
Channel-Based Behavioral Test Synthesis for Improved Module Reachability*

Yiorgos Makris and Alex 2UDLOR÷lu
Reliable Systems Synthesis Lab – CSE Department

University of California, San Diego
La Jolla, CA 92093

                                                          
*  This work is supported in part through a research grant from Intel Corporation under contract CSE 0129-58678A.

Abstract

We introduce a novel behavioral test synthesis
methodology that attempts to increase module
reachability, driven by powerful global design path
analysis. Based on the notion of transparency channels,
test justification and propagation bottlenecks are revealed
for each module in the design. Subsequently, the proposed
behavioral test synthesis scheme eliminates, during
scheduling, allocation and binding, as many reachability
bottlenecks, as possible. Furthermore, it identifies the
control states and provides the templates required for
translating each module’s test into global design test. We
demonstrate our scheme on a representative example,
unveiling the potential of path analysis based techniques
to accurately identify and eliminate module reachability
bottlenecks, thus guiding behavioral test synthesis.

1. Introduction

High-level synthesis [3] has become an inseparable
part of modern circuit design, providing an automated
mechanism of exploring hardware implementation
alternatives while optimizing design attributes. Local
neighborhood design optimizations, typically performed
by high-level synthesis tools, have proven efficient for
improving area, power and performance requirements.
Nevertheless, future high-level synthesis success may rely
on global design examination in order to efficiently
address increasing performance requirements and
additional attributes such as testability. Considering
design reachability paths during high-level synthesis not
only provides an edge for testability related optimizations

but also enhances the scope of critical timing path and
power dissipation improvements. Towards this direction,
design path analysis information constitutes a precious
resource for innovative high-level synthesis solutions.

Behavioral test synthesis [2,7] incorporates testability
considerations in the high-level synthesis process. Its
success has been questionable, however, mainly due to a
discrepancy in the abstraction level of test paths and
testability optimizations. Test has been traditionally based
on structural accessibility paths, while behavioral test
synthesis is applied on a high-level design model. The
lack of a sufficient bridging mechanism between the two
levels has limited the efficacy of previous approaches.
Recently, the tremendous complexity of modern circuits
and new approaches such as core-based designs have
effected a paradigm shift in the test area. Viable test
solutions are based on hierarchical schemes, wherein
high-level module reachability path knowledge is
required. Therefore, behavioral test synthesis for
improved module reachability constitutes an innovative
solution, akin to future test trends. In the proposed
approach, a powerful channel-based path analysis
methodology described in section 2, facilitates an efficient
behavioral test synthesis scheme. An orthogonal approach
for BIST through behavioral synthesis is presented in [5],
while an early modular scheme can be found in [6].

2. Scheme overview

The proposed behavioral test synthesis scheme
depicted in figure (1), targets circuits that are tested in a
modular fashion. Local test is generated for each module
and subsequently translated and applied from the design

Figure (1): Proposed methodology scheme

Unconstrained
High-Level
Synthesis

Channel-Based
Reachability

Analysis

Channel-Based
Behavioral

Test Synthesis

Channel-Based
Reachability

Analysis

Behavioral
Description

Design
Constraints

Pre-RTL Post-RTL
Reachability
Bottlenecks

Test Paths &
Reachability Templates

Reachability
Bottlenecks

Control
Requirements



boundary through test paths, thus eliminating complete
circuit ATPG. However, due to lack of global design
knowledge during local test generation, test translation
relies on sufficient module access. The objective of the
proposed method is to supply, by construction, adequate
module access paths, thereby improving reachability.
Such path information may further be used to generate the
templates for translating local vectors into global test and
the control states required for instantiating the test paths.

Starting with a behavioral design description, we
perform an initial high-level synthesis step that transforms
a scheduled data-flow graph (DFG) into an RTL
representation, denoted as Pre-RTL. We analyze the RTL
design and identify the reachability bottlenecks based on
the notion of module transparency channels, as explained
in section 3. These bottlenecks are considered in
conjunction with design constraints during the scheduling,
allocation and binding phases of the behavioral test
synthesis step, described in section 4. This step attempts
to eliminate as many reachability bottlenecks as possible
from the resulting RTL representation Post-RTL, by
increasing module test path accessibility. A final analysis
phase is subsequently applied in order to identify any
remaining bottlenecks and to supply the test paths, the
reachability templates and the necessary control signals,
as described in sections 5 and 6, respectively.

3. Channel-based reachability analysis

Test paths and bottlenecks are identified through an
RTL test justification and propagation path analysis
methodology. The complexity associated with examining
exhaustively the functional space of a design during
reachability analysis would doom any such approach.
Instead, the proposed analysis scheme utilizes only test
translation related behavior, defined in terms of
transparency channels.

3.1. Methodology description

Transparency channels are bijection functions between
input and output signal entities of a module. Transparency
channels capture the ability of a module to become
transparent during test justification and propagation and
may be defined across clock cycles. Channels are activated
based on the compliance of one or more conditions
defined on signal entities and combined through operators.
Controllability and observability of primary inputs and
outputs is captured through the well and drain notion,
respectively. Wells and drains comprise a potential that
defines the types of signals that can be generated or
evaluated. The reachability potential of a test path is the
composite function of the transparency channels on it.

Transparency channels are combined through a design
traversal algorithm that examines the reachability of each
module for test justification and propagation. The analysis

algorithm is capable of addressing in a uniform manner,
combinational and sequential, data and control path logic.
Furthermore, the algorithm handles efficiently feedback
loops, reconvergent paths and variable bitwidth signals. A
minimal set of bottlenecks is obtained through further
analysis and combination of the bottlenecks identified for
each module. A detailed description of the channel-based
test reachability analysis scheme can be found in [4].

3.2. Example circuit

In order to demonstrate the proposed methodology,
we will extensively use as an example circuit a complex
pipelined multiplier accumulator (MAC), originally
described in [1]. The MAC operates on two sequences of
complex numbers {xi} and {yi}, multiplying corresponding
elements of the sequences and accumulating the sum of
the products. Each complex number is represented in
Cartesian form consisting of a real and an imaginary part.
The MAC calculates the result by forming the complex
product of successive pairs of complex numbers and
accumulating them in a register in a pipelined fashion.

The MAC DFG is shown in figure (2), scheduled for
3 pairs. In figure (3) we depict the corresponding
synthesized Pre-RTL block diagram and an example of
how the analysis scheme identifies reachability
bottlenecks by examining the potential at each module
boundary. Table (1) summarizes the RTL circuit, pointing
out the reachability bottlenecks that the behavioral test
synthesis scheme will attempt to eliminate.

Figure (2): Scheduled DFG for MAC (3 pairs)

t0

t1

****

A  16 B  16 C  16 D  16

E  32 F  32 G  32 H  32

± ±‘1’ ‘0’

I  20 J  20

++

‘0’ ‘0’

K  22 L  22FF1 FF2

OVF

‘1’ ****

A  16 B  16 C  16 D  16

E  32 F  32 G  32 H  32

± ±‘1’ ‘0’

I  20 J  20

++

K  22 L  22FF1 FF2

OVF

t5

t2

t3

t4

t6

s_real3 s_imag3ovf3

s_real1 s_imag1ovf1

x_r1          x_i1 y_r1          y_i1

****

A  16 B  16 C  16 D  16

E  32 F  32 G  32 H  32

± ±
‘0’

I  20 J  20

++

K  22 L  22FF1 FF2

OVF

s_real2 s_imag2ovf2

x_r2          x_i2 y_r2          y_i2

x_r3          x_i3 y_r3          y_i3



Figure (3): Unconstrained synthesized RTL diagram of MAC – Reachability analysis example

H/W
Resources

4 16-bit Registers, 4 32-bit Registers,
2 20-bit Registers, 2 22-bit Registers,
2 SR Flip-Flops, 4 32-bit Multipliers,

2 32-bit Add/Subs,
2 22-bit Adders, 1 Overflow Unit

Latency 4 clock cycles
Throughput 1 sum per clock cycle

Reachability
Bottlenecks

Controllability:
Full Potential on E[30:27] F[30:27]

G[30:27] H[30:27] P[21:20] Q[21:20]
E[11:0] F[11:0] G[11:0] H[11:0] at [t , t+1]

Constant ‘0’ on CIN#1 at [t]
Constant ‘1’ on CIN#2 at [t]

Observability:
Full Potential on N[12:0] O[12:0] T[1:0]

U[1:0] at [t, t+1]
Table (1): Synthesized MAC summary

4. Channel-based behavioral test synthesis

The powerful path information, provided by the
channel-based reachability analysis methodology, may
guide high-level synthesis optimization decisions for path-
related design attributes, such as testability. Within the
proposed scheme, testability is evaluated in terms of
module reachability according to the test justification and
propagation bottlenecks revealed by the channel-based
reachability analysis on the Pre-RTL. Resolution of these
bottlenecks pinpoints the reachability path improvements
that behavioral test synthesis needs to accomplish on the
design, in order to increase testability.

Channel-based, behavioral test synthesis attempts to
eliminate the reported bottlenecks during allocation,
scheduling and binding, while observing the design
constraints. During allocation, we attempt to maximize the
number of module reachability paths, by providing
functional units with the appropriate transparency
channels. During scheduling, this maximization is
performed across clock cycles. The binding phase further
increases reachability through test path combination,
while assigning variables. A key point of the behavioral
test synthesis transformations is that they can be applied
on sub-word, variable bit signal entities, as demonstrated
in sections 4.1 and 4.2.

4.1. Reachability through allocation & binding

In this case, the behavioral test synthesis algorithm
considers the scheduling specifications of the design,
along with the reachability bottlenecks identified through
the channel-based path analysis. Scheduling specifications
define the minimum number of functional units required
for satisfying the design constraints. Subsequently,
binding attempts to maximize reachability of each module
through variable assignment to registers. Registers are
combined or split based on primary input/output
proximity and existing paths of transparency channels,
targeting the bottlenecks reported by the analysis. In case
variable binding cannot resolve the bottlenecks of a
module, additional functional units are allocated and the
process is repeated until no more bottlenecks are resolved.

REG16 
#1

REG16
#2

REG16
#3

REG16
#4

MUL
#1

MUL
#2

MUL
#3

MUL
#4

REG32
#1

REG32
#2

REG32
#3

REG32
#4

ADD/SUB
#1

REG20
#1

REG20
#2

ADD
#1

ADD
#2

REG22
#1

SR
#1

REG22
#2

SR
#2

OVF

ADD/SUB
#2

16

16

16

16

5

22

32

32

32

32

20

20

22

22

22

5

16

16

A[15:0]

B[15:0]

C[15:0]

D[15:0]

E[31:0]

F[31:0]

G[31:0]

H[31:0]

I[31:0]

K[31:0]

L[31:0]

M[31:0]

Vss

GND

N[32:0]
BITS[32:13]

O[32:0]
BITS[32:13]

P[21:0]
BITS[19,19,19:0]

Q[21:0]
BITS[19,19,19:0]

CLEAR

Carry2

Carry1

T[21:0]

U[21:0]

R[21:0]

S[21:0]

 FF1

 FF2

x_real[15:0]

x_imag[15:0]

y_real[15:0]

y_imag[15:0]

 U[21:17]

 T[21:17]

BITS
[21]&[16:2]

s_real[15:0]

s_imag[15:0]

BITS
[21]&[16:2]

 OVF

CIN#1

CIN#2

REACHABILITY OBJECTIVE EXAMINATION EXAMPLE: REG22#1
Objective: JUSTIFY (R[k], CLEAR), k=[0…21] at [t0, t0+1] ⇒ THROUGH PRIMARY INPUT WELL CAPABILITIES AND ADD#1 CHANNEL
(P[k] at [t] MAPS TO R[k] at [t] IF T[21:0]=constant) ⇒ JUSTIFY P[k] at [t0, t0+1] (justification of condition verifies its compliance through
clear=’1’ at[t0-1] over feedback loop) ⇒ THROUGH REG20#1 CHANNEL (N[j] at [t] MAPS TO P[t] at [t+1], j=[32…13]) ⇒ JUSTIFY N[j] at [t0-
1,t0] ⇒ THROUGH ADD/SUB#1 CHANNEL (I[j-1] at [t] MAPS TO N[j] at [t] IF SAME (I[j-1], K[j-1]) at [t]) ⇒ JUSTIFY  SAME (I[j-1], K[j-1])
at [t0-1, t0] ⇒ THROUGH REG32#1,2 CHANNELS (E[j-1] at [t] MAPS TO I[j-1] at [t+1], F[j-1] at [t] MAPS TO K[j-1] at [t+1]) ⇒ JUSTIFY
SAME (E[j-1], F[j-1]) at [t0-2, t0-1] ⇒ THROUGH MUL#1,2 CHANNELS (A[m] at [t] MAPS TO at E[n] at [t], m=[15…0], n=[31, 28…0], B[m] at
[t] MAPS TO F[n] at [t]) ⇒  JUSTIFY SAME (A[m], B[m]) at [t0-2, t0-1] (Controllability bottlenecks E[30:29], F[30:29]) ⇒ THROUGH
REG16#1,2 CHANNELS (x_real[m] at [t] MAPS TO A[m] at [t+1], x_imag[m] at [t] MAPS TO B[m] at [t+1]) ⇒ JUSTIFY SAME (x_real[m],
x_imag[m]) at [t0-3, t0-2] ⇒ THROUGH PRIMARY INPUT WELL CAPABILITIES ⇒ Satisfied



In the pipelined MAC, with scheduling constraints of a
latency of 4 clock cycles and a throughput of 1 sum per 2
clock cycles, the algorithm for module reachability
optimization through allocation and binding, results in the
DFG depicted in figure (4). The corresponding
synthesized RTL is shown in figure (5) and the circuit is
summarized in table (2). As an example, to ensure
maximum reachability of the ADD/SUB#1 unit inputs, 4
16-bit registers are used. Through the transparency
channels of the 2 allocated multipliers, the 16 LSB are
bound to registers E and F, while the non-controllable 16
MSB are stored in the input registers A and B. Thus, the
complete ADD/SUB#1 input space is controllable. Under
the given scheduling specifications, our behavioral test
synthesis scheme eliminates 96% of the controllability
bottlenecks in the original DFG but is unable to eliminate
any observability bottlenecks.

H/W
Resources

8 16-bit Registers, 2 22-bit Registers,
2 SR Flip-Flops, 6 16-bit Multiplexers,

2 6-bit Multiplexers, 4 32-bit Multipliers,
2 32-bit Add/Subs,

2 22-bit Adders, 1 Overflow Unit
Latency 4 clock cycles

Throughput 1 sum per 2 clock cycles

Reachability
Bottlenecks

Controllability:
Constant ‘0’ on CIN#1 at [t]
Constant ‘1’ on CIN#2 at [t]

Observability:
Full Potential on N[12:0] O[12:0] T[1:0]

U[1:0] at [t, t+1]
Table (2): Allocated & bound MAC summary Figure (4): DFG for allocated & bound MAC

Figure (5): Synthesized RTL block diagram of MAC – Optimizing reachability through allocation & binding

A 16 MUL 1 E 16

x_real

C1 C2

B 16
MUL 2

F 16

x_imag

C1

C2

ADD/
SUB 1

ADD 1 I 22

SR FF1

M
U
X
2

M
U
X
6

M
U
X
1

M
U
X
5

16

16

16

16

16

6

BITS [31..16]

BITS
[15..0]

SIGN
EXTENDED
BITS [32..19]

33

BITS [15..10]

BITS [10..13]

10

6

CIN#1

32

BITS
[5..0]

BITS [15..6]

BITS [31..16]

N

32

Vss

C 16 MUL 3 G 16

y_real

C1 C2

D 16
MUL 4

H 16

y_imag

C1

C2
ADD/
SUB 2

ADD 2

SR FF2

J22

M
U
X
4

M
U
X
8

M
U
X
3

M
U
X
7

16

16

16

16

16

6
BITS [31..16]

BITS
[15..0]

SIGN
EXTENDED
BITS [32..19]

33

BITS [15..10]

BITS [18..13]

10

6

CIN#2

32
BITS
[5..0]

BITS [15..6]

BITS [31..16]

O

32

GND

6

6

6

6

LDSUM

CLR

CARRY 1

OVF

22

BITS
[21..17]

BITS   [21]
& [16..2]

s_real

1

CARRY 2

LDSUM

22

BITS   [21]
& [16..2]

s_imag

BITS
[21..17]

5

5

16

16

t1

t0

t2

t3

t4

t5

t6

****

A  16 B   16 C  16 D  16

± ±
‘0’

++

I  22 J  22

FF1 FF2

OVF

s_real1 s_imag1ovf1

x_r1          x_i1 y_r1          y_i1

A 16 E 16 B 16 F 16 C 16 G 16 D 16 H 16

‘1’

‘0’ ‘0’

E  16 F 6/16 G  16 H 6/16

****

A  16 B  16 C  16 D  16

± ±
‘0’

++

I  22 J  22

FF1 FF2

OVF

s_real2 s_imag2ovf2

x_r2          x_i2 y_r2          y_i2

A 16 E 16 B 16 F 16 C 16 G 16 D 16 H 16

‘1’

E  16 F 6/16 G  16 H 6/16



4.2. Reachability through scheduling & binding

In this case, with given allocation constraints, the
reported bottlenecks are resolved through scheduling and
binding, maximizing module reachability. Scheduling
assigns in time the operations to the given functional
units, minimizing the latency and throughput of the
circuit. Subsequently, binding attempts to maximize
reachability of each module through variable bitwidth
register assignment. If reachability bottlenecks still exist,
rescheduling with increased latency and throughput is
attempted until no more bottlenecks can be resolved.

Given allocation constraints that allow two multipliers
and two ADD/SUB units for the pipelined MAC, the
behavioral test synthesis algorithm results in the DFG and
the RTL diagram depicted in figure (6) and figure (7).
Table (3) summarizes the circuit, revealing the success in
bottleneck elimination. All the controllability bottlenecks
and 85% of the observability bottlenecks are eliminated.
Four new controllability bottlenecks are introduced and
reported through the final reachability analysis phase.

H/W
Resources

9 16-bit Registers, 2 22-bit Registers,
2 SR Flip-Flops, 8 16-bit Multiplexers,

4 23-bit Multiplexers, 2 6-bit Multiplexers,
2 32-bit Add/Subs, 1 Overflow Unit

Latency 5 clock cycles
Throughput 1 sum per 3 clock cycles

Reachability
Bottlenecks

Controllability:
Constant ‘1’ on 1-bit input of Multiplexers
MUX12, MUX13, MUX14, MUX15 at [t]

Observability:
Full Potential on T[1:0] U[1:0] at [t, t+1]

Table (3): Scheduled & Bound MAC Summary Figure (6): DFG for scheduled & bound MAC

Figure (7): Synthesized RTL block diagram of MAC – Optimizing reachability through scheduling & binding

A 16

x_real

C1

B 16

x_imag

C1

M
U
X
2

M
U
X
1

16

16

16

16

BITS [31..16]

BITS [31..16]

C 16

y_real

C1

D 16

y_imag

C1

M
U
X
4

M
U
X
3

16

16

16

16

BITS [31..16]

BITS [31..16]

T 16

C2

M
U
X
5

C2

M
U
X
6

MUL 1

MUL 2

E 16

C3

G 16

C3

M
U
X
8

M
U
X
7

10

6

F 16

C3

M
U
X
10

H 16

C3

M
U
X
9 10

6

BITS [15..6]

BITS [5..0] 6

BITS [15..0]

BITS [15..6]

BITS [5..0]

6

BITS [15..0]

I 22

SR FF1

SR FF2

J 22

LDSUM

CLR

CARRY 1

OVF

BITS
[21..17]

BITS   [21]
& [16..2]

s_real

1

CARRY 2

LDSUM

BITS   [21]
& [16..2]

s_imag

BITS
[21..17]

5

5

16

16

CLR

CLR

22

22

ADD/
SUB
#1

ADD/
SUB
#2

33

33

CIN#1

CIN#2

SIGN EXTENDED  BITS [32..19]

6

BITS
[18..13]

BITS
[18..13]

SIGN EXTENDED  BITS [32..19]

N

O

T

U

9

23

23

9

23

23
9

9

C4

M
U
X
11

C4

M
U
X
12

C4

M
U
X
13

C4

M
U
X
14

7

16
1

22

7

16

1

6

16

7

16

1

6

16

7

16
1

22

BITS [15..7]

BITS [15..7]

BITS [15..7]

BITS [15..7]

BITS [6..0]

’0’

’0’

’0’

BITS [6..0]

’0’

BITS [6..0]

BITS [5..0]

BITS [6..0]

BITS [5..0]

t1

t0

t2

t3

t4

t5

t6

t7

t8

A  16

B  16

x_r1                        x_i1

*

C  16

D  16*

y_r1                        y_i1

E  16A  16

T  16

F  16C  16

B  16 F  16 D  16 G  16

* *

F  16 H 6/16E  16 G 6/16

± ±
‘0’‘1’

±±
‘0’

‘0’‘0’
‘0’

I  22 J  22

FF1 FF2

OVF
s_real1 s_imag1

ovf1

A  16

B  16

x_r2                        x_i2

*

C  16

D  16*

y_r2                        y_i2

E  16A  16

T  16

F  16C  16

B  16 F  16 D  16 G  16

* *

F  16 H 6/16E  16 G 6/16

± ± ‘0’‘1’

±± ‘0’‘0’

I  22 J  22

FF1 FF2

OVF
s_real2 s_imag2

ovf2

t9



5. Test paths & reachability templates

In this section we demonstrate how the reachability
analysis scheme of section 3 can be applied on the Post-
RTL, in order to assist the local to global test translation
process. While the previously outlined reachability
analysis scheme identifies the remaining bottlenecks and
the test justification and propagation paths in the design,
instantiation of each such test path further requires a
number of conditions to be fulfilled. Based on the test
paths, the conditions and the transparency channels,
reachability templates are composed. These templates are
used to automate module test translation and eliminate the
need for global circuit ATPG. Thus test can be locally
generated at the boundary of each module and
subsequently translated through the templates into test
meaningful at the global design boundary. In figure (8),
we illustrate a test justification template for the
ADD/SUB#1 of the MAC of figure (6), where f and g are
the composite channel functions on each path.

Figure (8): Example template for ADD/SUB#1

6. Control logic implications

During channel-based reachability analysis,
behavioral test synthesis and test template identification,
we have assumed complete controllability of the control
signals. In reality, these signals are driven by a control
logic FSM, wherein states and transitions are encoded and
minimized. Our channel-based scheme exploits, for test
purposes, module reachability paths that are not part of
design functionality (false paths). The instantiation of
these paths relies upon the availability of the appropriate
control signals. It is essential, therefore, that the additional
control logic requirements be defined and considered
during the control logic implementation.

Within our scheme, the additional control logic
requirements can be easily identified, by examining the
test paths and templates. The conditions for instantiating
transparency channel paths provide information for the
required control logic behavior. The states and transitions
necessary for false test path instantiation are captured and
subsequently utilized during control logic implementation.
In figure (9), we demonstrate the functional control
requirements for the scheduled and bound MAC of figure
(6) and the additional control for testing the modules.

Figure (9): Control logic for scheduled & bound MAC

7. Conclusion

We introduce in this paper a novel methodology for
improving module reachability for test purposes, through
behavioral test synthesis. The proposed scheme
commences with a reachability analysis phase that
identifies hierarchical design testability bottlenecks, based
on the notion of transparency channels. These bottlenecks,
endangering the translation of local module vectors into
global design test, are subsequently minimized through
the scheduling, allocation and binding phases of the
proposed behavioral test synthesis approach. A final
analysis phase provides the local to global test translation
templates, eliminating the need for global circuit ATPG.
Appropriate control states and transitions for module test
reachability are also obtained, in order to guide efficient
control logic FSM implementation. The effectiveness of
the scheme is experimentally validated, reflecting the
efficacy of behavioral test synthesis approaches based on
path analysis and encouraging further research in the area.

References

[1] P. Ashenden, The Designer’s Guide to VHDL, Morgan-
Kaufmann Publishers Inc., 1996.

[2] L. Avra, E. J. McCluskey, “High-Level Synthesis of Testable
Designs: An Overview of University Systems”, Digest of
Papers, Test Synthesis Seminar, ITC, pp. 1-8, 1994.

[3] D. Gajski, N. Dutt, A. Wu, S. Lin, High-Level Synthesis:
Introduction to Chip and System Design, Kluwer Academic
Publishers, 1992.

[4] Y. Makris, A. 2UDLOR÷lu, “RTL Test Justification and
Propagation Analysis for Modular Designs”, Journal of
Electronic Testing: Theory & Applications, vol. 13, no. 2,
pp. 105-120, 1998.

[5] A. 2UDLOR÷OX��,��*��+DUULV��³Microarchitectural Synthesis for
Rapid BIST Testing”, IEEE Transactions on CAD of
Integrated Circuits and Systems, vol. 16, no. 6, pp. 573-586,
1997.

[6] P. Vishakantaiah, T. Thomas, J. A. Abraham, M. S. Abadir,
“AMBIANT: Automatic Generation of Behavioral
Modifications for Testability”, ICCD, pp. 63-66, 1993.

[7] K. Wagner, S. Dey, “High-Level Synthesis for Testability:
A Survey and Perspective”, 33rd DAC, pp. 131-136, 1996.

C1 C2 CLR LDSUM

0 X  X    X

1 0  X    X

0 1  1    X

1 0  0    1

0 1  1    1

S1

S2

S3

S4

S5

Functional Control
C1 C2 CLR LDSUM

0 0  0    1

0 1  0    1

0 0  1    1

0 1  1    1

S6

S7

S8

S9

Test Control

S2 S3 S4 S5S1

S2 S3 S4 S5S1

S6 S7 S8

S9

Test Path          Conditions

C1=0,
y_real=’0…01’, y_imag=’0…01’

C1=0, C2=0,
y_real=’0…01’, y_imag=’0…01’

x_real=x_r1
x_imag=x_i1

x_real=x_r2
x_imag=x_i2

ADD/SUB#1 INPUT1 = f(x_r2, x_r1)
ADD/SUB#1 INPUT2 = g(x_i2, x_i1)

t0

t1

t2


