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Abstract

As chip densities and clock rates increase, processors
are becoming more susceptible to transient faults that can
affect program correctness. Up to now, system design-
ers have primarily considered hardware-only and software-
only fault-detection mechanisms to identify and mitigate
the deleterious effects of transient faults. These two fault-
detection systems, however, are extremes in the design
space, representing sharp trade-offs between hardware
cost, reliability, and performance.

In this paper, we identify hybrid hardware/software
fault-detection mechanisms as promising alternatives to
hardware-only and software-only systems. These hybrid
systems offer designers more options to fit their reliabil-
ity needs within their hardware and performance budgets.
We propose and evaluate CRAFT, a suite of three such hy-
brid techniques, to illustrate the potential of the hybrid ap-
proach. For fair, quantitative comparisons among hard-
ware, software, and hybrid systems, we introduce a new
metric, Mean Work To Failure, which is able to com-
pare systems for which machine instructions do not rep-
resent a constant unit of work. Additionally, we present a
new simulation framework which rapidly assesses reliabil-
ity and does not depend on manual identification of failure
modes. Our evaluation illustrates that CRAFT, and hybrid
techniques in general, offer attractive options in the fault-
detection design space.

1 Introduction
In recent decades, microprocessor performance has been

increasing exponentially. A large fraction of this perfor-
mance gain is directly due to smaller and faster transistors
enabled by improved fabrication technology. While such
transistors yield performance enhancements, their lower
threshold voltages and tighter noise margins make them
less reliable [1, 11], rendering processors that use them
more susceptible to transient faults. Transient faults, also
known as soft errors, are intermittent faults caused by exter-
nal events, such as energetic particles striking the chip, that
do not cause permanent damage, but may result in incorrect
program execution by altering signal transfers or stored val-
ues.

To detect or recover from these faults, designers typ-
ically introduce redundant hardware. For example, stor-
age structures such as caches and memory often include
error correcting codes (ECC) or parity bits. However,
adding such fine-grained protection to all hardware struc-
tures can be prohibitively expensive. Other techniques,
which we classify macro-reliability techniques, duplicate
coarse-grained structures such as functional units, proces-
sor cores [6, 21, 29], or hardware contexts [5, 9, 18, 25]
in order to provide transient fault tolerance more cost-
effectively. The IBM z900 [21] and the Boeing 777 [29]
all implement some form of macro-reliability.

To provide protection when even macro-reliability hard-
ware costs are prohibitive, software-only approaches have
been proposed as alternatives [12, 13, 19, 20, 24]. While
software-only systems are cheaper to deploy, they cannot
achieve the same performance or reliability as hardware-
based techniques, since they have to execute additional
instructions and are unable to examine microarchitectural
state. Despite these limitations, software-only techniques
have shown promise, in the sense that they can signif-
icantly improve reliability with reasonable performance
overhead [12, 13, 19].

Despite the promise of existing methods, the fault-
tolerance design space remains sparse. System designers
must choose between two extremes when trading off be-
tween reliability, performance, and hardware cost. For
systems where software-only reliability is inadequate but
hardware-only techniques are too costly, designers are left
with no solution. Hybrid techniques, which combine soft-
ware and hardware aspects, may best be able to satisfy the
performance, reliability, and hardware cost requirements
of a design. Recognizing this, we present a suite of three
hybrid fault-detection implementations called CRAFT, for
CompileR Assisted Fault Tolerance. The CRAFT suite is
based on the software-only SWIFT [19] technique aug-
mented with structures borrowed from the hardware-only
Redundant Multithreading (RMT) technique [9, 18]. These
three additional points in the design space provide a
smoother transition from software-only to hardware-only
techniques; they provide better reliability and performance
than software-only techniques, and have lower hardware
costs than hardware-only techniques.



For fair, quantitative comparisons between the CRAFT
suite and other points in the design space, we intro-
duce a new methodology for evaluating fault-tolerance sys-
tems. The methodology adds support for software-only
and hybrid schemes to existing support for hardware tech-
niques. The methodology includes a new reliability met-
ric called Mean Work To Failure (MWTF) that captures
the trade-off between reliability and performance. Addi-
tionally, the methodology includes a new reliability simula-
tion framework that provides accurate reliability estimates
for software-only and hybrid systems, as well as hardware-
only systems, by using fault injection and programs run to
completion. Unlike ACE analysis [10], our methodology
can produce meaningful results without having to identify
all corner cases of a software-only or hybrid system. At the
same time, through clever combination of microarchitec-
tural and architectural fault simulations, our methodology
avoids excessive runtimes associated with fault injection.

We use this new methodology to characterize the relia-
bility of various points in the fault-tolerance design space
through analysis of three different hardware structures of
an Intel R© Itanium R© 2 processor: the integer register file,
the predicate register file, and the instruction fetch buffer.

The CRAFT hybrid techniques reduce overall execu-
tion time by 5% and output-corrupting faults by 75%
over software-only fault-detection techniques. Undetected
output-corrupting faults are reduced by 98% compared to
the no-fault-detection case, causing errors on only 0.35% of
bit flips for the structures measured. This reliability is com-
parable to that of hardware-only systems, but is achieved
using significantly less hardware.

In identifying hybrid fault-detection systems as interest-
ing design points, this paper makes four contributions:

1. We propose CRAFT, a suite of three new hybrid fault-
detection systems.

2. We propose MWTF, a new metric for evaluating the
trade-off between reliability and performance across
systems where instructions do not represent a constant
unit of work.

3. We describe a new reliability evaluation framework
that quickly and accurately estimates reliability based
on simulation at the microarchitectural level and com-
plete program execution at the architectural level.

4. Using the proposed evaluation framework, we demon-
strate that hybrid hardware/software systems offer ad-
ditional design options for achieving the desirable re-
liability, performance, and hardware cost trade-off.

The rest of the paper is organized as follows. Section 2
provides background information for transient fault detec-
tion. Sections 3 and 4 describe existing hardware and soft-
ware fault-detection systems. Section 5 motivates the hy-
brid approach to fault detection through a detailed descrip-

tion of the three implemented CRAFT techniques. Sec-
tion 6 describes the new framework for evaluating relia-
bility and introduces the MWTF metric. Section 7 eval-
uates the hybrid fault-detection design space. The paper
concludes in Section 8.

2 Preliminaries
Throughout this paper, we will assume a Single Event

Upset fault model. That is, we will assume that at most one
bit can be flipped at most once during a program’s execu-
tion. In this model, any bit in the system at any given exe-
cution point can be classified as one of the following [10]:

ACE These bits are required for Architecturally Correct
Execution (ACE). A transient fault affecting an ACE
bit will cause the program to execute incorrectly.

unACE These bits are not required for ACE. A transient
fault affecting an unACE bit will not affect the pro-
gram’s output. For example, unACE bits occur in
state elements that hold dynamically dead informa-
tion, logically masked values, or control flows that are
Y-branches [26]

Transient faults in ACE bits can also be further classified
by how they manifest themselves in program output.

DUE A transient fault on an ACE bit that is caught by a
fault detection mechanism is a Detected Unrecover-
able Error (DUE). A detected error can only be con-
sidered DUE if it is fail-stop, that is, if the detection
occurs before any errors propagate outside a boundary
of protection. Obviously, no fault results in DUE in a
non-fault-detecting system.

SDC A transient fault on an ACE bit that is not caught
by a fault-detection mechanism will cause Silent Data
Corruption (SDC). This could manifest itself as a spu-
rious exception, an incorrect return code, or corrupted
program output. We can further sub-categorize SDC
into definite SDC (dSDC), faults that silently corrupt
program output, and potential SDC (pSDC), faults that
cause abnormal program termination. pSDC faults can
possibly be detected if the program terminates in a
manner that cannot happen under normal execution
and the execution did not corrupt any data.

In this paper, we will sometimes refer to a bit as DUE
or SDC. A DUE bit is an ACE bit which, if flipped by a
transient fault, would result in a DUE. Similarly, an SDC
bit is an ACE bit which, if flipped, would result in an SDC.

The goal of any fault-detection system is to convert a
system’s SDC into DUE. Unfortunately, fault-detection
systems will have a higher soft error rate, the sum of SDC
and DUE, than the original system. There are two prin-
cipal reasons for this. First, most practical fault-detection



schemes may detect an actual fault, although it would not
have affected the output. These faults, known as false DUE,
arise whenever the system detects a fault in an unACE bit.
This occurs because the system may not be able to deter-
mine whether a flipped bit is unACE, and thus may have
to conservatively signal a fault. A more detailed discussion
can be found in [10, 28]. Second, any type of fault detec-
tion necessarily introduces redundancy, and this increases
the number of bits present in the system. Since all bits in
the system are susceptible to transient faults, this also leads
to a higher soft error rate.

Although redundancy techniques often increase the
overall soft error rate, they reduce SDC faults, which are
more deleterious than DUE. Consequently, system design-
ers typically tolerate higher incidents of DUE in order to
reduce SDC. A typical target SDC rate is one fault per 1000
years, while a typical target DUE rate is 100 times greater,
one fault per 10 years [3].

To measure a microarchitectural structure’s susceptibil-
ity to transient faults, the notion of an architectural vulner-
ability factor (AVF) is often used. It is defined as follows:

AVF =
number of ACE bits in the structure
total number of bits in the structure

Just as ACE bits were further categorized into DUE bits
and SDC bits, AVF can be broken up into AVFDUE and
AVFSDC by computing the ratio of SDC or DUE bits over
the total bits in the structure respectively.

The rest of this paper focuses on fault-detection tech-
niques, although fault recovery may also be desirable.
Fault-detection techniques can often be extended to enable
recovery, as shown by the recovery techniques [5, 25] that
have been derived from detection-only techniques [9, 18].

3 Hardware-Only Redundancy Techniques
Error correcting codes (ECC) and parity bits have been

widely used to protect various hardware structures at a very
fine granularity. However, it is tedious and impractical to
protect all pieces of hardware logic with ECC or parity bits.
In order to protect the entire processor core, researchers
have come up with various macro-redundancy mecha-
nisms, which introduce coarse-grain redundancy across the
entire system.

Over the years, techniques have been proposed to pro-
vide redundant execution in hardware that converts almost
all SDC events to DUE events. Lockstepping, used in the
Compaq Non-Stop Himalaya processor [6], performs the
same computation on two procesosrs and compares the re-
sults on every cycle. While this provides complete fault
coverage under the SEU model, it incurs a substantial hard-
ware cost due to the duplicated cores and performance over-
head due to the routing of signals to a central checker unit.
Other commercial fault-tolerant systems, such as the IBM
S/390 [21] and Boeing 777 airplanes [29] also replicate the

ld r3 = [r4]

add r1 = r2, r3

br L1, r1 == r5
...
L1:

st m[r1] = r2

(a) Original Code

1: br faultDet, r4 != r4’
ld r3 = [r4]

2: mov r3’ = r3
add r1 = r2, r3

3: add r1’= r2’,r3’
4: br L1’, r1’ != r5’
5: xor RTS = sig0,sig1
6: L1’:

br L1, r1 == r5
...
L1:

7: xor pc’ = pc’,RTS
8: br faultDet, pc’ != sig1
9: br faultDet, r1 != r1’
10: br faultDet, r2 != r2’

st m[r1] = r2

(b) SWIFT Code

Figure 1. Software-only fault-detection

processor in part or in whole and use hardware checkers to
validate the redundant computations.

Reinhardt and Mukherjee [18] proposed simultaneous
Redundant MultiThreading (RMT), which takes advantage
of the multiple hardware contexts of SMT, but makes better
use of system resources through loosely synchronized re-
dundant threads, and reduces the overhead of validation by
eliminating cache misses and misspeculations in the trail-
ing thread. Ray et al. [16] proposed modifying an OoO su-
perscalar processor’s microarchitectural components such
as the reorder buffer and register renaming hardware to im-
plement redundancy. They also added an Instruction Repli-
cator to duplicate instructions and validate their results be-
fore committing. Mukherjee et al. [9] proposed Chip-level
Redundant Threading (CRT) that applied RMT-like tech-
niques to a chip-multiprocessor setup.

Table 1 gives a summary of the protection level and
hardware cost of the aforementioned schemes. These re-
dundancy mechanisms are characterized by almost-perfect
fault coverage, low performance degradation, and high
hardware costs, thus occupying the high-end extreme in the
spectrum of fault-detection mechanisms.

4 Software-Only Redundancy Techniques
Software techniques are attractive from both the chip de-

signers’ and the consumers’ perspectives because they can
provide very high levels of fault coverage with small perfor-
mance cost and zero hardware cost. Additionally, software-
only techniques provide users and programmers with the
ability to turn redundancy on and off in the generated code,
thus allowing fine-grained trade-offs between performance
and fault coverage. This makes software-only techniques a
vital point in the design space.

Several software-only fault-detection methods have
been proposed, such as CFCSS [12] and ACFC [24], that
protect execution control flow. At the high-level, Re-
baudengo et al. [17] proposed a source-to-source pre-pass
compiler that generates fault-detection code in the source



Instructions
Technique Category Opcode Control Loads Stores Other Memory Hardware Requirements
Lockstepping [6] HW all all all all all none Dual core, checking logic
RMT [18] HW all all all all all none SMT base machine, Branch Outcome Queue,

Checking Store Buffer, Load Value Queue
CRT [9] HW all all all all all none CMP base machine, Branch Outcome Queue,

Checking Store Buffer, Load Value Queue, intercore communication datapath
Superscalar [16] HW mosta mosta mosta mosta mosta none Superscalar machine, Instruction replicator, checking logic

CFCSS [12] SW someb mostc none none none none None
ACFC [24] SW someb mostc none none none none None
EDDI [13] SW mostd mostc,e all all all all None
SWIFT [19] SW mostf mostc moste moste all none None
CRAFT:CSB Hybrid all mostc moste all all none Checking Store Buffer
CRAFT:LVQ Hybrid mostf mostc all moste all none Load Value Queue
CRAFT:CSB+LVQ Hybrid all mostc all all all none Checking Store Buffer, Load Value Queue

a faults to the instruction replicator and register file go undetected
b coverage only for branch opcodes
c incorrect control transfers to within a control block may go undetected in rare circumstances
d no coverage for branch opcodes and opcodes that differ from branch opcodes by a Hamming distance of 1
e strikes to operands between validation and use by the instruction’s functional unit go undetected
f no coverage for store opcodes and opcodes that differ from a store opcode by a Hamming distance of 1

Table 1. Comparison of fault coverage and hardware requirements for fault-detection approaches

language. Oh et al. [13] proposed EDDI, a low-level
detection technique, which duplicates all instructions ex-
cept branches and inserts validation code before all stores
and control transfers thus ensuring the correctness of val-
ues to be written to memory. Reis et al. [19] proposed
SWIFT, which improves on EDDI performance and reli-
ability through better control-flow validation and other op-
timizations. By taking advantage of modern memory sys-
tems’ built-in protection, such as ECC, SWIFT avoids du-
plicating store instructions, thus resulting in superior fault
coverage and performance.

SWIFT provides fault detection by inserting redundancy
directly into compiled code, without making any assump-
tions about the underlying hardware. SWIFT duplicates
the original program’s instructions, schedules the original
and duplicated instruction sequences together in the same
thread of control and inserts explicit checking instructions
at strategic points to compare values flowing through the
original and duplicated code sequences. Because of the
slack in the original program’s static code schedule, it is
usually possible to interleave redundant and original oper-
ations so that the performance degradation is limited.

Figure 1 shows a sample code sequence before and
after the SWIFT fault-detection transformation. In the
SWIFT code shown in Figure 1(b), the additional instruc-
tions added to provide redundancy have been annotated
with instruction numbers. Instruction 1 is a comparison
inserted to ensure that the address of the subsequent load
matches its duplicate version, while instruction 2 copies
the result of the load instruction into a duplicate register.
Instruction 3 is the redundant version of the add instruc-
tion in the original code. Instructions 9 and 10 verify that
the source operands of the store instruction match their du-
plicate versions.

The control flow checking is handled by instructions 4
to 8. Instruction 4 skips the computation of the RunTime

Signature (RTS) if the duplicate registers indicate that the
branch in the original code will not be taken. The RTS
is computed in instruction 5 by XORing the signature of
the current block (sig0) and the signature of the destination
block (sig1). Prior to L1, pc’ should contain sig0, the sig-
nature of that block. After entering L1, pc’ is updated to
reflect the new current block (sig1) by instruction 7. In-
struction 8 verifies that pc’ contains the signature of the
current block.

Although they provide high reliability benefit for zero
hardware cost, their inability to directly examine microar-
chitectural components prevents software-only techniques
from offering protection against a variety of faults. Also,
since redundancy is introduced solely via instructions, there
can be a delay between validation and the use of validated
values and any faults during this gap may lead to SDC. The
probability of such events can be reduced by scheduling
the validation code as close to branches and stores as pos-
sible, but it cannot be eliminated. Moreover, faults in an in-
struction’s opcode bits can convert a non-store instruction
to a store instruction and vice versa, resulting in corrupted
memory state.

Performance degradation is another unavoidable conse-
quence of software-only fault-detection techniques. While
most duplicated instructions can be scheduled compactly,
resource limitations and validation instructions will invari-
ably increase static code schedule height.

Overall, software redundancy mechanisms are charac-
terized by high fault coverage, modest performance degra-
dation, and zero hardware cost. Table 1 gives a summary of
the protection level of software reliability systems in com-
parison with hardware systems.

5 Hybrid Redundancy Techniques
Hybrid software/hardware designs provide an alterna-

tive to software-only or hardware-only fault detection tech-



Inst. type NOFT SWIFT CRAFT:CSB CRAFT:LVQ CRAFT:CSB+LVQ
br faultDet, r1 != r1’
br faultDet, r2 != r2’ Same as SWIFT Same as CRAFT:CSB

STORE st [r1] = r2 st [r1] = r2 st1 [r1 ] = r2
st2 [r1’] = r2’

br faultDet, r2 != r2’
LOAD ld r1 = [r2] ld r1 = [r2] Same as SWIFT ld1 r1 = [r2 ] Same as CRAFT:LVQ

mov r1’ = r1 ld2 r1’ = [r2’]

Table 2. Comparison of instruction stream for CRAFT techniques

niques. Hybrid techniques for protecting main memory [8]
and validating control flow [2, 8, 14] have been proposed,
but hybrid designs for whole-processor reliability have not
yet been evaluated by the community. A thorough explo-
ration of the design space of redundancy mechanisms is
necessary to determine the set of techniques, hardware-
only, software-only, or hybrid, that best meet each set of
design goals.

In this section, we present three hybrid redundancy tech-
niques. We call these techniques CompileR-Assisted Fault
Tolerance (CRAFT). CRAFT combines the best known
software-only technique, SWIFT, with minimal hardware
adaptations from RMT to create systems with nearly per-
fect reliability, low performance degradation, and low hard-
ware cost. Table 1 shows how these systems provide fine-
grain trade-offs between the desired level of reliability, per-
formance, and hardware.

5.1 CRAFT: Checking Store Buffer (CSB)
As noted in Section 4, SWIFT is vulnerable to faults in

the time interval between the validation and the use of a
register value. If the register value is used in a store in-
struction, faults during these vulnerable periods can lead to
silent data corruption. Similarly, faults in instruction op-
code bits can transform non-stores to stores, also resulting
in SDC.

In order to protect data going to memory, the
CRAFT:CSB compiler duplicates store instructions in the
same way that it duplicates all other instructions (refer to
Table 2), except that store instructions are also tagged with
a single-bit version name, indicating whether a store is an
original or a duplicate. Also, the compiler schedules stores
so that the duplicate stores happen in the same dynamic or-
der as the original stores. Code thus modified is then run on
hardware with an augmented store buffer called the Check-
ing Store Buffer (CSB). The CSB functions as a normal
store buffer, except that it does not commit entries to mem-
ory until they are validated. An entry becomes validated
once both the original and the duplicate version of the store
have been sent to the store buffer, and the addresses and
values of the two stores are equal.

The CSB can be implemented by augmenting the nor-
mal store buffer with a tail pointer for each version and a
validated bit for each buffer entry. An arriving store
first reads the entry pointed to by the corresponding tail
pointer. If the entry is empty, then the store is written in

it, and its validated bit is set to false. If the entry
is not empty, then it is assumed that the store occupying
it is the corresponding store from the other version. In
this case, the addresses and values of the two stores are
validated using simple comparators built into each buffer
slot. If a mismatch occurs, then a fault is signaled. If
the two stores match, the incoming store is discarded, and
the validated bit of the already present store is turned
on. The appropriate tail pointer is incremented modulo
the store buffer size on every arriving store instruction.
When a store reaches the head of the store buffer, it is al-
lowed to write to the memory subsystem if and only if its
validated bit is set. Otherwise, the store stays in the
store buffer until a fault is raised or the corresponding store
from the other version comes along.

The store buffer is considered clogged if it is full and the
validated bit at the head of the store buffer is unset. Note
that both tail pointers must be checked when determining
whether the store buffer is full, since either version 1 or ver-
sion 2 stores may be the first to appear at the store buffer.
A buffer clogged condition could occur because of faults
resulting in bad control flow, version bit-flips, or opcode
bit-flips, all of which result in differences in the stream of
stores from the two versions. If such a condition is detected
at any point, then a fault is signaled. To prevent spurious
fault signalling, the compiler must ensure that the differ-
ence between the number of version 1 stores and version 2
stores at any location in the code does not exceed the size
of the store buffer.

These modest hardware additions allow the system to
detect faults in store addresses and data, as well as danger-
ous opcode bit-flips. Note that, though this technique du-
plicates all stores, no extra memory traffic is created, since
only one store of each pair leaves the CSB. Unlike the orig-
inal SWIFT code, CRAFT:CSB code no longer needs val-
idation codes before store instructions (Table 2). This re-
duces dependence height, improving performance. Further,
CRAFT:CSB code also exhibits greater scheduling flexi-
bility. This is because the stores from the two different ver-
sions and the instructions they depend on can now be sched-
uled independently (subject to the constraints mentioned
earlier), whereas in SWIFT store instructions are synchro-
nization points. The net result is a system with enhanced
reliability, higher performance, and only modest additional
hardware costs.



5.2 CRAFT: Load Value Queue (LVQ)

In SWIFT, load values need to be duplicated to enable
redundant computation. SWIFT accomplishes this by gen-
erating a move instruction after every load. As shown in
Table 2, the load address is validated, data is loaded from
memory, and the loaded value is copied into a duplicate
register. This code sequence opens two windows of vulner-
ability. First, there is a window of vulnerability between
the address validation and the address consumption by the
load instruction. Second, there is a window of vulnerabil-
ity between the load instruction and the value duplication.
A fault which affects the load address in the first window
or the loaded value in the second window can lead to data
corruption. While the code in the table shows these instruc-
tions scheduled in succession, in general, an arbitrary num-
ber of instructions can be between each pair of instructions
potentially making the vulnerability windows large.

Additionally, as in the case of store instructions, load
instructions force the compiler to schedule dependence
chains from the original and duplicate versions before
the validation code for the load instruction. Just like
CRAFT:CSB, CRAFT:LVQ handles these issues for loads
by duplicating load instructions (refer to Table 2).

Unfortunately, merely duplicating load instructions will
not provide us with correct redundant execution in practice.
In multi-programmed environments, intervening writes by
another process to the same location can result in a false
DUE. In such cases, the technique prevents the program
from running to completion even though no faults have
been actually introduced into the program’s execution.

We make use of a hardware structure called the Load
Value Queue (LVQ) to achieve redundant load execution.
The LVQ only accesses memory for the original load in-
struction and bypasses the load value for the duplicate load
from the LVQ. An LVQ entry is deallocated if and only
if both the original and duplicate versions of a load have
executed successfully. A duplicate load can successfully
bypass the load value from the LVQ if and only if its ad-
dress matches that of the original load buffered in the LVQ.
If the addresses mismatch, a fault has occurred and we sig-
nal a fault and stop program execution. Loads from dif-
ferent versions may be scheduled independently, but they
must maintain the same relative ordering across the two
versions. For out-of-order architectures, the hardware must
ensure that loads and their duplicates both access the same
entry in the load value queue. Techniques presented in the
literature can be adapted to accomplish this [9, 18].

The duplicated loads and the LVQ provide completely
redundant load instruction execution. The LVQ allows the
compiler more freedom in scheduling instructions from the
original and duplicate versions around loads, just like the
store buffer relaxed the constraint of the original and dupli-
cate code slices around stores. Since the duplicate load in-

struction will always be served from the LVQ, it will never
cause a cache miss or additional memory bus traffic.

5.3 CRAFT: CSB + LVQ
The third and final CRAFT technique duplicates both

store and load instructions (refer to Table 2) and adds both
the checking store buffer and the load value queue en-
hancements simultaneously to a software-only fault detec-
tion system such as SWIFT.

6 A Methodology for Measuring Reliability
Mean Time To Failure (MTTF) and AVF are two com-

monly used reliability metrics. However, MTTF and AVF
are not appropriate in all cases. In this section, we introduce
a new metric that generalizes MTTF to make it applicable
in a wider class of fault-detection systems, and introduce a
framework to accurately and rapidly measure it.

6.1 Mean Work To Failure
MTTF is generally accepted as the appropriate metric

for system reliability. Unfortunately, this metric does not
capture the trade-off between reliability and performance.
For example, consider a 1-deep instruction fetch buffer on
a single-issue machine. Suppose that we modify this buffer
so that it automatically inserts a NOP after every instruc-
tion fetched. NOPs do not contain many ACE bits. For
example, on an IA-64 architecture, 36 out of 41 bits in a
nop.i instruction are unACE. Therefore, this insertion of
NOPs has the effect of almost halving the buffer’s AVF.
Since MTTF = 1

raw error rate×AVF [10], this NOP insertion
will nearly double the buffer’s MTTF. While it is certainly
true that in the modified buffer failures will be about twice
as far apart, few people would consider this increased fault
tolerance.

To account for the trade-off between performance and
reliability, Weaver et al. introduced the alternative Mean In-
structions To Failure (MITF) metric [28]. While this metric
does capture the trade-off between performance and reli-
ability for hardware fault-tolerance techniques (i.e. those
which do not change the programs being executed, but
which may affect IPC), it is still inadequate for the exam-
ple presented earlier. If introducing the NOPs had no effect
on IPC, then the reduction in AVF would correspond to a
doubling of MITF.

To adequately capture the trade-off between perfor-
mance and reliability for hardware and software fault-
tolerance techniques, we introduce a generalized metric
called Mean Work To Failure (MWTF).

MWTF =
amount of work completed

number of errors encountered
= (raw error rate× AVF× execution time)−1

The raw error rate and AVF are the same terms used in
MTTF, and the execution time term is the time to execute



the given unit of work. A unit of work is an abstract concept
whose specific definition depends on the application. The
unit of work should be chosen so that it is consistent across
evaluations of the systems under consideration. For exam-
ple, if one chooses a unit of work to be a single instruction,
then the equation reduces to MITF. This is appropriate for
hardware fault-detection evaluation because the program
binaries are fixed and an instruction represents a constant
unit of work, but for software and hybrid techniques this is
no longer the case. In a server application it may be best to
define a unit of work as a transaction. In other cases, work
may be better defined as the execution of a program or a
suite of benchmarks. With this latter definition of work, it
is obvious that halving the AVF while doubling execution
time will not increase the metric. Regardless of the method
(hardware or software) by which AVF or execution time
is affected, the metric accurately captures the trade-off be-
tween reliability and performance. Such a metric is crucial
when comparing hardware, software, and hybrid systems.

6.2 A Framework For Measuring MWTF
To compute the MWTF, one must have an estimate for

the errors encountered while running a program a fixed
number of times or, alternatively, the AVF of the system.
We present a framework that improves upon the speed and
accuracy of existing AVF measurement techniques, espe-
cially for software-only and hybrid techniques. Currently,
researchers use one of two methods for estimating AVF.

The first method involves labeling bits as unACE, SDC,
or DUE and running a detailed simulation to measure the
frequency of each type of fault for a given structure [10].
In these cases, since it is often difficult to categorize bits
as either unACE, SDC or DUE, conservative assumptions
are made. In SWIFT, for example, many opcode bits are
DUE bits because changes to instructions will be caught on
comparison, but certain corner cases, like those that change
an instruction into a store instruction, are SDC bits. An op-
code bit flip that changes an add instruction into a store
may cause an SDC outcome, but if it changes a add to
an unsigned add, it may not. Identifying all these cases
is non-trivial, but conservatively assuming that all opcode
bits are SDC may cause many DUE and unACE bits to be
incorrectly reported. The resulting AVFSDC from this tech-
nique is then a very loose upper bound. AVF categorization
has been successfully used for evaluating hardware fault-
detection systems that cover all single-bit errors and have
few corner cases. When used to compare software or hy-
brid techniques, the complexity of correctly categorizing
faults becomes a burden.

Another method, fault injection, provides an alternative.
Fault injection is performed by inserting faults into a model
of a microarchitecture and then observing their effects on
the system [4, 7, 27]. Since the microarchitectural models
required for this are very detailed, the simulation speeds

are often too slow to execute entire benchmarks, let alone
benchmark suites. It is common to simulate for a fixed
number of cycles and compare the architectural state to
the known correct state. Such a comparison is useful for
determining if microarchitectural faults affect architectural
state. However, this comparison does not precisely indicate
whether a flipped bit is unACE, SDC, or DUE because the
program is not executed to completion.

To avoid these shortcomings, we propose using fault in-
jection and running all benchmarks to completion. In con-
ventional fault injection systems, this would lead to unman-
ageable simulation times. However, a key insight facili-
tates tremendous simulation speedups. We recognize that
all microarchitectural faults will have no effect unless they
ultimately manifest themselves in architectural state. Con-
sequently, when a particular fault only affects architectural
state, detailed cycle-accurate simulation is no longer nec-
essary and a much faster functional model can be used.
Our technique consists of two phases. The first involves a
detailed microarchitectural simulation. During the microar-
chitectural simulation, bits in a particular structure in which
we desire to inject faults are randomly chosen. Each chosen
bit is then tracked until all effects of the transient fault on
this bit manifest themselves in architectural state. The list
of architectural state that would be modified is recorded for
the next phase. The second phase uses architectural fault
simulation for each bit chosen during the first phase by al-
tering the affected architectural state as determined by the
microarchitectural simulation. The program is run to com-
pletion and the final result is verified to determine the fault
category of the bit, unACE, DUE, or SDC.

Note that for our structures we do not inject any faults
during the simulation phase. We merely record what would
happen at the architectural level should a fault be injected.
Since we never change the simulator’s state, we need only
run the detailed simulation once. Not changing the simula-
tor’s state may yield approximations, however, since faults
may change the timing of subsequent instructions. How-
ever, for many structures within a system, this kind of be-
havior is either minimal or nonexistent.

This methodology could be used in a manner that re-
moved those approximations by checkpointing the detailed
simulation before a fault injection, inserting the fault, then
continuing the detailed simulation with the new value
only until all effects are manifested in architectural state.
The architectural deviations from the original program are
recorded for the second phase, and the detailed simulation
is reloaded from the checkpoint and continued with the un-
corrupted value until the next fault injection. This captures
the changes that may affect timing and only requires lim-
ited excess simulation time.

After one microarchitectural run, we can compile all the
points we will need during the second phase, and the cost of
detailed simulation can be amortized over the many archi-
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Figure 2. Normalized execution times by system and benchmark. Systems: SWIFT (S),
CRAFT:CSB (C), CRAFT:LVQ (L), CRAFT:CSB+LVQ (+)

tectural fault injection simulations. The second phase can
use a functional simulator, or an instrumented binary on na-
tive hardware, because only architectural state is affected.

We are able to capture the microarchitectural to architec-
tural mapping for the three structures simultaneously. For
each benchmark and system we collected approximately
5,000 points via detailed simulation. Out of those 5,000,
on average only 57.84% needed to be executed in the ar-
chitectural model, since faults that alter microarchitectural
state that is guaranteed to never affect architectural state are
unACE and can be omitted from the architectural fault sim-
ulations. The architectural fault simulations takes roughly
3.10x longer than executions on native hardware, and the
reduction in necessary simulations creates an effective in-
strumented execution time of 1.95x.

7 Evaluation
This section evaluates the hybrid CRAFT techniques

and does a quantitative and qualitative comparison of the
performance, reliability, and hardware cost with existing
software-only and hardware-only techniques.

7.1 Performance
In order to evaluate the performance of the CRAFT

techniques, we generated redundant codes for SWIFT
and all CRAFT techniques (in accordance with Table 2)
by modifying a pre-release version of the OpenIM-
PACT compiler for the IA-64 architecture targeting the
Intel R© Itanium R© 2 processor. We evaluated the per-
formance of SWIFT and CRAFT codes for a set of
benchmarks drawn from the SPEC CPUINT2000, SPEC
CPUFP2000, SPEC CPUINT95 and MediaBench suites.
The baseline binaries were aggressively optimized Open-
IMPACT compilations without any built-in redundancy.
Performance numbers were obtained by running the result-
ing binaries on an HP workstation zx6000 with 2 900Mhz
Intel R© Itanium R© 2 processors running Redhat Advanced
Workstation 2.1 with 4Gb of memory. The perfmon util-
ity was used to measure the CPU time for each benchmark.

The results in Figure 2 show the normalized execution
times for SWIFT and CRAFT. The hybrid CRAFT tech-

niques perform better than the software-only SWIFT tech-
nique because the use of hardware structures in CRAFT
eliminates certain scheduling constraints and also removes
the need for some of the comparison instructions.

For eight benchmarks, such as 254.gap and
255.vortex, the addition of the LVQ structure re-
duces the execution time when added to SWIFT or
CRAFT:CSB. However, for seven of the benchmarks, such
as 129.compress and 164.gzip, the addition of the
LVQ increases the normalized execution time. In these
benchmarks, the addition of a duplicate load for every
load instruction results in over-subscription of memory
functional units. As a result, the compiler generates a
worse schedule than for SWIFT. For all of the benchmarks,
the addition of the CSB increases performance.

7.2 Reliability
The second aspect of our evaluation is a reliability com-

parison. The AVF and MWTF reliability metrics were mea-
sured for the SWIFT and CRAFT techniques, using the
novel fault injection methodology presented in Section 6.2.
This is the first known AVF estimation for software-only
and hybrid fault-detection techniques.

7.2.1 Architectural Vulnerability Factor

Using the new framework, we evaluate the AVF of
the baseline code without built-in redundancy (NOFT),
the software-only approach (SWIFT), as well as, the
three hybrid approaches (CRAFT:CSB, CRAFT:LVQ,
CRAFT:CSB+LVQ). As explained in Section 6.2, our relia-
bility evaluation consisted of microarchitectural and archi-
tectural simulations. 5,000 microarchitectural faults were
injected for each benchmark for each system for each struc-
ture we were evaluating. We evaluated 3 hardware struc-
tures across each of the 5 systems using 15 different bench-
marks for a total of 1.125 million transient fault injections.

We evaluated the reliability of the systems using an
Intel R© Itanium R© 2 as the baseline microarchitecture. The
Liberty Simulation Environment’s simulator builder [22,
23] (LSE) was used to construct our cycle-accurate per-
formance models. Our baseline machine models the real
hardware with extremely high fidelity; its IPC matches that



Integer Register File (GR) Predicate Register File (PR) Instruction Fetch Buffer (IFB)
System AVF AVFdSDC AVFpSDC AVFDUE AVF AVFdSDC AVFpSDC AVFDUE AVF AVFdSDC AVFpSDC AVFDUE

NO FT 18.65 % 7.89 % 10.76 % 0.00 % 1.58 % 0.55 % 1.03 % 0.00 % 8.64 % 4.48 % 4.16 % 0.00 %
SWIFT 26.78 % 0.13 % 1.69 % 24.96 % 3.95 % 0.03 % 0.01 % 3.91 % 19.17 % 0.65 % 0.53 % 17.99 %
CRAFT:CSB 23.80 % 0.09 % 0.41 % 23.30 % 3.49 % 0.01 % 0.01 % 3.47 % 19.82 % 0.02 % 0.23 % 19.57 %
CRAFT:LVQ 25.14 % 0.12 % 1.69 % 23.33 % 3.25 % 0.04 % 0.02 % 3.19 % 16.07 % 0.72 % 1.18 % 14.17 %
CRAFT:CSB+LVQ 22.95 % 0.04 % 1.39 % 21.52 % 2.68 % 0.01 % 0.02 % 2.65 % 14.97 % 0.01 % 1.05 % 13.91 %

Table 3. AVF Comparison for the different reliability systems

of a real Intel R© Itanium R© 2 to within 5.4% [15].
We evaluated the AVF of the Intel R© Itanium R© 2 integer

register file (GR), predicate register file (PR), and instruc-
tion fetch buffer (IFB). The instruction fetch buffer can hold
up to 8 bundles; each 128-bit bundle consists of three 41-
bit instructions and a 5-bit template field that specifies de-
code and dispersal information. All 128 bits of a bundle
are susceptible to faults. The IFB can have a maximum of
8 bundles in the buffer, but may have fewer and all bits in
unoccupied entries are unACE.

If the corrupted instruction was consumed, then native
Intel R© Itanium R© 2 execution was continued till program
completion. By allowing the program to run to completion,
we determined if the corrupted and consumed bit caused a
error in the final output. As previously mentioned in Sec-
tion 6.2, a fault affecting architectural state does not neces-
sarily affect program correctness. If the native run resulted
in correct output, the corrupted bit was considered an un-
ACE bit, if the fault was detected, the corrupted bit was a
DUE bit, and if the program had incorrect output, the cor-
rupted bit was an SDC bit, either dSDC or pSDC.

If the program ran to completion, but produced the
wrong output, the corrupted bit was considered an dSDC
bit. Certain corrupted bits caused the program to termi-
nate with a noticeable event, and those bits were consid-
ered pSDC. In this work, we consider segmentation faults,
illegal bus exceptions, floating point exceptions, NaT con-
sumption faults, and self-termination due to application-
level checking as pSDC events.

We also evaluated the reliability of the integer and pred-
icate register files. The GR is composed of 128 65-bit reg-
isters, 64 bits for the integer data and 1 bit for the NaT (Not
a Thing) bit. In the microarchitectural simulation, any of
the 127 × 65 = 8255 bits of the integer register file could
be flipped, since a fault can never corrupt r0, which always
contains zero. The predicate register file contains 64 1-bit
registers, all of which are vulnerable to faults, except p0
which always contains true.

After a fault occurred, the detailed simulator monitored
the bit for the first use of the corrupted register. Instructions
in-flight past the register read (REG) stage either already
have their input values or will obtain their input values from
the bypass logic. In either case, the register file will not be
read and the transient fault will not affect these instructions.
The detailed simulation recorded the first instance of an in-
struction consuming the corrupted register, if one existed.

If the fault was never propagated, then it had no effect on
architecturally correct execution (i.e. was unACE).

Table 3 summarizes the GR, PR, and IFB AVF analysis
for each of the systems. 18.65% of the bits in the inte-
ger register file are ACE bits for NOFT and consequently,
the AVF of the structure is 18.65%. All of the ACE bits
for the NOFT system are SDC bits, either pSDC or dSDC.
For CRAFT:CSB+LVQ, the overall AVF is 22.95%, 4.30%
larger than the NOFT system. Although the total AVF is
larger, the distribution between SDC and DUE is much
more desirable. The SDC of CRAFT:CSB+LVQ is 1.43%
(0.04% dSDC and 1.39% pSDC) and the DUE is 21.52%.
Only 1.43% of the bits in the structure cause an error in
CRAFT:CSB+LVQ, as compared with 18.65% of the bits
that cause an error in the unprotected system.

Table 3 illustrates the trade-offs made between SDC and
DUE for all of the systems. As explained in Section 5,
both the store buffer and load value queue compensate for
points of failure in the software only approach as shown
in the CRAFT:CSB dSDC rate of 0.09% and CRAFT:LVQ
dSDC rate of 0.12% compared with the SWIFT dSDC rate
of 0.13%. The hardware structures target different failure
opportunities and can thus be combined for additive re-
liability benefit. The CRAFT:CSB+LVQ system reduces
dSDC to almost zero for all structures; of the 225,000 in-
jection experiments for this technique, only 47 created an
dSDC situation.

The AVF of the predicate register file, also shown in
Table 3. Similar to the GR, the hybrid techniques reduce
the dSDC of the PR compared with the NOFT and SWIFT
techniques. The AVF of the predicate register file is much
lower than that of the integer register file, due to the very
short lifespan of predicate registers. A corrupted integer
register is more likely to be consumed before being over-
written than a corrupted predicate register.

The average instruction buffer AVF is listed in Table 3,
and Figure 3 shows the instruction fetch buffer AVF for
each of the benchmarks and systems evaluated. The IFB
average and the GR average have similar trends with re-
spect to the hybrid evaluation. When looking at the AVF
for individual benchmarks, different benchmarks have dif-
ferent reliability gains. Benchmarks such as g721dec and
129.compress have much larger dSDC reliability gains
when comparing the hybrid techniques to NOFT executions
because the NOFT executions have a large dSDC. Bench-
marks such as 164.gzip and 197.parser, on the other
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Figure 3. AVF by benchmark and system for the instruction fetch buffer

hand, do not have much dSDC in the NOFT case, so al-
though the hybrid dSDC is reduced, the benefit is not as
substantial.

Despite the high reliability of CRAFT:CSB+LVQ for all
structures, the dSDC is still nonzero. This is due to two
reasons. First, to maintain the calling convention, argu-
ment registers are checked against their duplicate counter-
parts and only one copy is passed to the function. Inside
the function, the values are duplicated for use by the sub-
sequent redundant code. A transient fault on one of the
parameters to the function after the check, but before the
copy, will lead to that fault going undetected.

Another potential source of dSDC is a limitation of the
control-flow checking. Register indirect branches were
not protected in our implementation, but the control-flow
checking technique can be extended to handle them. Fur-
thermore, the signature control-flow checking suffers from
the fundamental limitation that if a transient fault occurs on
the address of the target such that the faulty target is the
address of a store or a system call, then an erroneous value
may be sent to memory before any fault is detected.

7.2.2 Mean Work To Failure

As described in Section 6, MWTF is a more appropriate
reliability metric with which to compare a wide variety
of fault-detection techniques because it encompases exe-
cution time as well as architectural vulnerability. Figure 4
shows the MWTFSDC and MWTFdSDC of the hybrid and
software systems normalized to the NOFT baseline for the
three hardware structures we have analyzed. Since all eval-
uations were done on the same machines in the same envi-
ronment, those factors are canceled by normalizing to the
NOFT baseline.

The normalized mean work to SDC failure of Fig-
ure 4(a) elucidates the reliability differences between
the techniques. The SWIFT technique increases the
MWTFSDC over the NOFT baseline by 7x, 27x, and 5x
for the GR, PR, and IFB respectively. Although the soft-
ware and hybrid techniques increase the execution time
compared with unprotected baseline, all techniques for all
structures have a larger MWTF than the baseline. The de-

crease in vulnerability has more impact than the decrease in
performance, resulting in the ability to perform more work
between failures.

The CRAFT:CSB technique has the largest MWTFSDC

of all the reliability techniques, 26x, 56x, and 25x for the
GR, PR, and IFB respectively. This is due to the decreased
AVFSDC , as shown in Table 3, and the decrease in exe-
cution time, as shown in Figure 2, compared to the other
techniques. CRAFT:LVQ has a lower average MWTFSDC

than SWIFT because it has roughly the same definite SDC
but larger potential SDC.

The increase in pSDC is caused by segmentation faults
that terminate the program. In the systems without the
LVQ, the addresses of load instructions are validated in
software. Faults that corrupt the initial load addresses that
would cause segmentation faults are caught by the valida-
tion instruction. However, in the LVQ systems, the loades
are executed before the validation, and so segmentation
faults may occur if the addresses are corrupted. It is pos-
sible to extend our technique to delay the raising of excep-
tions until the corresponding load is checked in the LVQ.

The CRAFT:CSB+LVQ technique has better perfor-
mance and SDC reliability than SWIFT and thus the
MWTFSDC is larger. The combined CSB+LVQ technique
has a smaller MWTFSDC than the CRAFT:CSB technique
because it also suffer from higher pSDC.

The real benefit of the hybrid techniques is shown in Fig-
ure 4(b), the normalized mean work to dSDC failure, by
excluding the SDC faults than can potentially be detected.
The MWTFdSDC of the CRAFT:CSB+LVQ increases by
141x, 73x, and 298x for the GR, PR, and IFB over the
NOFT baseline. SWIFT also increases MWTFdSDC com-
pared with NOFT, but only by 41x, 23x, and 4x. The
CRAFT:CSB+LVQ has a larger MWTFdSDC than the
other hybrid systems because it has, on average, both bet-
ter performance and better dSDC susceptibility. Although
it has slightly better performance than the CRAFT:CSB
system, it eliminates the window of vulnerability for load
instructions and thus has better dSDC reliability. The
CRAFT:LVQ has roughly the same performance and same
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Figure 4. Normalized Mean Work To Failure by system and structure.

dSDC reliability as SWIFT, and so the MWTFdSDC for
CRAFT:LVQ is similar to SWIFT.

7.3 Hardware
Hardware cost is an important consideration for pro-

cessor architects trying to meet soft-error goals. As seen
from Table 1, the SWIFT technique, which is a software-
only technique, incurs no hardware cost. The CRAFT
techniques, which build on SWIFT, require the addition
of simple low-cost hardware structures, namely the check-
ing store buffer (CSB) and the load value queue (LVQ),
which were inspired by RMT. With these minimal hardware
additions, CRAFT techniques are able to achieve almost-
perfect reliability. Further, the single-program performance
degradation of CRAFT techniques is comparable to that of
heavyweight hardware-only schemes that rely on expensive
hardware features like simultaneous multithreading or chip
multiprocessing besides including all the low-cost hard-
ware features employed by CRAFT.

CRAFT techniques are not strictly superior in terms
of performance or reliability when compared to hardware-
only techniques like RMT, nor are they less expensive than
software-only techniques like SWIFT. But alternatively,
RMT is more costly than CRAFT, while SWIFT does not
perform as well and is not as reliable as CRAFT. The
CRAFT hybrid techniques also offer designers the ability
to add hardware in a piecemeal fashion. For example, if
SWIFT is insufficient to meet a designer’s reliability needs,
but CRAFT:CSB is sufficient, then he or she only needs
to add the CSB to the hardware design, rather than imple-
menting all of the hardware demanded by RMT.

8 Conclusion
In this paper, we identified a significant unexplored por-

tion of the fault-detection design space situated between
hardware-only and software-only fault-detection mecha-
nisms. To fill this void, we proposed using hybrid hard-
ware/software fault detection systems which capture the
virtues of existing systems while mitigating the costs. We
developed CRAFT, a suite of three such techniques, to illus-
trate the potential of hybrid systems. CRAFT augments the
best known software-only technique, SWIFT, with light-
weight hardware structures borrowed from hardware-only

techniques such as RMT. Our results indicate that adding
or enhancing even a single hardware structure can, in many
cases, vastly improve the reliability of a system. None of
the evaluated techniques (hardware, software, or hybrid)
were perfect in all respects, however, each had its own spe-
cific virtues making it the most appropriate for a particular
set of design constraints.

In addition to exploring the hybrid design space, this
paper introduced a new methodology for evaluating fault-
detection systems. As part of this methodology we intro-
duced a new evaluation metric, Mean Work To Failure,
which allows objective, quantitative comparisons between
hardware, software, and hybrid systems despite varying
hardware and software. The methodology also includes
a new evaluation framework that combines microarchitec-
tural and architectural simulations to allow fast and highly
accurate computation of MWTF and AVF. We believe that
the CRAFT techniques and the evaluation framework pre-
sented in this paper form a solid foundation for continued
research in hybrid fault-tolerance systems.
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