupled with location aware event forwarding provided top of the underlying
multicast overlay. Furthermore, each consumer has to deal with small number of
content filters (i.e their own) compared to producers or dedicated event brokers
having to match potentially arbitrarily large number of content filters. This helps
distribute the event processing overhead evenly among the resource scarce wireless
mobile devices and avoids having single points of failure. The aforementioned
mechanism adopted by the event broker overlay plug-in is strongly influenced by
STEAM [9].

As mentioned before, a multicast overlay plug-in underpins the aforementioned
event broker overlay plug-in. This leads to the requirement of designing a multi-hop
multicast overlay suited for VANET. There exist numerous multicast algorithms (both
proactive and reactive) for ad-hoc networks. However, most existing algorithms
(MAODV, AMRoute, CAMP, MCEDAR, etc.) perform inadequately when high node
mobility is present in the MANET environment [31] e.g. as in VANETs. Hence we
implemented a probabilistic multicast overlay plug-in (see fig 6); a multi-hop
multicast protocol suited for MANETs with high node mobility. This is an
unstructured overlay that intelligently floods events. Each node intelligently decides
whether or not each message received should be forwarded to its neighbors. The
decision is based on previous messages that the node has received; if a large number
of duplicates of a message have already been received, the probability the message is
forwarded reduces.

 GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware 741

Furthermore, by default, the personality in each PDA (i.e. vehicle) is configured to
operate over the probabilistic multicast overlay plug-in (in WLAN ad-hoc mode). The
overlay CF is dynamically reconfigured to operate over an IP multicast plug-in
(WLAN in infrastructure mode), as shown in fig 6, when the environmental context
changes (i.e. ‘if PDA is within the coverage of a fixed base station’).

4.3 A GREEN Configuration for Wide Area Networks

The GREEN configuration for WAN (see figure 7) is configured to address the
following requirements and constraints of the fixed WAN environment:

• support events communication in wide area fixed infrastructure based
networks to enable distributed vehicular traffic monitoring and control

• support content based interaction type

Publish-Subscribe Interaction plug-ins for WAN
Similar to MANET configuration, the configuration for WAN (see fig 7) shows how
the component plug-ins are composed within the interaction CF and the overlay CF to
meet the requirements and constrains of WANs. Here we focus only on the
differences compared to the MANET configuration. The configuration illustrated in
figure 7 allows a content based subscription (in addition to topic) only. Assuming
content filters would be adequate here, the CLIPS plug-in to specify rule based
composite events is not configured. WAN is used for disseminating non critical traffic
data; hence do not require stringent QoS requirements as in VANET. Therefore, the
TCB plug-in is not configured as well.

Event Broker Overlay plug-ins for WAN
The WAN environment requires large scale publish-subscribe middleware between
elements across the Internet. In the default configuration shown in fig 7; the event

Fig. 7. GREEN configuration for WAN

INotify

Publish

SOAP Messaging Content. Filter
IFilter

Subscribe

ISubscribe

Event Dispatcher

Interaction CF
Notifier

IForward

IPublish

State Control Forward

Content based routing Overlay

State Control Forward

Scribe Overlay

State Control Forward

Chord DHT Overlay

State Control Forward

IP Multicast

Overlay CF

742 T. Sivaharan, G. Blair, and G. Coulson

broker overlay plug-in is underpinned by a Chord DHT (distributed hashtable) [21]
overlay.

Here, the event broker overlay plug-in uses rendezvous nodes in the network,
which are special event brokers that are known to both producers and consumers. For
each event type, a rendezvous node exists in the network. An event type is hashed to a
rendezvous point. When a consumer subscribes, the subscription (i.e. content filter) is
forwarded towards the rendezvous node R. Every broker that forwards a subscription
stores the content filter and event type. Event publications are routed to rendezvous
nodes for the event type and then follow the reverse path taken by the subscriptions.
This event broker overlay plug-in is similar to the basic event routing mechanisms
adopted in Hermes [7]. This overlay plug-in is suited for fixed WANs where the
broker topology is fixed. The advantage is the support for content based routing,
which is more scalable in WANs. The alternative overlay plug-in as illustrated in fig 7
is Scribe over Chord overlay where each event type is hashed to a Scribe multicast
group. This alternative overlay plug-in does not support content based event routing
but supports the content based filtering at consumer side. The configuration handles
situations where the broker network is subject to topology changes triggered by node
and/or link failures. This is made possible as the Scribe overlay [19] manages broker
topology changes [19]. Moreover IP multicast plug-in can be configured instead of
the Scribe overlay in conditions where network supports IP multicast. A node which
is configured to have separate IP multicast and Scribe overlay plug-ins can act as a
bridge between the WAN and the VANET (e.g road side base stations mentioned in
the application scenario), hence, enabling dissemination of vehicular sensor data
generated from VANETs to be distributed over WANs.
 Both the above configurations (i.e for MANET, WAN) have been implemented. In
addition other configurations, not discussed in this paper, have been integrated to
provide publish-subscribe communication infrastructure in our other integrated
middleware platforms e.g. CORTEX Middleware for sentient object based, context
aware applications in mobile ad-hoc networks [33], ReMMoC a service oriented
middleware for mobile clients in infrastructure based wireless networks [34] and
GridKit for GRID applications in large-scale networks [18]. The case study clearly
demonstrates how the single flexible GREEN middleware is adaptable to various
events matching schemes and underlying infrastructure.

5 Evaluation

This section provides concrete performance results of the GREEN family of
configurations. It provides quantitative evaluation results on 1) the cost of personality
configuration and dynamic reconfiguration and 2) memory footprint cost of GREEN
middleware. The experiments utilize a combination of following base device types 1)
PDA: HP iPAQ h5450 pocket PC device with a 206MHz strongARM processor,
64Mbytes of system RAM, windows CE 3.0 operating system and IEEE 802.11b
wireless network at 11Mbytes/s; 2) PC: 1.7GHz processor and 256Mbytes RAM with
windows XP and 100Mbytes/s fast Ethernet.

Experiment 1: Measurements of start-up, configuration, and dynamic fine-grain
reconfiguration operations. This experiment evaluates the performance costs
incurred by three reflective operations provided by OpenCOM run-time (i.e. loading,

 GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware 743

binding, dynamic reconfiguration) on a PDA hosting the GREEN configuration for
MANETs (see fig 6 for the configuration). The experiments measure the timing cost
of loading components and configuring into configuration A (i.e. IP multicast as the
overlay plug-in, see fig 6) and configuration B (i.e probabilistic multicast as overlay
plug-in) and finally, the cost of dynamic fine-grain reconfiguration from configuration
A to configuration B and vice versa by changing the overlay plug-ins . The results of
the experiments are illustrated in fig 8 and demonstrate where the actual overheads
occur.

Personality

Components
Load time
(ms)

Components
binding
time(ms)

Total
start-up
time(ms)

Dynamic
reconfiguratio
n time(ms)

Total
componen
ts

Number
bindings

Config’ A 2580 176 2756 77 (A to B) 10 10
Config’ B 2587 171 2758 76 (B to A) 10 10

Fig. 8. Measurements of base reflective operations

The components load time is the most expensive reflective operation and consumes
a large part of the overhead incurred in personality configuration. This is because
each component is a separate dynamic link library (DLL) that must be first loaded
into program memory from storage memory in Windows CE operating system. The
component configuration time (i.e. binding time) represents the time taken to initiate a
new configuration personality by binding component interfaces to component
receptacles. Configuring the middleware personality costs less compared to loading
the components (i.e configuring takes 6.33% of the time compared to 93.66% time
taken to load components in config’ A personality). Furthermore, the time taken to do
fine-grain reconfiguration is consistently lower compared to the initial startup time of
the personalities (i.e. fine-grain reconfiguration took 2% of the initial startup time).

Impact of dynamic fine grain reconfiguration. Fig 9 illustrates the experiment
investigating the impact of dynamic fine-grain reconfiguration, on a topic-based
publish-subscribe service invocation. For this purpose, the middleware was used to
invoke 1000 publish calls using both configuration A (i.e IP multicast as overlay
plug-in) and configuration B (probabilistic multicast as overlay plug-in) within a host,
and dynamically reconfiguring between the two with varying levels of frequency. The
first test involved no dynamic reconfiguration; this is a simulated base test of the time
taken to perform 500 publish invocations using configuration A and 500 publish
invocations using configuration B. Subsequent tests used the architecture meta-model
interface of the CFs to dynamically reconfigure the underlying overlay plug-in. In test

Test Description Time(ms) Publish calls/second % Time increase from base test 1

1) 500 publish calls using config A
+ 500 publish calls using config B

3185

313.97

0

2) 500 config A then 500 B 3283 304.59 3.07
3) 250 config A then 250 B (x2) 3853 259.53 20.97
4) 100 config A then 100 B (x5) 5198 192.38 63.20
5) 50 config A then 50 B (x10) 6260 159.74 96.54

Fig. 9. Cost of dynamic reconfiguration

744 T. Sivaharan, G. Blair, and G. Coulson

two, 500 publish calls were performed by configuration A, then dynamically
reconfigured to configuration B and then 500 further publish calls were made.
Similarly, test three performed 250 publish calls using configuration A then 250
publish invocations using configuration B and this was repeated again.

The results of the five tests are shown in fig 9. It can be seen, as the frequency of
reconfigurations increases, the time taken to perform 1000 invocations increases.

For behavior where reconfiguration is generally out-of-band, i.e. infrequent
compared to the number of base service calls, the additional overhead is less
significant (a 3.07% increase in time). However, as fine grain reconfiguration
becomes more frequent, e.g. 10 reconfigurations in 1000 base invocations, the
overhead becomes significantly greater (a 96.54% increase in time). An example out-
of-band scenario which requires the above reconfiguration is, where a PDA is
required to reconfigure from configuration A to configuration B when the PDA loses
the coverage of a base station. Then the PDA have to use an ad-hoc multicast protocol
such as probabilistic multicast overlay instead of IP multicast (i.e. as no support in
MANET) to communicate with its peers. Overall the experiment shows dynamic
reconfiguration does not necessarily result in high performance cost.

Experiment 2: Evaluation of the memory footprint cost of GREEN
At present mobile and embedded devices have a limited amount of system memory,
which can quickly be consumed by the applications. Therefore it is important to
minimize the amount of memory needed to store the middleware implementations in a
device.

Config-
No

Descriptions Environment

1 Topic based P/S over IP Multicast WinCE, WLAN
2 Topic based P/S over Prob. Multicast overlay WinCE, WLAN
3 Content based P/S over IP Multicast WinCE, WLAN
4 Content based P/S over Prob. Multicast overlay WinCE, WLAN
5 Proximity based P/S over IP Multicast WinCE, WLAN , GPS
6 Proximity based P/S over Prob. Multicast overlay WinCE, WLAN, GPS
7 Config' 3 + QoS (TCB) WinCE, WLAN
8 Config' 6 + Composite events spec(CLIPS) WinCE, WLAN , GPS

Fig. 10. Test configurations for memory footprint measurements on PDA

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

Configuration Number

M
em

o
ry

 F
o
o
tp

ri
n
t
(
K
B
)

CLIPS

TCB(TimelyCo’Base)

EventDispatcher

IPMulticast

Prob.Multicastoverlay

SOAP Messaging

Proximity Filter(+Content)

Content Filter

Topic Filter

Subscribe

Publish

OpenCOM (run time)

Component Name

Fig. 11. Memory footprint of GREEN configurations for PDA (MANET)

 GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware 745

Config- No Descriptions Environment
1 Topic based P/S over IP Multicast WinXP, LAN
2 Topic based P/S over Scribe overlay WinXP, WAN
3 Content based P/S over IP Multicast WinXP, LAN
4 Content based P/S over Scribe overlay WinXP, WAN
5 Config4+ Composite events spec(CLIPS) WinXP, WAN

Fig. 12. Test configurations for memory footprint measurements on PC (WAN)

This section examines the resource costs in terms of the static memory footprint of

diverse GREEN configurations. Fig 10 documents some valid configurations currently
supported for MANETs and fig 11 illustrates the memory costs of the corresponding
configurations. Similarly fig 12 documents some valid configurations currently
supported for WANs and fig 13 illustrate the memory costs of the corresponding
configurations. All the implemented and listed components (in fig 11,13) are OpenCOM
components and are implemented in C/C++, except the Scribe overlay component
which is implemented in Java. Fig 11 and 13 also illustrate the constituent components
of the respective configurations and show how different configurations are composed.
The configurations are suited for mobile devices with limited memory, as most
configurations for PDAs (WinCE) are around 100Kbytes (e.g. configurations 1, 3, 5 in
fig 11). The most expensive configuration in terms of memory for PDAs is
configuration 8 and this is mainly due to the high footprint of the CLIPS component.
Furthermore, GREEN conserves memory in two distinct levels. Firstly, by only storing
the components required by the personality in the storage memory of the device (i.e
savings on the storage memory of the PDA). Secondly, only the components that are
currently used by configuration are loaded (the OpenCOM run-time provides operations
to load and unload components at run-time) into program memory from storage
memory (i.e. savings in program memory usage) and components are unloaded from
program memory if they are no longer required by the new configuration.

Overall, this experiment shows how GREEN family of configurations achieves low
memory footprint despite its generality and flexibility.

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5

Configurations

M
em

o
ry

 F
o
o
tp

ri
n
t(
 K

B
) CLIPS

EventDispatcher
Scribe Overlay)
IPMulticast
SOAP Messaging
Content Filter
Topic Filter
Subscribe
Publish
OpenCOM (run time)

Component Name:

Fig. 13. Memory footprint of GREEN configurations for PC (WAN)

6 Related Work

Today there exists many research and commercial publish-subscribe systems such as
SIENA [5], JEDI [8], Gryphon [6], Elvin [36], MSMQ [37], SonicMQ [38]. This

746 T. Sivaharan, G. Blair, and G. Coulson

research has primarily focused on the support of various non-functional properties
such as scalability, reliability, etc, largely on fixed network environments.
Furthermore, some have attempted to address the emergence of mobile computing:
JEDI [8] extends support for client mobility within an infrastructure based wireless
networks where event brokers are fixed; and STEAM [9] is specifically designed for
mobile ad-hoc networks where broker topology constantly changes. From the
functional point of view, existing systems implement a fixed publish-subscribe
interaction type (i.e. topic based or content based etc). In general, less emphasis has
been placed upon publish-subscribe systems which are open, configurable and re-
configurable to support changeable publish-subscribe interactions types which
embraces diverse network types and device types.

The only work we know, of constructing highly configurable publish-subscribe
middleware are DREAM [39], REDS [40] and the work of Filho et.al [41]. DREAM
[39] provides a component framework for configurable and dynamic message-
oriented middleware. However, DREAM does not explicitly support distributed
network of event brokers. A configurable and dynamic notification service is
provided by [41]. However, it does not explicitly support MANETs. REDS [40]
provides a configurable, distributed event dispatching system. However it is
configurable only within the scope of content based systems in WANs and lacks
support for dynamic re-configuration of middleware. Furthermore, these systems do
not explicitly support pluggable interaction types and they do not explicitly embrace
different network types and device types and hence fall short of providing the level of
re-configurability of GREEN.

Finally, there are number of middleware platforms that take a reflective approach
to provide configurable and reconfigurable system. However, their focus has largely
been on synchronous interaction, e.g. DynamicTAO [42] and UIC [43] are CORBA
ORBs offering remote object invocations. Furthermore, there is considerable research
in the narrower field of overlay networks themselves but this work is largely
orthogonal to our focus. In particular, there are numerous multicast and routing
protocols for ad-hoc networks such as MAODV, AMRoute, CAMP, MCEDAR which
can underpin different overlays in MANET [31].

7 Conclusions

In this paper we have described our approach to the provision of open, highly
configurable and re-configurable publish-subscribe middleware that embraces
different network types and interaction types. We have empirically demonstrated
using an evaluation scenario: that our architecture, has considerable generality and
flexibility in supporting pervasive computing applications. The pluggable event
broker overlay structure enables us to embrace different network types such as mobile
ad-hoc networks and large scale networks. The pluggable interaction types provide a
powerful programming model for the application developers. The architecture is
extensible in that new publish-subscribe interaction types and event broker overlays
can be developed and plugged into the middleware, even at run-time. Furthermore,
performance evaluations of the middleware have demonstrated that flexibility is not
necessarily at the expense of performance. Furthermore, the performance figures
provide a clear insight into the relative performance tradeoffs for different

 GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware 747

configurations. Ongoing work is investigating the impact on GREEN in sensor
networks based on motes, tacking the issues of memory size and reconfiguration in
such areas.

Acknowledgments

This work is partly supported by the IST-FET-2000-26031, (CORTEX- CO-operating
Real-time senTient objects: architecture and EXperimental evaluation) project and
FP6-IST-004536 (RUNES-Reconfigurable Ubiquitous Networked Embedded
Systems) project.

References

[1] M. Weiser. Ubiquitous computing. IEEE Hot Topics, 26(10):71--72, 1993.
[2] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, and M. Spiteri.

Generic support for distributed applications, IEEE Computer, 33(3):68--76, 2000.
[3] Blair, G.S., Campbell, A.J., Schmidt, D.C., "Middleware Technologies for Future

Communication Networks", IEEE Network, Vol. 18, No. 1, January 2004.
[4] C. Mascolo, L. Capra, Emmerich,w. "Middleware for Mobile Computing (A Survey)". In

Advanced Lectures on Networking - Networking 2002 Tutorials, Pisa, Italy. volume 2497
of LNCS, pages 20-58.

[5] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf "Achieving Expressiveness and Scalability
in an Internet-Scale Event Notification Service". Nineteenth ACM Symposium on
Principles of Distributed Computing (PODC2000), Portland OR. July, 2000

[6] G.Banavar et al. An Efficient Multicast Protocol for Content-based Publish-Subscribe
Systems. In Proc. of the 19th Int. Conf. on Distributed Computing Systems, 1999.

[7] P. R. Pietzuch and J. M. Bacon. Hermes: A Distributed Event-Based Middleware
Architecture. In Proc. of the 1st Int. Workshop on Distributed Event-Based Systems, July
2002.

[8] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastructure and its
application to the development of the OPSS WFMS. IEEE Trans. on Software
Engineering, 27(9):827–850, September 2001.

[9] Rene Meier, V. C. "Steam: Event-based Middleware for Wireless Ad Hoc Networks.". In
Proceeding of the International Workshop on Distributed Event-Based Systems
(DEBS’02), Austria. 2002.

[10] Coulson, G., Blair, G.S., Clark, M., Parlavantzas, N., “The Design of a Highly
Configurable and Reconfigurable Middleware Platform”, ACM Distributed Computing
Journal, Vol 15, No 2, pp 109-126, April 2002.

[11] Blair, G., Coulson, G., Grace, P., "Research Directions in Reflective Middleware: the
Lancaster Experience", Proceedings of the 3rd Workshop on Reflective and Adaptive
Middleware (RM2004) co-located with Middleware 2004, Toronto, Ontario, Canada,
October 2004

[12] Clark, M., Blair, G.S., Coulson, G., Parlavantzas, N., “An Efficient Component Model for
the Construction of Adaptive Middleware”, Proc. IFIP Middleware 2001, Heidelberg,
Germany, Nov. 2001.

[13] Coulson, G., Blair, G.S., Grace, P., Joolia, A., Lee, K., Ueyama, J., "OpenCOM v2: A
Component Model for Building Systems Software", Proceedings of IASTED Software
Engineering and Applications (SEA'04), Cambridge, MA, ESA, Nov 2004.

748 T. Sivaharan, G. Blair, and G. Coulson

[14] Kon, F., Costa, F., Blair, G.S., Campbell, R., "The Case for Reflective Middleware:
Building Middleware that is Flexible, Reconfigurable, and yet simple to Use", CACM,
Vol. 45, No. 6, pp 33-38, 2002.

[15] Szyperski, C.,Component Software: Beyond Object-Oriented Programming. Addison
Wesley, 1998.

[16] Coulson, G., Grace, P., Blair, G.S., Cai, W., Cooper, C., Duce, D., Mathy, L., Yeung,
W.K., Porter, B., Sagar, M., Li, J., “A Component-based Middleware Framework for
Configurable and Reconfigurable Grid Computing” to appear in Concurrency and
Computation: Practice and Experience, 2005.

[17] Doval, D ,O’Mahony, D, “Overlay Networks: A scalable alternative for P2P”, IEEE
Internet computing, jul-aug 2003

[18] Grace, P., Coulson, G., Blair, G., Mathy, L., Duce, D., Cooper, C., Yeung, W., Cai, W.,
"GRIDKIT: Pluggable Overlay Networks for Grid Computing", Proceedings of
International Symposium on Distributed Objects and Applications (DOA), Larnaca,
Cyprus, October 2004

[19] Castro, M., Druschel, P., Kermarrec, A-M., Rowstron, A., “SCRIBE: A Large-Scale and
Decentralised Application-Level Multicast Infrastructure”, IEEE Journal on Selected
Areas in Communications (JSAC) (Special issue on Network Support for Multicast
Communications), 2002.

[20] Rowstron, A., Druschel, P., “Pastry: Scalable, Distributed Object Location and Routing
for Large-scale Peer-to-Peer Systems”, Proc. IFIP Middleware 2001, Heidelberg,
Germany, Nov, 2001.

[21] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., Balakarishnan, H., “Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications”, Proc. ACM SIG-COMM, San
Diego,2001.

[22] X. Chen, Y. Chen, and F. Rao, “An Efficient Spatial Publish Subscribe System for
Intelligent Location-Based Services,” Proceedings of the 2nd International Workshop on
Distributed Event-Based Systems (DEBS '03), June 2003

[23] S. Schwiderski. Monitoring the behaviour of distributed systems. PhD thesis, University
of Cambridge, April 1996.

[24] A. P. Buchmann. Architecture of active database systems. In N. W. Paton, editor, Active
Rules in Database Systems, 2: 29–48. Springer-Verlag, 1999.

[25] S. Chakravarthy and D. Mishra. Snoop: An Expressive Event Specification Language for
Active Databases. Data and Knowledge Engineering, 14(1):1–26, November 1994.

[26] Gary Riley. CLIPS homepage. http://www.ghg.net/clips/CLIPS.html, 2002.
[27] Charles Lanny Forgy. RETE: A Fast Algorithm for the Many Patterns/Many Objects

Pattern Match Problem. Artificial Intelligence, 19(1):17–37, September 1982.
[28] Sivaharan, T., Blair, G.S., Friday, A., Wu, M., Duran-Limon, H., Okanda, P., Sørensen,

C.F., "Cooperating Sentient Vehicles for Next Generation Automobiles", Proc of the
MobiSys, 1st ACM Workshop on Applications of Mobile Embedded Systems (WAMES
2004), Boston, USA, June 6, 2004

[29] Collaborative Robotics Research at Lancaster university http://www.comp.lancs.ac.uk/
computing/users/angie/rendezvous/robotics.html

[30] Antonio Casimiro, Paulo Verissimo. Using the Timely Computing Base for Dependable
QoS Adaptation. In Pro of the 20th IEEE Symposium on Reliable Distributed Systems,
pages 208–217. IEEE Computer Society Press, 2001.

[31] Royer, E. M., Toh, C-K., A Review of Current Routing Protocols for Ad-Hoc Mobile
Wireless Networks, IEEE Personal Communications Magazine, pp 46-55, April 1999.

[32] R.Cunningham and V. Cahill, “Time Bounded Medium Access Control for Ad Hoc
Networks”, in Proceedings of the Second ACM International Workshop on Principles of
Mobile Computing (POMC'02). Toulouse, France: ACM Press, 2002, pp. 1-8.

 GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware 749

[33] Sørensen, C.F., Wu, M., Sivaharan, T., Blair, G. S., Okanda, P., Friday, A., Duran-Limon,
H., "A Context-Aware Middleware for Applications in Mobile Ad Hoc Environments",
Proc’ of the 2nd Workshop on Middleware for Pervasive and Ad-Hoc Computing
(MPAC'2004) at Middleware 2004, Toronto, Canada, October 2004.

[34] Grace, P., Blair, G. S, Samuel, S., "ReMMoC: A Reflective Middleware to Support
Mobile Client Interoperability". In Proceedings of International Symposium on
Distributed Objects and Applications (DOA), Catania, Sicily, Italy, November 2003.

[35] S.Chen, p. Greenfield: QoS evaluation of JMS: an empirical approach, In Proc. of the
37th Hawwaii International Conference on System Sciences, Hawaii, USA, 2004

[36] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelpsothers. Content Based Routing
with Elvin4. In Proc. of the 2000 Australian UNIX and Open Systems Users Group
Annnual Conf., Canberra, Australia, June 2000.

[37] Microsoft Message Queuing (MSMQ),2002. Microsoft, http://www.microsoft.com/msmq/
[38] SonicMQ, 2002. Sonic software, http://www.sonicsoftware.com
[39] M. Leclercq, V. Quema, and J.-B. Stefani. Dream: a component framework for the

construction of resource-aware, reconfigurable moms. In Proc. of the 3rd Workshop on
Adaptive and Reflective Middleware, pages 250–255. ACM Press, 2004.

[40] Gianpaolo Cugola, Gian Pietro Picco. REDS: A Reconfigurable Dispatching System"
technical report , Politecnico di Milano (submitted for publications) ,2005

[41] Silva Filho R. S., De Souza C. R. B., Redmiles D. F. The Design of a Configurable,
programmable and Dynamic Notification Service. in Proc. Second International
Workshop on Distributed Event-Based Systems (DEBS'03), USA, June 8th, 2003.

[42] Kon, F., Roman, M., Liu, P., Mao, J., Yamane, T., Magalhaes, L., Campbell,
R.,“Monitoring, Security, and Dynamic Configuration with the dynamicTAO Reflective
ORB”,Proc. of Middleware 2000, ACM/IFIP, April 2000.

[43] Roman, M., Kon, F., Campbell, R., “Reflective Middleware: From Your Desk to Your
Hand”, IEEE Distributed Systems Online, 2(5), August 2001.)

[44] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, The many faces of
publish/subscribe, ACM Computing Surveys, (2):114--131, 2003.

[45] XML Path Language (http://www.w3.org/TR/xpath20/)
[46] Grace, P., Coulson, G., Blair, G.S., Porter, B., “Deep Middleware for the Divergent

Grid”, Proc. IFIP/ACM/USENIX Middleware 2005, Grenoble, France, November 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

