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Conformational sampling by direct optimization of an all-atom

energy function is ineffective and inefficient because of the

ruggedness of the energy landscape. Discrete sampling

schemes represent an attractive alternative for generating

ensembles of conformers consistent with spatial restraints

derived from empirical data. Conformational sampling is

becoming increasingly important for structure prediction as the

bottleneck in accurate prediction shifts from energy functions

to the methods used to find low-energy conformers.

Experimental structure determination remains a perennial

challenge as investigators tackle larger macromolecular

systems, and begin to incorporate more complete descriptions

of uncertainty, heterogeneity and dynamics into their models.

Computational approaches that combine dense, discrete

sampling with all-atom energy evaluation and refinement may

help to overcome the remaining barriers to solving these

problems.
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Introduction
Three-dimensional structures provide important

mechanistic insights into the various molecular and cel-

lular processes mediated by proteins. To date, experi-

mental structure determination by X-ray crystallography

and NMR spectroscopy has been most successful, allow-

ing researchers to propose three-dimensional models at

atomic resolution and make functional inferences from

these structures. In the absence of experimental data,

homology modeling enables structure to be inferred from
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an evolutionary or structural relationship established on

the basis of amino acid sequence similarity [1]. Ab initio
prediction has recently begun to produce remarkably

accurate models of small, single-domain proteins [2,3��].

A unifying view of these seemingly different approaches

is that available information — in the form of experi-

mental data points, homologous structures and

sequences, interaction potentials, and stereochemistry

of amino acids and the polypeptide chain — is converted

into a three-dimensional model of the protein. Model

accuracy depends on the amount and specificity of avail-

able information; for example, protein crystals diffracting

to atomic resolution provide more information than crys-

tals that diffract to low resolution. Not surprisingly,

homology modeling provides even less specific informa-

tion. Obtaining an accurate all-atom model without any

experimental (or homology) information remains the

ultimate challenge: model accuracy is then solely depen-

dent on the energy function and the algorithmic ability to

locate its global minimum.

Here, we review recent advances in restraint-based mod-

eling of proteins for structure prediction and determina-

tion structure (Figure 1).

Model representation of protein structure
The advantage of simplified, coarse-grained models of

protein structure [4] is the efficiency of conformational

sampling over their fewer degrees of freedom. Although

such models can provide insight into folding pathways,

they generally lack the atomic detail required for accu-

rate prediction. By contrast, models that represent expli-

citly all atoms provide the detail required to address

many biologically interesting questions and allow accu-

rate discrimination by all-atom energy functions, but at

the cost of a vast conformational space. Promising

approaches address these tradeoffs by adopting a hybrid

approach, in which conformational space is explored

initially with simplified models that are subsequently

used as seeds for dense sampling using an all-atom

representation [3��,5,6].

Conformational biases and spatial restraints
Interatomic forces constrain protein conformations and

vastly reduce their effective conformational space. Atoms

cannot overlap due to steric repulsion, but instead make

favorable van der Waals contacts at close range [7]. Ultra-

high resolution crystallographic studies of small mole-

cules [8] and quantum mechanical calculations have

revealed tight equilibrium values for bond lengths and
www.sciencedirect.com
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Figure 1

Ensembles of 100 RAPPER [20,32,34��,39] conformations for residues 82–85 (FTEA) of amicyanin (PDB code 1AAC) [40] under a variety of

restraints. Each subsequent panel was generated with the noted restraints in addition to those in the previous panel, except h and i. (a) Random coils

under internal excluded volume only, (b) plus gap closure, (c) plus excluded volume against the framework protein, (d) plus 3 Å Ca restraints,

(e) plus 1 Å Ca restraints, (f) plus 3 Å sidechain centroid restraints, (g) plus 1 Å sidechain centroid restraints, (h) excluded volume, gap closure and fit

into the electron density map and (i) crystal structure. All panels, except (a), are from an identical perspective. Note that two conformations of Glu84

satisfy all restraints in (h). Oxygen atoms are colored red, nitrogens in blue and carbons from blue (F), green (T), yellow (E) and red (A) along the

polypeptide chain. Figures generated with PyMOL [41].
angles between constituent atoms of amino acids. The

principal degrees of freedom of the polypeptide chain are

the w/c dihedral angles along the polypeptide chain.

These dihedral angles exhibit marked preferences,
www.sciencedirect.com
famously illustrated by the Ramachandran plot [9�]. Side-

chains also exhibit conformational preferences (rotamers),

which depend, in turn, on the mainchain conformation

[10,11]. These conformational biases can be sufficiently
Current Opinion in Structural Biology 2006, 16:160–165



162 Theory and simulation
strong so as to predispose short sequences towards parti-

cular structural motifs [12–14].

Sampling and optimization
Once a representation of protein structure has been

adopted and restraints formulated, an algorithm must

be selected to find conformers consistent with these

restraints. We briefly review general strategies for solving

restraint satisfaction problems.

Continuous optimization aims to assign values to a set of

variables (X) that minimize the continuous scoring func-

tion f(X) that encodes the restraints and potential energy

terms operating on the system (see [15] for an introduc-

tion). The continuous optimization framework is well

developed, general and powerful, ranging from efficient

first-derivative minimization algorithms limited to local

optimization (Figure 2a) to simulated annealing algo-

rithms for non-local optimization (Figure 2b). Not sur-

prisingly, continuous optimization has been employed

with great success in many modeling programs, such as

CNS [16] and MODELLER [1,17].

The application of continuous optimization algorithms

has been fraught with difficulties. The potential energy

landscapes encountered in structural biology are rugged

and pocked with local minima [18,19] that must be

avoided as poor solutions to the restraint satisfaction

problem. The penchant of local optimization algorithms

to become trapped in local minima on such landscapes

drove the adoption of non-local optimization strategies,

such as simulated annealing [16] (Figure 2b). Though

superior to direct minimization, simulated annealing still
Figure 2

Methods for exploring complex energy landscapes. A rugged energy landsc

separated by energy barriers. (a) During direct minimization, the initial confo

reduce its energy. The final conformation (lower star) is at the bottom of the l

initial conformation (star), so that local energy barriers can be overcome and

the system to a low-energy well (lower star). (c) Discrete conformational sam

independent of the underlying energy landscape. These conformations typic

landscape (blue projection lines). Nevertheless, direct energy minimization (

of their local energy wells.
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suffers from an inability to escape local minima. Indeed,

there are no, nor are there likely to ever be, efficient

methods to find the global energy minimum on arbitrary

potential energy landscapes. What, then, is an effective

heuristic search strategy for generating low-energy con-

formers?

Discrete conformational sampling has proven a viable, if

not superior, alternative to continuous optimization for

restraint-based modeling of protein structure on the

rugged landscapes common in structural biology (see

Table 1) [4,20–23]. The single biggest advantage of

discrete sampling is that it freely crosses energy barriers

that separate conformations (Figure 2c). This barrier-

crossing problem is a general challenge for all approaches

that explore conformational space by generating a series

of related structures in which each successive structure is

a perturbation of the previous one. As the probability of

visiting a state is proportional to its energy, such methods

have difficulties traversing rugged landscapes with deep

valleys separated by high peaks.

Ideally, the sampling of conformational states should be

in proportion to the energies of the low-energy states and

not the height of the barriers separating them. Discrete

sampling schemes in part realize this by sampling

directly from empirical propensities. In this way, only

low-energy conformations are examined and kinetic

traps, such as those due to cis-trans peptide bond or

sidechain rotamer flips, are bypassed. Consequently,

discrete sampling is, for many applications, an efficient

and effective means to explore conformational space and

rugged energy landscapes [21].
ape with multiple nearly iso-energetic minima (red, green, blue)

rmation (upper star) undergoes a series of minimization steps that

ocal energy well. (b) Simulated annealing begins by heating (red line) the

a range of conformations sampled. Slow cooling (blue line) then returns

pling first generates a range of initial conformations (upper stars),

ally have poor initial energies with respect to the underlying energy

red lines) produces final conformations (lower stars) at the bottom

www.sciencedirect.com



Conformer generation under restraints de Bakker et al. 163

Table 1

Applications of restraint-based conformer generation.

Application/field Problem Specific restraints References

Structure prediction

Loop modeling Construct loop region given

knowledge of surrounding protein

structure

Reattachment to framework structure. Scoring with

potential energy functions

[5,32,33,39]

Sidechain assignment and design Find optimal configuration of

sidechain rotamers given fixed

mainchain conformation

Pairwise interaction potential [42–44]

Comparative modeling Construct model of a sequence of

unknown structure given homology

to a sequence of known structure

Atomic positions, dihedral angles, secondary structure

inferred from homologs

[1,17] (a)

Structure determination

Crystallographic model building

and refinement

Rebuild model to improve

consistency with X-ray data

Electron density map and reciprocal-space reflections [21,29,31,34��]

NMR Find and/or improve models

consistent with NMR data

Interatomic distances, dihedral angles, interatomic

angles relative to global coordinate system

[25,26,45�,46]

Electron microscopy and

tomography

Dock atomic-level structures into

low-resolution micrograph or

tomograph

Individual protein structures, low-resolution electron

density map, known interactions between proteins

[27,28�]

Structural dynamics and

heterogeneity

Determine the accuracy,

heterogeneity and dynamics of

proteins

X-ray or NMR data [34��,38,47]

(a) N Furnham, PIW de Bakker, MA DePristo, DF Burke, TL Blundell, unpublished.
Applications and specific restraints
Restraint-based conformer generation has been success-

fully employed in a variety of contexts in structural

biology (Table 1). These applications segregate into

two main areas: structure determination from a set of

experimental data; and structure prediction by homology

or ab initio modeling. Restraint-based conformer genera-

tion has proven especially fruitful for structure determi-

nation because of the difficulties inherent to deriving

atomic positions from the reciprocal-space reflections

produced by X-ray crystallography [24], interatomic dis-

tance and angular relationships generated by NMR

[25,26], or the low-resolution electron maps from micro-

scopy [27] and tomography [28�]. The crystallographic

community early appreciated the usefulness of restraint-

based modeling to produce models that fit into real-space

electron density maps [29,30]. These early techniques

have evolved into fully automated methods that identify

and rebuild poorly fit regions, improving on the refine-

ment process itself [21,31].

Conformer generation has also enjoyed widespread suc-

cess in structure prediction (Table 1), from short loops

[5,32,33] to whole proteins [3��,17]. Baker and colleagues

[2,3��] have recently achieved remarkable accuracy in ab
initio prediction. Their hybrid approach first generates an

ensemble of conformers using a coarse-grained represen-

tation of protein structure; these are subsequently con-

verted to an all-atom representation and refined against

an all-atom energy function. Although most predictions

are to within a few angstroms of the experimental struc-

ture, the poor predictions are due to an inability to
www.sciencedirect.com
produce initial models close to the native structure and

are not limitations of the potential energy function, which

scores the native and neighboring structures better than

any of the sampled conformations [3��]. They conclude

that ‘‘the primary bottleneck to consistent high-resolu-

tion structure prediction appears to be conformational

sampling’’.

Structural heterogeneity and dynamics
A range of equivalent solutions can often be found for a

given set of restraints. For example, in resolving X-ray

crystallographic data, several different conformers of

equivalent quality can be independently determined

from the structure factors [34��]. Such an ensemble of

solutions captures the uncertainty in the determined

structure, and its associated heterogeneity and dynamics.

Traditionally, uncertainty, dynamics and heterogeneity

have been represented by atomic B factors, a measure of

the mean square atomic displacement. However, B

factors cannot adequately describe correlated motions

among atoms or discrete conformational substates

[35–37]. One solution to this shortcoming is to explicitly

represent heterogeneity and dynamics with an ensemble

of conformers [38], as is standard in the NMR and

molecular dynamics communities. We hope that the

crystallography community will adopt this practice in

the near future, too.

Conclusions
Discrete conformational sampling is an effective strategy

for the efficient generation of ensembles of structures

consistent with spatial restraints. A fruitful direction for
Current Opinion in Structural Biology 2006, 16:160–165
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future research is to better understand the relationship

between the information content of restraints and the

accuracy of three-dimensional atomic positions inferred

from those restraints (e.g. Figure 1). Such a theory would

be helpful in the hitherto unsuccessful effort to marry

disparate sources of structural information, such as simul-

taneous refinement against both NMR and X-ray data, or

the incorporation of secondary structure predictions in

comparative modeling. On the practical side, we expect

that discrete conformational sampling should improve

structure determination and prediction in so far as these

are limited by conformational sampling. For example,

simply generating conformers around a putative model

followed by minimization results in a significant improve-

ment in structure prediction [32] and determination [21].

Restraint-based conformational sampling is helping to

overcome some of the remaining obstacles to fully auto-

mated structure determination and atomic-resolution

structure prediction.
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