
To appear in Designs, Codes and Cryptography.

Trading Inversions for Multiplications in

Elliptic Curve Cryptography

Mathieu Ciet∗ (mathieu.ciet@gemplus.com)
Gemplus S.A., Card Security Group, La Vigie,
Avenue du Jujubier, ZI Athélia IV, 13705 La Ciotat Cedex, France
http: // www. gemplus. com/ smart/ rd/

Marc Joye (marc.joye@gemplus.com)
Gemplus & CIM-PACA,
Centre de Micro-électronique de Provence – George Charpak,
Avenue des Anénomes, Quartier Saint Pierre, 13120 Gardanne, France

Kristin Lauter and Peter L. Montgomery
({klauter, petmon}@microsoft.com)
Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
http: // research. microsoft. com/ crypto/

Abstract. Recently, Eisenträger et al. proposed a very elegant method for speeding
up scalar multiplication on elliptic curves. Their method relies on improved formulas
for evaluating S = (2P + Q) from given points P and Q on an elliptic curve.
Compared to the naive approach, the improved formulas save a field multiplication
each time the operation is performed.

This paper proposes a variant which is faster whenever a field inversion is
more expensive than six field multiplications. We also give an improvement when
tripling a point, and present a ternary/binary method to perform efficient scalar
multiplication.

Keywords: Elliptic curves, cryptography, fast arithmetic, radix-r decompositions,
affine coordinates.

1. Introduction

Elliptic curve cryptography was introduced in the mid-1980s inde-
pendently by Koblitz [12] and Miller [18] as a promising alternative
for cryptographic protocols based on the discrete logarithm problem
in the multiplicative group of a finite field (e.g., Diffie-Hellman key
exchange [5] or ElGamal encryption/signature [8]).

Efficient elliptic curve arithmetic is crucial for cryptosystems based
on elliptic curves. Such cryptosystems often require computing a scalar
multiple nP of a point P , where n might be 160 bits or more [1].

∗ This work was done while the first author was with the UCL Crypto Group,
Belgium (see http://www.dice.ucl.ac.be/crypto/), under Walloon region project
Milos.

Various methods have been devised to this end [9]. The integer n
can be decomposed and written either in an integer base or using an
endomorphism. In this paper we deal with the decomposition of n in
an integer base.
For general elliptic curves, an improved version of scalar multiplication
was proposed by Eisenträger et al. in [6] based on a savings obtained
when doubling a point and adding it to another point on the elliptic
curve. This method finds applications for decompositions signed or not,
in integer bases, as well as in simultaneous multiple exponentiation.

The current paper proposes another way to compute (2P +Q) from
given points P and Q. Our variant is faster whenever a field inversion
costs more than 6 field multiplications (for a survey of methods with
projective coordinates, see [4]). We also propose a method for comput-
ing the triple 3P of an elliptic curve point P . Computing 3P in the new
way is less costly than computing (2P + Q) for general Q, and so we
also propose a mixed ternary/binary method for scalar multiplication to
take advantage of this savings. Efficient scalar multiplication is usually
performed by expressing the exponent n as a sum of (possibly negated)
powers of 2 (radix-2) or another base. Here the ternary/binary method
we propose refers to expressing n as a sum of products of powers of 2
and 3. We will compare the cost of a scalar multiplication using various
exponent representations.

The idea of finding methods for trading field inversions for field
multiplications in elliptic curve cryptography has appeared previously
in several papers, including [10] and [22]. We will use and in some cases
improve upon those authors’ results.

The paper is organized as follows. The next section presents the new
method for computing (2P + Q) over prime fields and binary fields.
Sections 3 and 4 deal respectively with radix-3 and radix-4 computa-
tions. Section 5 presents a method for combined ternary/binary scalar
multiplication. Finally, Section 6 concludes the paper.

Remarks and Notation.

1. In order to ease the presentation, field inversion, field squaring and
field multiplication are denoted by “I”, “S” and “M”, respectively.

2. For the average cost per bit for scalar multiplication kP , the scalar
k is assumed to be uniformly distributed.

3. In elliptic curve computations, the choice of formulas depends on
the cost of one inversion compared with the cost of one multipli-
cation: I = α M. When two formulas (1) and (2) are available to

2

evaluate the same result, the “break-even point” is the value of α
for which (1) (resp. (2)) becomes more efficient than (2) (resp. (1)).

4. Sometimes, while comparing two methods, we will assume that a
field squaring costs 80% as much as a field multiplication, S =
0.8M. This assumption is justifiable for large random prime fields.
The ratio (S/M) may decrease to 0.6 if modular reduction can be
made negligible, as for example when using (generalized) Mersenne
numbers. For binary fields, using polynomial bases, the polynomial
is generally chosen so that the cost of reduction is small, and the
cost of squaring can usually be made negligible. Modular addition
and subtraction are cheap, and are ignored for the analysis, as is
modular multiplication by small integers like 2 or 3.

5. In the sequel, the results are presented for elliptic curves defined
over a large prime field or over binary fields with prime exten-
sion degree (to avoid Weil descent attacks). Our formulas however
readily extend to the other settings as well.

6. Our formulas for point additions kP +Q (with k = 2, 3, 4) can also
be generalized to compute kP − Q, as the negation of a point is
virtually free. As a result, our results equally apply to signed-digit
representations.

2. Radix-2 Computations

Let K be a field. An elliptic curve over K is given by the generalized
Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (1)

with a1, a2, a3, a4, a6 ∈ K. When the characteristic of the field K is not
equal to 2 or 3, one can transform (1) into the (short) Weierstrass form

E : y2 = x3 + a4x + a6 (2)

in which a1 = a2 = a3 = 0. Over binary (i.e., characteristic 2) fields,
the short (non-supersingular) form is ([1])

E : y2 + xy = x3 + a2x
2 + a6 . (3)

Computing 2P +Q. Let O denote the identity element on the elliptic
curve, which is taken to be the point at infinity.

3

Consider the reduced Weierstrass equation (2) defined over GF(p).
Given a point P = (x1, y1) its double R = (x3, y3) is obtained by

λ1 =
3x2

1 + a4

2y1
, x3 = λ2

1 − 2x1, y3 = (x1 − x3)λ1 − y1 .

Given two points P = (x1, y1) and Q = (x2, y2) in E \ {O} with
x1 6= x2, their sum is the point R = P + Q = (x3, y3) and is obtained
by

λ1 =
y2 − y1

x2 − x1
, x3 = λ2

1 − x1 − x2, y3 = (x1 − x3)λ1 − y1 .

To form the point S = 2P + Q = (x4, y4), P is added to P + Q to
obtain:

λ2 =
y3 − y1

x3 − x1
, x4 = λ2

2 − x1 − x3, y4 = (x1 − x4)λ2 − y1 .

The authors of [6] observe that the computation of y3 can be omitted1

and one multiplication saved by substituting the formula for y3 into
the expression for λ2

λ2 =
y3 − y1

x3 − x1
=

((x1 − x3)λ1 − y1)− y1

x3 − x1
=

2y1

x1 − x3
− λ1 .

As a result, the computation of 2P + Q only requires 2 divisions,
2 squarings and 1 (field) multiplication.

We first remark that x4 can be obtained as

x4 = (λ2 − λ1)(λ1 + λ2) + x2 .

Furthermore, letting d := (x2−x1)2(2x1 +x2)− (y2− y1)2, we see that
d = (x2 − x1)2(x1 − x3). Defining D := d(x2 − x1) and I := D−1, we
have

1
x2 − x1

= dI and
1

x1 − x3
= (x2 − x1)3I .

Consequently, the value of x3 is not needed. The computation of
the entities d, D, I, λ1 and λ2 requires 1 I, 2 S and 7M. Computing
(x4, y4) from these entities requires an additional 2 multiplications. See
Figure 1.

Figure 2 adapts this algorithm for the generalized Weierstrass equa-
tion (1). In Figure 2, we assume that a1 = 0 or 1, depending on the field
characteristic, so that multiplication by a1 is free. Its last two columns
count the operations needed on each line. One column has the cost for

4

Input: P = (x1, y1) 6= O and Q = (x2, y2) 6= O
Output: S = 2P + Q

if (x1 = x2) then

if (y1 = y2) then return 3P else return P

X ← (x2 − x1)2; Y ← (y2 − y1)2 SS

d ← X(2x1 + x2)− Y M

if (d = 0) then return O

D ← d(x2 − x1); I ← D−1 MI

λ1 ← dI(y2 − y1) MM

λ2 ← 2y1X(x2 − x1)I − λ1 MMM

x4 ← (λ2 − λ1)(λ1 + λ2) + x2; y4 ← (x1 − x4)λ2 − y1 MM

return (x4, y4)
I + 2S + 9M

Figure 1. (2P + Q) algorithm, for elliptic curves over a prime field GF(p).

Input: P = (x1, y1)and Q = (x2, y2), 6= O
Output: S = 2P + Q

GF(p) Binary

a1 = 0 a1 = 1
N1 ← y2 − y1; D1 ← x2 − x1

if (D1 = 0) then

if (N1 = 0) then return 3P else return P

D2 ← D2
1(2x1 + x2 + a2)−N1(N1 + a1D1) SMS SMM

if (D2 = 0) then return O

I ← (D1D2)−1 MI MI

λ1 ← D2IN1 MM MM

λ2 ← D3
1(2y1 + a1x1 + a3)I − λ1 − a1 MMM MMM

x4 ← (λ2 − λ1)(λ2 + λ1 + a1) + x2 M -

as (λ1 + λ2)
2 + λ1 + λ2 + x2 over a binary field with a1 = 1 - S

y4 ← (x1 − x4)λ2 − y1 − a1x4 − a3 M M

return (x4, y4)
I+2S+9M I+2S+9M

Figure 2. (2P + Q) algorithm for the generalized Weierstrass equation (1).

5

GF(p) fields using the short curve equation (2) and another has the
cost for binary fields using (3).

For both GF(p) and binary fields, this shows that the cost of com-
puting 2P + Q = (x4, y4) is at most 1 inversion, 2 squarings, and
9 (field) multiplications, which we abbreviate as 1I + 2S + 9M. Using
equation (2), only seven registers are needed (including two unchanged
registers for P and with the point Q updated in its dedicated register).
See the pseudo-code in Appendix A.

Cost of non-adjacent form. The non-adjacent form (NAF) of an ex-
ponent n is

n = 2ek ± 2ek−1 ± ...± 2e2 ± 2e1 ,

in which 0 ≤ e1 < e2 < . . . < ek, and no two ei are consecutive. The
value of k will be about log2(n)/3 and ek will be about log2(n).

Point doubling is done with 1I + 2S + 2M (assuming equation (2)).
We will need ek doublings, of which k− 1 are followed immediately by
an add (or subtract). The overall cost is

(k − 1)(I + 2S + 9M) + (ek − k + 1)(I + 2S + 2M)
= (k − 1)(7M) + ek(I + 2S + 2M)

which on average is

(log2(n)/3)(7M) + log2(n)(I + 2S + 2M) = log2(n)(I + 2S + 13/3 M) .

Divide by log2(n) to get the average cost per bit using (2):

I + 2S + 13/3 M .

The comparisons in Table I neglect pre- and post-computations.

Table I. Table of comparison for NAF on (2).

System of coordinates Cost per bit S = 0.8M

Affine 4/3 I + 7/3 S + 8/3 M 1.33 I + 4.54 M

ELM method ([6]) 4/3 I + 2 S + 7/3 M 1.33 I + 3.93 M

Our formulas 1 I + 2 S + 13/3 M 1.00 I + 5.93 M

Our formulas allow better performance than those in [6] if one
inversion costs more than six (field) multiplications.

1 Computing 2P +Q as P +(P +Q) is faster than first doubling and then adding
since doubling is slightly more expensive than addition.

6

Straus-Shamir trick. Another significant and useful application of the
‘2P +Q’ algorithm is with the Straus-Shamir trick [25, 8]. This method
allows computing aP +bQ with ` = log2(max(|a|, |b|, 1)) doublings and
fewer than ` point additions if P±Q are pre-computed and stored. If we
suppose that a and b have the same length and that a and b are in non-
adjacent form, then ` doublings and 5/9 ` additions are needed. In the
following we refer to this decomposition as joint-NAF. In [24], Solinas
introduced the Joint-Sparse-Form (JSF) that reduces the number of
additions. Using the JSF, computation of aP + bQ is done with `
doublings and 1/2 ` additions. This is equivalent to 1/2 ` applications
of ‘2P + Q’ and 1/2 ` doublings. These joint decompositions are useful
mainly for three applications: for the verification part of ECDSA [1],
for the Lim-Lee method [14], and finally for the method using efficient
endomorphisms proposed by Gallant, Lambert and Vanstone [7]. Ta-
ble II gives the cost per bit with the various systems of coordinates and
the various joint integer decompositions.

Table II. Comparison of joint decompositions for elliptic curves over GF(p).

System of
Joint-NAF JSF

coordinates

Cost per bit S = 0.8 M Cost per bit S = 0.8 M

Affine 14/9 I + 23/9 S + 28/9 M 1.56 I + 5.16M 3/2 I + 5/2 S + 3 M 1.50 I + 5.00 M

ELM [6] 14/9 I + 23/9 S + 2 M 1.56 I + 4.04M 3/2 I + 2 S + 5/2 M 1.50 I + 4.10 M

Our formulas 1 I + 2 S + 53/9 M 1.00 I + 7.49M 1 I + 2 S + 11/2 M 1.00 I + 7.10 M

The break-even point is still when one inversion is equivalent to six
(field) multiplications.

3. Radix-3 Computations

Computing 3P . When P = Q, Figure 2 does not tell us how to form
3P . The problem is rectified by initializing N1 = 3x2

1+2a2x1+a4−a1y1

and D1 = 2y1 + a1x1 + a3 (so N1/D1 is the tangent slope) rather than
N1 = y2 − y1 and D1 = x2 − x1. If D1 = 0, then P has order 2 and
3P = P . Otherwise the rest of Figure 2 applies. The computation of N1

takes one more squaring than when x1 6= x2, but the λ2 computation

λ2 = D3
1(2y1+a1x1+a3)I−λ1−a1 = D3

1D1I−λ1−a1 = (D2
1)

2I−λ1−a1

7

can substitute one squaring for two multiplies (D2
1 is known). Overall,

the cost of 3P is at most 1I + 4S + 7M, for both GF(p) and binary
fields. This is cheaper than evaluating 2P + Q for general Q.

Input: P = (x1, y1) 6= O
Output: T = 3P

if (y1 = 0) then return P

X ← (2y1)2; Z = 3x2
1 + a4; Y ← Z2 SSS

d ← X(3x1)− Y M

if (d = 0) then return O

D ← d(2y1); I ← D−1 MI

λ1 ← dIZ MM

λ2 ← X2I − λ1 SM

x4 ← (λ2 − λ1)(λ1 + λ2) + x1; y4 ← (x1 − x4)λ2 − y1 MM

return (x4, y4)
I + 4S + 7M

Figure 3. Tripling algorithm for GF(p) curves with the short Weierstrass Eq. (2).

Moreover, only six (field) registers are needed. See Appendix A.

Remark. Note that d = 3x4
1 +6a4x

2
1 +12a6x1−a2

4 (= ψ3(x1, y1), the
3rd division polynomial).

Computing 3P +Q over GF(p) fields. We can combine the technique
to exchange an inversion for 6 (field) multiplications with the technique
from [6] to save a multiply in computing 3P + Q for curves (2). If
(x4, y4) are the coordinates of 2P + Q and (x5, y5) are the coordinates
of 3P + Q, and if λ3 = (y4 − y1)/(x4 − x1), then the coordinates of
3P + Q are given by x5 = λ2

3− x1− x4 and y5 = (x1− x5)λ3− y1. The
trick in [6] to save a multiply can be applied at this stage to avoid the
computation of y4 by computing λ3 via the formula:

λ3 = −λ2 − 2y1/(x4 − x1).

Now suppose that 2P + Q had been computed via the new method
using 1I + 2S + 9M. Then we can still compute (x5, y5) without com-
puting y4. So one multiply is saved, computing λ3 costs 1I and 1M, x5

costs 1S, and y5 costs 1M. So the total cost to compute 3P + Q this

8

way is: 2I + 3S + 10M, and the same trade-off applies — this is better
if one inversion costs more than six (field) multiplications.

Alternatively, 3P +Q can be computed with 2I+4S+9M by sharing
an inversion when computing 2P and P + Q, and then adding the
results. We have: 3P + Q = (2P) + (P + Q). Let (x3, y3) := 2P ,
(x4, y4) := P + Q, and (x5, y5) := 3P + Q. Then

x3 = λ2
1 − 2x1,

y3 = (x1 − x3)λ1 − y1

with λ1 =
3x2

1 + a

2y1
, and

x4 = λ2
2 − x1 − x2,

y4 = (x1 − x4)λ2 − y1

with λ2 =
y1 − y2

x1 − x2
. Computing λc := ((2y1)(x1 − x2))

−1, λ1 and λ2

are obtained by saving one inversion and doing some extra multiplies.
This approach is better than the one above since in general a squaring
is less costly than a multiply.

Computing 3P + Q over binary fields. The expansion 3P + Q =
(2P)+(P + Q) works well for binary curves (3) too. This is illustrated
in Figure 5. Because 2P takes one fewer squaring for binary curves
than for GF(p) curves, this cost is 2I + 3S + 9M, one fewer squaring
than in Figure 4.

4. Radix-4 Computations

Computing 4P for GF(p) curves. In [22], the authors gave a method
to compute 4P in 1I + 9S + 9M. The algorithm is given in Figure 6.
One multiplication has a4 as an operand — if the curve is chosen so
that a4 is numerically small, then this multiplication can be replaced
by field additions.

Computing 4P +Q over GF(p) fields. We compute 4P +Q as 2 (2P)+
Q using our new formulas for 2P +Q. This is done with 2I+4S+11M.

Total cost. The density2 of such a signed expansion (i.e., radix 4
with redundant digits −3 to 3) is 3/5 (see [9]), and the length of the

2 Density is the average ratio of the number of non-zero digits to the total number
of digits.

9

Input: P = (x1, y1) 6= O and Q = (x2, y2) 6= O
Output: T = 3P + Q

if (y1 = 0) then return P + Q

if (x1 = x2)

if (y1 = y2) then return 4P

else return 2P

λc ← ((2y1)(x1 − x2))
−1 MI

λ1 ← (x1 − x2)(3x2
1 + a4)λc MMS

λ2 ← 2y1(y1 − y2)λc MM

x3 ← λ2
1 − 2x1; y3 ← (x1 − x3)λ1 − y1 MS

x4 ← λ2
2 − x1 − x2; y4 ← (x1 − x4)λ2 − y1 MS

if (x3 = x4) then return O

λ3 ← (y3 − y4)/(x3 − x4) IM

x5 ← λ2
3 − x3 − x4; y5 ← (x3 − x5)λ3 − y3 MS

return (x5, y5)
2I + 4S + 9M

Figure 4. (3P + Q) algorithm for GF(p) curves with the short Weierstrass Eq. (2).

expansion is half that of NAF. Thus the cost per bit is

0.8 I + 3 S + 5.1M .

Computing 4P for binary curves. In this subsection we propose an
improvement to the formulas presented in [10]. The method proposed
by Guajardo and Paar gives 4P with 1I + 6S + 9M, whereas repeated
doubling has complexity 2I + 4S + 4M. In characteristic two, if normal
bases are used, field squarings can be neglected.

Let E be a curve with the short binary form (3) over a field of
characteristic 2. Let P = (x1, y1),Q = (x2, y2) ∈ E\{O}. The negative
of P is −P = (x1, x1 + y1). If P 6= −Q then the sum of P and Q is
given by R = (x3, y3) with

x3 = λ2 + λ + x1 + x2 + a2, y3 = λ(x1 + x3) + x3 + y1,

where λ = (y2 + y1)/(x2 +x1) if P 6= Q, or λ = x1 +(y1/x1) if P = Q.
Let P = (x1, y1). Then 2P = (x2, y2) is given by

x2 = (x1 +
y1

x1
)2 + (x1 +

y1

x1
) + a2, y2 = x2

1 + (x1 +
y1

x1
)x2 + x2 ,

10

Input: P = (x1, y1) 6= O and Q = (x2, y2) 6= O
Output: T = 3P + Q

if (x1 = 0) then return P + Q

if (x1 = x2)

if (y1 = y2) then return 4P else return 2P

λc ← (x1(x1 + x2))
−1 MI

λ1 ← x1 + (x1 + x2)y1λc MM

λ2 ← x1(y1 + y2)λc MM

x3 ← λ2
1 + λ1 + a2 ; y3 ← x3 + (x1 + x3)λ1 + y1 SM

x4 ← λ2
2 + λ2 + a2 + x1 + x2 S

y4 ← x4 + (x1 + x4)λ2 + y1 M

if (x3 = x4) then return O

λ3 ← (y3 + y4)/(x3 + x4) IM

x5 ← λ2
3 + λ3 + a2 + x3 + x4; y5 ← x5 + (x3 + x5)λ3 + y3 SM

return (x5, y5)
2I + 3S + 9M

Figure 5. (3P + Q) algorithm for binary curves with the short Weierstrass Eq. (3).

and 4P = (x3, y3) is then given by

x3 = (x2 +
y2

x2
)2 + (x2 +

y2

x2
) + a2, y3 = x2

2 + (x2 +
y2

x2
)x3 + x3 .

That means that
1
x1

and
1
x2

are needed. However, it is simple to see

that
1
x2

=
x2

1

x4
1 + a6

. (4)

Let λc be defined as

λc :=
1

x1(x4
1 + a6)

. (5)

Then λ1 := x1 +
y1

x1
and λ2 := x2 +

y2

x2
can be obtained as

λ1 = λc · (x4
1 + a6) · y1 + x1, λ2 = x1 · y2 · x2

1 · λc + x2 .

Finally, the computation of λ1 and λ2 requires 1I, 2S and 6M. This
means that computation of 4P requires 1I + 5S + 8M. If squarings are

11

Input: P = (x1, y1) 6= O
Output: T = 4P

A1 ← x1; C1 ← y1

B1 ← 3x2
1 + a4 S

A2 ← B2
1 − 8A1C

2
1 ; C2 ← B1(4A1C

2
1 −A2)− 8C4

1 SSMMS

B2 ← 3A2
2 + 16a4C

4
1 SM

A3 ← B2
2 − 8A2C

2
2 ; C3 ← B2(4A2C

2
2 −A3)− 8C4

2 SSMMS

if (C1C2 = 0) then return O

I ← (4C1C2)−1 MI

x4 ← A3I
2; y4 ← C3I

2I SMMM

return (x4, y4)
I + 9S + 9M

Figure 6. 4P algorithm for GF(p) curves with the short Weierstrass Eq. (2)
from [22].

Input: P = (x1, y1) 6= O
Output: T = 4P

if (x1(x4
1 + a6) = 0) then return O

λc ← (x1(x4
1 + a6))−1 SSMI

λ1 ← λc(x4
1 + a6)y1 + x1 MM

x2 ← λ2
1 + λ1 + a2; y2 ← x2

1 + λ1x2 + x2 SM

λ2 ← x1y2x
2
1λc + x2 MMM

x3 ← λ2
2 + λ2 + a2; y3 ← x2

2 + λ2x3 + x3 SSM

return (x3, y3)
I + 5S + 8M

Figure 7. 4P algorithm over binary fields with the short Weierstrass Eq. (3).

neglected, one (field) multiplication has been saved, and the break-even
point is now I > 4M.

However, López and Dahab propose to represent P = (x, y) as
(x, x + y/x) and give a method [15] that quadruples a point in 1I +
6S + 4M. If this special representation is not used, then they compute
4P directly in 1I + 5S + 6M. See Appendix C.

12

5. Scalar Multiplication

The fact that tripling a point is cheaper than a double and add using
our techniques suggests using the operation of tripling more often while
performing scalar multiplication of a point on an elliptic curve.
Table III summarizes the results from Sections 2 through 4, using the
short form (2) or (3).

Table III. Table of costs for different operations.

Operation GF(p) cost Binary field cost

P + Q 1I + 1S + 2M 1I + 1S + 2M

2P 1I + 2S + 2M 1I + 1S + 2M

2P + Q 1I + 2S + 9M 1I + 2S + 9M

3P 1I + 4S + 7M 1I + 4S + 7M

3P + Q 2I + 4S + 9M 2I + 3S + 9M

4P 1I + 9S + 9M 1I + 5S + 8M

4P + Q 2I + 4S + 11M

We propose elliptic curve scalar multiplication algorithms for the situ-
ation where we want speed and aren’t worried about timing attacks
on the exponent (perhaps the exponent is public). Examples occur
during the ECM method of factorization and while verifying an ECDSA
signature.

5.1. Ternary/binary approach

The proposed algorithms evaluate expressions of the form 6P ±Q. We
can compute this as 2(3P)±Q or 3(2P)±Q. When using (2), the latter
takes an extra inversion but saves 5 (field) multiplications. We assume
2(3P)±Q is better. For binary curves, the costs are 3I+4S+11M and
2I + 6S + 16M, so the trade-off is 1I for 2S + 5M.

Suppose you want nP where P is a point and n > 0. A possible
recursive algorithm is given in Figure 8.

5.2. Example

As an example, compare the cost to form 314159P using this ternary/
binary approach as opposed to the standard binary NAF method. Note
that for these comparisons, the costs for various operations are taken
from Table III.

Using the combined ternary/binary mod 6 approach from Figure 8:

13

if n = 1 then return P

switch (n mod 6)

cases 0 mod 6, 3 mod 6: return 3((n/3)P)
cases 2 mod 6, 4 mod 6: return 2((n/2)P)
case 1 mod 6, n = 6m + 1: return 2((3m)P) + P

case 5 mod 6, n = 6m− 1: return 2((3m)P)− P

Figure 8. Possible ternary/binary algorithm.

314159 = 6 · 52360− 1 triple, double-subtract

52360 = 8 · 6545 3 doublings

6545 = 6 · 1091− 1 triple, double-subtract

1091 = 12 · 91− 1 triple, double, double-subtract

91 = 18 · 5 + 1 triple, triple, double-add

5 = 6− 1 triple, double-subtract

6T, 4D, 5DA3

Total cost is 15 inversions, 42 squarings, 95 (field) multiplications when
working over GF(p). Compare this to the binary NAF method:

314159 = 16 · 19635− 1

19635 = 4 · 4909− 1

4909 = 4 · 1227 + 1

1227 = 4 · 307− 1

307 = 4 · 77− 1

77 = 4 · 19 + 1

19 = 4 · 5− 1

5 = 4 + 1

Since 4P + Q is carried out in 2 inversions, 4 squarings, and 11 (field)
multiplications, the total cost is 17 inversions, 41 squarings, 97 (field)
multiplications.

The combined ternary/binary gives a 5% savings over the binary
NAF method, window size 2, if one inversion costs the same as six
(field) multiplications.

Remark. The combined ternary/binary can be improved by comput-
ing 5P as 2(2P)+P . Another improvement computes the intermediate

3 T = triple, D = double, DA = double-add or double-subtract.

14

6545P using 6545 = 16(409) + 1 and 409 = 24(17) + 1, costing: (9I,
41S, 65M) instead of the (10I, 30S, 73M) from above.

Remark. For 17P , 16P +P (3I, 13S, 20M) comes out slightly better
than 18P − P , (3I, 10S, 23M), trading 3 multiplies for 3 squarings.

6. Conclusion

In this paper, we have proposed various strategies for efficiently evalu-
ating 2P +Q on an elliptic curve. This outperforms a previous proposal
by Eisenträger et al. whenever a field inversion is more expensive than
six field multiplications. From this, a fast algorithm for tripling a point
on an elliptic curve was derived. Finally, we have introduced a mixed
ternary/binary representation to take advantage of the aforementioned
improvements, resulting in efficient methods for elliptic curve scalar
multiplication, as used in ECDSA or ECDH.

Acknowledgements

We would like to thank the anonymous reviewers for their useful com-
ments. We would also like to thank Julio López for pointing out the
quadrupling formulas in [15] and Richard Schroeppel for extensive
comments on an earlier version of this paper.

References

1. IEEE Std 1363-2000. IEEE Standard Specifications for Public-Key Cryptog-
raphy, IEEE Computer Society, August 29, 2000.

2. Michael Brown, Darrel Hankerson, Julio López, and Alfred Menezes. Software
implementation of the NIST elliptic curves over prime fields. In D. Naccache,
editor, Topics in Cryptology – CT-RSA 2001, vol. 2020 of Lecture Notes in
Computer Science, pp. 250–265. Springer-Verlag, 2001.

3. Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart. Elliptic Curves in Cryp-
tography, vol. 265 of London Mathematical Society Lecture Note Series.
Cambridge University Press, Cambridge, 2000.

4. Henri Cohen, Atsuko Miyaji, and Takatoshi Ono. Efficient elliptic curve expo-
nentiation using mixed coordinates. In K. Ohta and D. Pei, editors, Advances
in Cryptology – ASIACRYPT ’98, volume 1514 of Lecture Notes in Computer
Science, pp. 51–65. Springer, 1998.

5. Whitfield Diffie and Martin E. Hellman. New directions in cryptography, IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

15

6. Kirsten Eisenträger, Kristin Lauter, and Peter L. Montgomery. Fast elliptic
curve arithmetic and improved Weil pairing evaluation. In M. Joye, editor,
Topics in Cryptology – CT-RSA 2003, vol. 2612 of Lecture Notes in Computer
Science, pp. 343–354. Springer-Verlag, 2003.

7. Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster point
multiplication on elliptic curves with efficient endomorphisms. In J. Kilian,
editor, Advances in Cryptology – CRYPTO 2001, vol. 2139 of Lecture Notes
in Computer Science, pp. 190–200. Springer-Verlag, 2001.

8. Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, 1985.

9. Daniel M. Gordon. A survey of fast exponentiation methods. Journal of
Algorithms, 27(1):129–146, 1998.

10. Jorge Guajardo and Christof Paar. Efficient algorithms for elliptic curve cryp-
tosystems. In B.S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO ’97,
vol. 1294 of Lecture Notes in Computer Science, pp. 342–356. Springer-Verlag,
1997.

11. Burton S. Kaliski Jr. The Montgomery inverse and its applications, IEEE
Transactions on Computers, 44(8):1064–1065, 1995.

12. Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48:203–209, 1987.

13. Çetin K. Koç and Erkay Savaş. Architectures for unified field inversion with
applications in elliptic curve cryptography. In 9th IEEE International Confer-
ence on Electronics, Circuits and Systems (ICECS 2002), Dubrovnik, Croatia,
September 15–18, 2002, vol. 3, pp. 1155–1158.

14. Chae Hoon Lim and Pil Joong Lee. More flexible exponentiation with precom-
putation. In Y.G. Desmedt, editor, Advances in Cryptology – CRYPTO ’94,
vol. 839 of Lecture Notes in Computer Science, pp. 95–107. Springer-Verlag,
1994.

15. Julio López and Ricardo Dahab. Improved algorithms for elliptic curve arith-
metic in GF(2n), Selected Areas in Cryptography – SAC ’98, vol. 1556 of
Lecture Notes in Computer Science, pp. 201–212. Springer-Verlag, 1999.

16. Róbert Lórencz. New algorithm for classical modular inverse. In
B.S. Kaliski Jr., Ç.K. Koç, and C. Paar, editors, Cryptographic Hardware
and Embedded Systems – CHES 2002, vol. 2523 of Lecture Notes in Computer
Science, pp. 57–70. Springer-Verlag, 2003.

17. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography, CRC Press Series on Discrete Mathematics and its
Applications. CRC Press, Boca Raton, FL, 1997.

18. Victor S. Miller. Use of elliptic curves in cryptography. In H.C. Williams,
editor, Advances in Cryptology – CRYPTO ’85, vol. 218 of Lecture Notes in
Computer Science, pp. 417–426. Springer-Verlag, 1986.

19. Bodo Möller, private communication.
20. Peter L. Montgomery. Modular multiplication without trial division. Mathe-

matics of Computation, 44(170):519–521, 1985.
21. Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of

factorization. Mathematics of Computation, 48(177):243–264, 1987.
22. Yasuyuki Sakai and Kouichi Sakurai. Efficient scalar multiplications on elliptic

curves with direct computations of several doublings. IEICE Transactions
Fundamentals, E84-A(1):120–129, 2001.

16

23. Erkay Savaş and Çetin K. Koç. The Montgomery modular inverse - revisited,
IEEE Transactions on Computers, 49(7):763–766, 2000.

24. Jerome A. Solinas. Low-weight binary representations for pairs of integers.
Tech. Report CORR 2001/41, CACR, Waterloo, 2001.

25. Ernst G. Straus. Addition chains of vectors (problem 5125). American
Mathematical Monthly, 70:806–808, 1964.

Appendix

A. Pseudo-code

Let (x1, y1) and (x2, y2) be two points on a curve over GF(p) with short
Weierstrass equation (2). The following algorithm updates (x1, y1) with
2(x1, y1) + (x2, y2). (Field) registers are denoted by Ti. We follow the
notation of [1].

T1 ← x1; T2 ← y1; T3 ← x2; T4 ← y2

T5 ← 2T1; T5 ← T5 + T3 (= 2x1 + x2)
T1 ← T3 − T1 (= x2 − x1)
T6 ← T1

2 (= (x2 − x1)2)
T5 ← T5 · T6 (= (2x1 + x2)(x2 − x1)2)
T6 ← T1 · T6 (= (x2 − x1)3)
T4 ← T4 − T2 (= y2 − y1)
T7 ← T4

2 (= (y2 − y1)2)
T5 ← T5 − T7 (= d)
T7 ← T5 · T1; T7 ← T7

−1 (= I)
T5 ← T5 · T7; T5 ← T5 · T4 (= λ1)
T6 ← T6 · T7 (= (x2 − x1)3I)
T7 ← 2T2; T7 ← T7 · T6; T7 ← T7 − T5 (= λ2)
T4 ← T3 − T1 (= x1)
T6 ← T7 − T5 (= λ2 − λ1)
T5 ← T7 + T5 (= λ2 + λ1)
T1 ← T6 · T5; T1 ← T1 + T3 (= x4)
T4 ← T4 − T1; T4 ← T4 · T7

T2 ← T4 − T2 (= y4)

It is worth noticing that only seven registers are needed. This count
omits registers needed internally by the field arithmetic codes.

Let (x1, y1) be a point on the short GF(p) curve (2). The following
algorithm updates registers with 3(x1, y1).

17

T1 ← x1; T2 ← y1; T5 ← a4

T3 ← 2T2; T3 ← T 2
3 (=X)

T4 ← T 2
1 ; T4 ← 3T4; T4 ← T4 + T5 (=Z)

T5 ← T 2
4 (=Y)

T6 ← 3T1; T6 ← T6 · T3; T5 ← T5 − T6 (=−d)
T4 ← T4 · T5; T6 ← 2T2; T5 ← T5 · T6 (=−D)
T5 ← T−1

5 (=−I)
T4 ← T4 · T5 (=λ1)
T3 ← T 2

3 ; T5 ← T3 · T5; T3 ← T5 + T4 (=−λ2)
T4 ← T3 + T4; T4 ← T4 · T5;T1 ← T4 + T1 (=x4)
T3 ← T4 · T3; T2 ← T3 − T2 (=y4)

Tripling a point is done with only six intermediate registers.

B. Radix-4 Computation: Right-to-left

Assume we are using (2). As illustrated in the above technique for
computing 3P + Q, a point addition P + Q and a doubling 2P can
be done simultaneously, exchanging two inversions for 1I and 3M. This
was pointed out in [21], [6], and in [19]. In this way, computing both
P + Q and 2Q can be done in 1I + 3S + 7M. Then, the cost per bit is

1I + 7/3 S + 11/3 M .

However, this does not take into account the fact that we have a NAF.
This especially implies that the update of Q into 2Q can be replaced
by updating Q into 4Q and then not jumping to the next bit but the
following. Then, the following cost per bit is obtained

2/3 I + 4S + 16/3 M .

If we assume that S = 0.8M, the break-even point is I > 9M.

C. López & Dahab Methods for Quadrupling

We describe the two algorithms presented in [15] that directly compute
the quadruple of a point lying on a curve defined over a binary field
given by the equation (3) in its reduced form y2 +xy = x3 + a2x

2 + a6.
As the first algorithm cannot deal with points of order 2, we restrict
our attention to odd groups in the rest of this section.4

4 Remember that over binary fields points of order 2 have their x-coordinate
equal to 0.

18

The first method represents a point P = (x1, y1) of odd order as
(x1, M1) where M1 := x1 + y1/x1, and quadrupling costs 1I + 6S + 4M,
see Figure 9.

Input: P = (x1,M1) 6= O, of odd order
Output: Q = 4P = (x4,M4)

x2 = M2
1 + M1 + a2; S = (x4

1 + a6)(x4
2 + a6) SSSSSM

if (S = 0) then return “Error: P not of odd order”

R = a6/S; M2 = M2
1 + a2 + R(x4

2 + a6) IMM

x4 = M2
2 + M2 + a2; M4 = M2

2 + a2 + R(x4
1 + a6) SM

return (x4,M4)
I + 6S + 4M

Figure 9. Quadrupling algorithm from [15], over a binary field with the short
Weierstrass Eq. (3), with special point representation.

The second method of López and Dahab uses classical point repre-
sentation, and quadrupling a point is carried out with 1I + 5S + 6M.
See Figure 10.

Input: P = (x1, y1) 6= O
Output: Q = 4P = (x4, y4)

S = x1(x4
1 + a6); R = 1/S SSMI

if (S = 0) then return O

M = x1 + R(x4
1 + a6)y1; x2 = M2 + M + a2 MMS

M2 = M2 + a2 + Rx1a6 MM

x4 = M2
2 + M2 + a2; y4 = x2

2 + M2x4 + x4 SSM

return (x4, y4)
I + 5S + 6M

Figure 10. Quadrupling algorithm from [15], over a binary field with the short
Weierstrass Eq. (3), with classical point representation.

19

D. Inversion over a Finite Field

This section briefly deals with inversion of a finite field element. Let a
be a nonzero element of GF(p), where p is prime. Let a−1 denote its
multiplicative inverse. There are several ways to compute this inverse.

One method uses a table of length p − 1. This is feasible only for
small p. It can be fast if the table fits in cache.

Another is based on Fermat’s theorem: a−1 = ap−2. At first glance
this ‘trivial’ method seems to be much too costly. However, it has some
interesting aspects. No extra routine is needed. Moreover, p can be
a Mersenne or generalized Mersenne prime for increased efficiency of
modular reduction [1]. Further, if we suppose that p is a generalized
Mersenne prime, say p = 2κ1 − 2κ2 − 1, then a−1 = a2κ1−2κ2−3 and
smart-card routines can be used to speed-up repeated squarings.

A third method is based on the extended Euclidean algorithm, which
given two integers a and p, outputs u and v such that au + pv =
gcd (a, p). If a is invertible modulo p and if 0 ≤ u < p, then gcd(a, p) = 1
and a−1 = u. An improvement to the extended Euclidean algorithm due
to Lehmer is explained in [17, p. 607].

A fourth method proceeds in two steps and is based on the well-
known Montgomery multiplication. Let a and b be two integers between
0 and p− 1. Montgomery multiplication fixes an exponent k such that
p < 2k and returns a b 2−k mod p. The Montgomery inverse is defined
(by Kaliski in [11] based on [20], see also [23]) as

x := a−12k .

The regular inverse a−1 is obtained by computing the Montgomery
product of x and 1 (see [23] for variants), see also [16]. If one has an
algorithm for a−1, then one can get x = (a2−k)−1 by inverting the
Montgomery product of x and 1.

Estimates for the cost of a field inversion in terms of field multipli-
cations dramatically depend on the architecture used and the size and
type of the field. Equivalences for field element inversion vary between
4 field multiplications in [6] and [13] to 80 field multiplications in [2].
The ratio of 80 takes into account the use of special modular reduction
routines to speed multiplication in prime fields where the prime is of
a special form (generalized Mersenne prime), and does not take into
account Lehmer’s method for speeding modular inversion. A discussion
of the ratio in various contexts can also be found in [3, p. 72].

20

