SoftArch: An Architecture-Level Tool for Modeling and Analyzing Soft Errors *

Xiaodong LiT*, SaritaV. Adve?, Pradip Bose', Jude A. Rivers!

TIBM T. J. Watson Research Center
Yorktown Heights, NY 10598
{xjli, jarivers, pbose} @us.ibm.com

Abstract

Soft errors are a growing concern for processor reliabil-
ity. Recent work has motivated architecture-level studies of
soft errors since the architecture can mask many raw errors
and architectural solutions can exploit workload knowl-
edge. This paper proposes a model and tool, called Soft-
Arch, to enable analysis of soft errors at the architecture-
level in modern processors. SoftArch is based on a proba-
bilistic model of the error generation and propagation pro-
cess in a processor. Compared to prior architecture-level
tools, SoftArch is more comprehensive or faster. e demon-
strate the use of SoftArch for an out-of-order superscalar
processor running SPEC2000 benchmarks. Our results are
consistent with, but more comprehensive than, prior work,
and motivate selective and dynamic architecture-level soft
error protection mechanisms.

1 Introduction

CMOS technology scaling has brought tremendous im-
provement in performance for semiconductor devices. As
we move to sub-100nm lithographies however, these gains
appear to face fundamental reliability related challenges. In
particular, soft errors are emerging as a new challenge in
processor design. Soft errors or single event upsets are tran-
sient errors caused by high energy particle strikes such as
neutrons from cosmic rays and alpha particles from pack-
aging material. Such strikes can flip the bit stored in a
storage cell and change the value being computed by a
logic element. Various studies have predicted an increase in
soft error rates (SER) in different types of circuits (SRAM,

*This work was supported in part by an equipment donation from AMD
and the National Science Foundation under Grant No. CCR-0313286 and
EIA-0224453.

IXiaodong Li is a Ph.D. student at the University of lllinois at Urbana-
Champaign. This work was done while he was a co-op at the IBM T.J.
Watson Research Center.

iDepartment of Computer Science
University of Illinois at Urbana-Champaign
{xli3, sadve} @uiuc.edu

latches, and logic) with scaling [3, 8, 10]. Although a con-
sensus on exact SER values is still lacking, there is a grow-
ing concern about the phenomenon.

Until recently, the majority of the work in soft errors
has focused on the device and circuit level. More re-
cently, however, there has been work at the architecture
level [1, 4, 7, 12, 13] for at least two broad reasons. First,
recent work has shown that many of the raw errors that oc-
cur at the device/circuit level may be masked at the archi-
tecture level, potentially motivating lower cost protection
mechanisms. For example, Wang et al. report that about
85% of the raw errors are masked at the microarchitecture
level [12]. The reasons for such a high masking rate in-
clude the relatively low resource utilization in a modern pro-
cessor; the large number of resources that only affect per-
formance and not correctness (e.g., branch predictor struc-
tures); and values that are used but do not affect the eventual
program outcome. Second, by considering solutions at the
architecture level, knowledge of workload behavior can be
exploited, leading to potentially more efficient protection
solutions (e.g., [12, 13]). These observations motivate the
need for comprehensive models and tools for quantitative
studies of soft errors at the architecture level.

This work presents an architecture-level model and tool,
called SoftArch, to quantify the impact of soft errors on a
modern processor (e.g., its architectural mean time to fail-
ure or MTTF). To our knowledge, this is the first such tool
to model soft errors in most significant microarchitectural
structures for applications with millions of instructions in
reasonable time. (A detailed comparison with prior work
appears in Section 5.)

SoftArch works with a high-level architecture timing
simulator to track the raw probability of error in the value
of each bit (instruction or data) communicated or computed
by any pipeline stage in the processor. A value may be erro-
neous either because (i) it is physically struck by a particle
during its residence time in a structure, or (ii) it is the result
of a communication of an erroneous value, or (iii) it is com-

puted using one or more erroneous input values. We refer
to the first case as error generation and to the second and
third cases as error propagation. To model the error gen-
eration probability, we use a combination of residence time
and raw SER numbers for storage structures, and a simple
abstraction for logic. For error propagation probability, we
apply simple probability theory on the error probabilities of
the sources of the propagation.

During program execution, SoftArch identifies the val-
ues that could affect program outcome. For each such value,
it uses the tracked errors for the value and the simulator tim-
ing data to determine the probability of failure and time to
failure due to that value. This enables determining the mean
time to failure using basic probability theory. SoftArch also
keeps enough information on the microarchitectural struc-
tures occupied by each value to determine the contribution
of different structures to the overall MTTF.

We use SoftArch to quantify the MTTF of a mod-
ern out-of-order processor and the contribution of differ-
ent structures to the failure rate, for various SPEC bench-
marks. Our results (consistent with, but more comprehen-
sive than, previous studies) are as follows: (1) there is sig-
nificant architecture-level masking of soft errors, (2) there
is substantial inter- and intra-application variation in MTTF
or failure rate, and (3) there is substantial application-
dependent variation in the contribution to the failure rate
from different structures. These results motivate selective
protection of only the most vulnerable structures and dy-
namic, application-aware protection schemes.

2 The SoftArch Model

The SoftArch model consists of the following compo-
nents, covered in Sections 2.1- 2.4 respectively. (1) A prob-
abilistic model for soft error generation in values residing
in storage structures or passing through logic. (2) A model
for soft error propagation, which results in the propagation
of generated errors to other values. (3) A definition of when
an erroneous value contributes to processor failure. (4) A
model for calculating mean time to failure (MTTF) for a
processor for a given workload.

2.1 Error Generation Model

2.1.1 Error Generation in Storage Elements

Current processors include several storage structures such
as caches, register files, queues, TLBs, and latches. A soft
error in a storage structure occurs when a high energy parti-
cle strikes a device in the structure, and the resulting charge
collected exceeds the critical charge (@) required to flip
the stored bit value. We call this a raw soft error.

We seek to determine the probability that a value v; re-
siding in a (possibly multiple bit) storage location for time
T incurs a raw soft error during 7. We assume that if an

error occurs, the value is corrupted; i.e., we ignore the low
probability that multiple errors could correct the value. It
is widely accepted that raw soft errors for storage follow a
constant failure rate or exponential time-to-failure distribu-
tion model. Let X\ denote the raw failure rate, also referred
to as the raw soft error rate or SER, for the storage loca-
tion considered. Then the probability that the value v; will
incur a raw soft error in time 7', denoted ¢;, is 1 — e 7.
In practice, both A and 7" are small enough that we can ap-
proximate e=*7 as 1 — X\ - T. Thisgivese; =\ - T.

Thus, the probability that an error is generated for a value
v; in a storage location depends on the raw SER for that lo-
cation,), and the residence time of the value in the location,
T. X is determined by circuit layout, technology, and en-
vironmental parameters (e.g., the amount of charge stored,
charge collection efficiency, and particle flux). There has
been extensive work on determining the value of A\ using
circuit level simulation or measurement (Section 3.2). Res-
idence time 7" depends on the program and the processor ar-
chitecture, and can be determined through architecture level
timing simulation (Section 3.1).

2.1.2 Error Generation in Logic Elements

Combinational logic elements are used for computation and
control within a pipeline stage. A high energy particle strike
on a device in a logic circuit may create a current pulse that
may affect the value produced by the circuit. This transient
effect becomes visible only if it is captured by the subse-
quent latch. Instead, the transient effect could be masked
due to electrical masking (the current pulse attenuates as
it goes through the gates in the circuit), logical masking
(the current pulse affects parts of the circuit that do not af-
fect the output value), or latch window masking (the cor-
rupted result is not latched because it does not arrive within
the required timing window for the latch). Logic SER has
been ignored in most prior architectural studies because the
above masking makes the effective SER much smaller than
that of storage structures. However, as technology scales,
these masking effects are diminishing and the logic SER is
projected to increase significantly [10].

For our architecture level model, it is desirable to include
the above circuit-level masking effects within the raw logic
SER value. Because these masking effects depend on the
circuit layout and inputs, the desired raw logic SER will
differ for different logic circuits and even for different in-
puts. In general, it is hard to abstract all of these effects. We
therefore use a simple abstraction consisting of one param-
eter called e;04;c COrresponding to each type of logic circuit
(e.9., eaty Tor the ALU or ey, for the FPU). ejq4;c is de-
fined to be the probability that, given correct inputs, the re-
sult produced by the corresponding circuit at the end of the
computation is incorrect because of soft errors. e;g;c can
be estimated using circuit level SER analysis tools, based on

the layout of that logic circuit and technology parameters.
In our implementation, we use a simple estimation based on
prior work [10] and the gate and latch counts for the logic
circuit (Section 3.3).

2.2 Error Propagation Model

In a processor, values are read from storage locations,
possibly processed, and the original or newly computed val-
ues are stored elsewhere. (We consider the values stored in
the new locations to be new values, even if they are identi-
cal to the original ones.) During this process, errors in the
original values will propagate to the new values. For ex-
ample, if the value, v1, in register r1 is corrupted and later
used to generate a result 3 = r1 + r2, the error in v1 will
propagate to the new value stored in 3.

Conceptually, we would like to track how errors are
propagated to new values and determine the probability that
a new value is erroneous. These probabilities will then al-
low us to determine the probability of failure and the mean
time to failure (depending respectively on which erroneous
values cause failure and when). The probability of error in
a newly generated value (say v3) depends on the probability
of error in the input values (say v; and v2) used to generate
vs. In general, denoting V; to mean the event that value v;
has an error, denoting P(V;) as the probability of V;, and as-
suming that any error in either vy or vo will cause an error
in v3, the probability of error in v3 can be given by P(13) =
P(VLUV2) = P(V4) + P(V2) — P(V; - Vo), where V; - V3 is
the event that v; and vy both have errors.

If the errors in v, and v, are independent, then P(V7 - V3)
is simply P(V;)P(13). On the other hand, if the errors are
perfectly correlated (e.g., if v was just generated by copy-
ing v; to another location), then P(V; - V2) = P(V4) = P(1%).
In general, however, the errors in two values could be par-
tially correlated and estimating P(V; - V3) is more difficult.
Accounting for the correlation and determining the resul-
tant probability requires keeping track of the raw errors that
were originally responsible for the errors in v; and vs.

For example, Figure 1 shows a dataflow graph where val-
ues v1, v2, and v3 incur errors el, e2, and e3 with proba-
bility |e1], |e2|, and |e3| respectively. Assuming el, e2, and
e3 are independent of each other, the probability of error
for value v4 is |e1]| + |e2| — |e1| - |e2| and that for v5 is
lez| + |es| — |ez| - les|. The errors in v4 and v5 are corre-
lated since they share the same error from v2 — if v2 has an
error, both v4 and v5 will have errors. Therefore, to calcu-
late the probability of error in v6, the correlation between
the errors in v4 and v5 needs to be taken into account. We
do this by tracking the original independent raw error events
that cause errors in different values.

For our model, we do not need to calculate the probabil-
ity of error for a value immediately upon its generation — we
only need probability calculations for values that eventually

e {el, e2,e3}
lell+le2l-le11le2] Q e le2l+le31-le2%e3|
{el, e2} {e2,e3})

el e2 e3

Figure 1. An example for error propagation.

cause failure as defined in the next section. Therefore, for
purposes of determining how errors propagate among val-
ues, we simply keep track of the set of all the raw error
events that can cause an error in a value, and propagate this
entire set when a value is used to generate a new value. For
example, in Figure 1, the error set for v4 is {el, e2} and
for v5 is {e2, e3}. Thus, the error set for v6 should be
{el, €2, e3}. We can now easily calculate the error proba-
bility for v6, since el, €2, and e3 are independent.

More generally, consider a value v; residing in a storage
location. Let ¢; be the time interval between two successive
reads of v; (or between the first write and read of v;). We
refer to the event that v; incurs a raw soft error over time ¢;
as a basic storage error event. If v; was generated through
computation logic, then we refer to the event that v; incurred
alogic error (after considering circuit level masking effects)
during this computation as a basic logic error event. We
refer to a basic storage or basic logic error event as a basic
error event or simply a basic error. All basic errors are
independent of each other, with probabilities given by the
error generation models in Section 2.1.

The error propagation model requires determining the
basic errors that need to be propagated to a new value. For
each value v;, we associate a basic error set, denoted ;.
This is the set of basic errors directly incurred by or propa-
gated to v;.* Thus, for a new value v; created at time ¢;, the
propagation model seeks to determine v;’s F; at t;.

First, we handle the simple case where v, is generated by
reading an old value vy from a storage location and writing
it to another storage location. In this case, the error set E;
is simply the error set for vy at time ¢;.2

Next, we handle the case where v; is created through
some computation op(ini,ing, ...ing), where k > 1, in;’s

INote that for v; in a storage location, each time it is read, a new basic
error event is added to F; (to indicate an error occurrence in the interval
since it was last read).

2We assume the process of moving a value from one location to another
across wires does not induce any errors. Currently, wires do not appear to
have soft error problems. However, in the future, soft errors from wires
could be easily incorporated by adding another basic error due to the wires
to the set E;.

are input operands, and op is any operation. The creation of
v; involves a possible basic logic error event, say b;, with
probability e,,. Then E; is simply E;,, U Ejp, U - - - U
Ein, U{bi}.

Thus, we can generate the basic error set for a newly
created value. Since all the error events in this set are in-
dependent, the probability of error in the new value can be
calculated as a function of the probabilities of the errors in
its basic error set (which are known from Section 2.1). For
example, in Figure 1, the probability of error for v6 is |e1]|+
le2]+|e3| —|e1]-|e2]| —|e2] - |e3]| — |e1]- |e3|+]el|-|e2|-|e3|.

2.3 Program Failureand Timeto Failure

Not all erroneous values cause program failure. For ex-
ample, an error that occurs in a dead value does not cause
failure since the value is not used again. Similarly, an error
in a speculative instruction that is later squashed does not
cause program failure. We say an erroneous value results
in program failure if the error is observable by an external
observer. Broadly, this includes (1) values that are written
to an output device, (2) values that affect program control
flow (e.g., the value of a branch target), (3) the value of an
instruction opcode (an error could make the opcode illegal,
causing a program crash), (4) any value representing an ad-
dress of a memory location (an error could cause access to
prohibited locations, causing a crash), (5) and a destination
register field of an instruction (an error could result in the
corruption of an unknown and undesirable register).

Depending on the system modeled and the implementa-
tion, the precise set of values where errors may cause pro-
gram failure will vary (e.g., in a processor with speculation,
an errror in the opcode of a misspeculated instruction will
not cause program failure). Further, a specific implemen-
tation of the model may choose to conservatively assume
that errors in a superset of the above values will cause fail-
ure. Section 3.5 describes the set of values where errors are
considered to cause failure in our implementation.

We call the above defined set of values where errors
would lead to program failures as the failure set, denoted
by Ve = {vs1,vye,...}. Additionally, our model also
requires determining the time, ¢¢;, at which a failure due
to vg; occurs. This is determined through the architectural
timing (performance) simulator. We assume that the failure
set {vs1, vye, ...} isordered such that t p; < ty; fori < j.

2.4 Determining Mean Time To Failure(MTTF)

We next derive mean time to failure (MTTF) for a pro-
cessor running a given workload. Our model so far pro-
vides: (1) the values that can cause failure: {vsi, vyo, ...},
(2) the corresponding times for these failures: {¢1,ts2, ...},
() for each value, vy;, the set of independent basic errors

E;; = {eji—1,eri—2, ...} that can produce an error in v,
and (4) the probability for each independent basic error.
Infinite programs. First, consider a workload that runs for-
ever. Its MTTF is the sum of the ¢ ¢,’s, each weighted by the
probability that v ¢; is erroneous and no previous value in the
failure set is erroneous. Denoting the number of elements
in the failure set as N (N could be o), we have:

MTTF = Zfil ts;- (Probability that v¢; has an error and
none of vy1, ..., v¢;—1 have an error)

Given the basic error sets E'y; and the probabilities of the
constituent errors, we use basic probability theory to deter-
mine the probability of the events in the above summation.
For example, let Eyq = {e1,e2} and Eyg = {e2,e3}. Then
the probability that v o has an error and v;; does not have
an error is the probability that at least one of the errors in
(Ef2 - E41) occurs and none of the errors in E4; occurs.
This is |es| - (1 — |e1]) - (1 — |ez|), denoting probability of
€; by |€l|
Finite programs. Most of our workloads, however, are fi-
nite programs that run for a relatively short amount of time.
To determine MTTF in a meaningful way for a processor
running such a program, we assume that the program runs
repeatedly in a loop forever. If a failure always occurs in
the first run of the program, then the MTTF for the finite
program, denoted MTTF”, can also be represented by the
above equation for infinite programs. If there is no failure in
the first run, then we need to expand the equation to include
possible failures in subsequent runs.

Let T.,.. be the execution time of one run of the pro-
gram. Then the time to failure due to v; in the kth run
of the program is (k — 1)Tegec + ty;. This time to failure
must be weighted by the probability that none of the prior
k — 1 (independent) runs fail, v, is erroneous in the kth
run, and none of the values prior to vy, in the failure set are
erroneous in the kth run. That is,

MTTF = 372 "% {(k — 1)Texce + tr:}- (Probability
that none of the prior k-1 runs fail) - (Probability that v¢; has an
error and none of v¢1, ..., vg;—1 have an error)

To simplify the above equation, we define
FailureProb’ as the probability that a given run of
the program will see a failure. That is,

FailureProb’ = Zj\;l (Probability that vs; has an error
and none of v¢1, ..., vg;—1 have an error)

Thus, in the MTTF equation, the term Probability that
none of the prior k-1 runs fail can be represented as (1 —
FailureProb')*=1, The MTTF equation then becomes:

oo N
MTTF = 2 57 Ak — DTewee + tri} - (1 —
FailureProb’)*~*. (Probability that v;; has an error and none
of vf1, ..., vyi—1 have an error)

Technology Parameters

Process technology 90nm

Processor frequency 2.0 GHz
Processor Parameters

Fetch rate 8 per cycle

Retirement rate
Functional units
Issue queue entries

1 dispatch-group (=5, max) per cycle
2 Int, 2 FP, 2 Load-Store, 1 Branch
FPU = 20, Load/Store/Integer = 36
Branch = 12

1/4/35 add/multiply/divide (pipelined)
5 default, 28 div. (pipelined)

Register file size 80 integer, 72 FP

iTLB/dTLB entries 128/128

Instruction buffer entries | 64

Integer FU latencies
FP FU latencies

Memory Hierarchy Parameters

L1 Dcache 32KB, 2-way, 128-byte line
L1 Icache 64KB, 1-way, 128-byte line
L2 (Unified) 1MB, 4-way, 128-byte line

ContentionlessMemory L atencies

L1/L2/Memory Latency | 1/20 /165 cycles

Table 1. Parameters for the simulated processor.

Rearranging the terms slightly,

MTTF = Y200 (1 — FailureProb')*=' - SN {(k —
1)Tewec + tyi}- (Probability that vy; has an error and none of
Uf1, ..., Ui—1 have an error)

Now applying the definition of MTT F’, we get:

MTTF = Y7 (1 — FailureProb’)* ™" - {(k — 1)Texec -
FailureProb' + MTTF'}

= Tewee FailureProb’ 7 | (k—1)-(1— FailureProb’)* '+
MTTEF' Y (1 — FailureProb’)*~"

Using > 07, 2! = L and Y07, (k — 1)z*! =
== to simplify the equation, we get

MTTF'

_ TCIGC~(17Fa'Llu'rePTob,)
MTTF = + FailureProb’

FailureProb’
Tewect MTTF' T
FailureProb’ erec

Note that we can derive the contribution to MTTF from
a specific processor structure by assuming zero probability
for errors generated in other structures.

3 Implementation of the SoftArch Model

We have implemented the SoftArch model in the Soft-
Arch tool. There are five key components to the implemen-
tation: (1) integration with an architecture-level timing (i.e.,
performance) simulator, (2) estimation of A, (3) estimation
of ejogic, (4) implementation of the basic error set corre-
sponding to each value and the operations on these sets, and
(5) identifying the values in the failure set. The following
sections discuss each of these components.

3.1 Integration with Timing Simulation

The SoftArch model provides MTTF for a specific pro-
gram running on a processor. It requires integration with a
performance (or timing) simulator that runs the program,
and provides to the SoftArch model timing information
about the values read/written/computed in different parts of
the processor. This work uses Turandot, a trace-driven per-
formance simulator that models the timing of the various
pipeline stages of a modern out-of-order superscalar pro-
cessor in detail [6]. Table 1 summarizes the parameters for
the simulated processor; these were chosen to roughly cor-
respond to the POWER4 microarchitecture [5].

We track soft errors using the SoftArch model for most
of the important structures in the processor, including the
instruction buffer (IBUF), instruction decode unit (IDU),
integer and floating point register files (REG), integer func-
tional units (FXU), floating point units (FPU), instruction
TLB (iTLB), data TLB (dTLB), and instruction queues
(1Q). We assume the load/store queue, caches, and mem-
ory are protected using ECC, and do not consider a soft er-
ror rate for them. We also do not model soft errors for the
branch prediction unit since these do not cause processor
failures.

3.2 Estimation of A

Irom et al. [2] and Swift et al. [11] report measured val-
ues of raw SER cross section for the TLB and floating point
registers for PowerPC processors. The raw SER cross sec-
tion is defined as the number of errors per particle influence
and is related to the raw SER as follows [14]:

Raw SER for a storage structure = (SER cross section for the struc-
ture)(nucleon flux)(# bits in the structure)

From [2], the raw proton SER cross section for the
TLB structure in a 200nm PowerPC processor is about
5 - 10~ **em?/bit for proton energy larger than 20Mev.
From [11], the raw proton SER cross section for the float-
ing point register structure in a PowerPC 750 processor is
about the same value. Since protons and neutrons have sim-
ilar characteristics at higher energy range, we use the pro-
ton cross section to roughly estimate the raw neutron SER
of different structures. We do not model the alpha parti-
cle SER since Karnik et al. [3] show that in devices where
Qcrit 18 large, neutron SER dominates. This is the case for
the array structures we study here. Further, the detailed es-
timation of raw SERs is not the focus of this paper.

According to Ziegler [14], neutron flux with sufficient
energy (>20 Mev) at sea level is 10°particles/cm? - yr.
Using the above equation, we can derive the raw SER for
the register file in 200nm technology as 5.7-10~* FIT/bit (1
FIT is one failure every 10° hours). Since we model a pro-
cessor in 90nm technology, we scale the raw SER rate us-
ing scaling data by Karnik et al. [3]. Karnik et al. show that

neutron SER in SRAM increases about 30% from 200nm to
90nm technology. Thus, we assume that the raw SER for
the register file in 90nm technology is 7.42 - 10~* FIT/bit.
Assuming a 64 bit register and a 2 GHz processor, we can
derive that \ for a register value is 6.60 - 10~24 errors/cycle.
Although Irom et al. [2] and Swift et al. [11] do not re-
port data for the instruction buffer, instruction queue and
integer register file, we assume the SER cross section value
for these to be similar to the reported results for TLB and
floating point registers (we could not find any other sources
of measured data for these structures either). Using an ap-
proach similar to the above, we get A for an instruction
buffer entry as 6.60 - 1024 errors/cycle and for an instruc-
tion queue and a TLB entry as 1.13 - 1023 errors/cycle.

3.3 Estimation of e;ogic

At 100nm, Shivakumar et al. [10] showed the raw SER
for a latch to be 3.5 - 10~° FIT and for a 16FO4 logic chain
to be 5 - 106 FIT (after circuit level electrical and latch
window masking). Based on the gate and latch counts for a
logic circuit, we can therefore estimate the raw SER for that
circuit at 100nm (we use the same value for 90nm). (This
is conservative since it ignores circuit-level logical masking
which depends on the inputs and the exact logic function.)

Specifically, let #LogicChainsand #Latches be the num-
ber of logic chains and latches respectively in a logic circuit
(e.g., FPU, FXU, or IDU). Then for our 2 GHz processor,

(#LogicChains-5:10"%4-# Latches-3.5:10~°)
109-3600-2-109

We estimated the gate/latch count information for our
simulated processor as follows.3 We first estimated the rel-
ative areas of each modeled structure from published floor-
plans of the POWER4. Since the total transistor count
for the processor is known, we could then assign area-
based estimates of transistor counts for each modeled struc-
ture. Reasonable assumptions about transistor density dif-
ferences between SRAM and logic dominated structures
were also factored in. We estimate 10K latches and 70K
gates for the FXU (integer ALU), 14K latches and 100K
gates for the FPU, and 7K latches and 50K gates for the
IDU. (Our implementation assumes all FXU operations
have the same e;,4:. and all FPU operations have the same
€logic)- It follows that e;, 4. for the IDU, FXU, and FPU is
5.16-10723,7.23-10723, and 3.67 - 10~23 respectively.

€logic =

3.4 TrackingBasic Error Set E; for Value v;

The error propagation model requires tracking basic er-
ror sets, using set copy and union operations. These sets can
potentially be unbounded. To reduce space and dynamic

SAlthough our microarchitectural parameters were chosen to be close
to the POWER4, structure-wise gate/latch count information for such com-
mercial processors is not available. We acknowledge that our estimates of
these counts may not be close to actual values.

memory management overhead, we use a fixed size FIFO
table to store the basic errors in a set (one table per set,
100 entries per table in our implementation). To further re-
duce space, the table entry only stores a sequence number
that identifies the error. A common central table stores the
pertinent information for each sequence number, including
probability of the corresponding error and where it is gen-
erated. In case of overflow of a basic error table (i.e., > 100
basic error sources contribute to the corresponding value),
the oldest entry in the table is discarded. This loses informa-
tion about an error source for the value. We conservatively
assume that the value causes failure due to the dropped er-
ror with probability of that error and at the time the error is
dropped. In our experiments, overflow rarely occurs.

3.5 ldentifying Valuesfor Program Failure

Based on Section 2.3, our implementation makes the fol-
lowing assumptions about values that can lead to processor
failures and the times at which such failures occur.

Values to output devices: Our program traces are at the
user-level and do not contain output instructions. We con-
servatively assume that values that are stored in memory
are observable externally, and errors in them cause program
failure. We assume that the failure occurs when the store
instruction retires and is issued to memory.

Fields of an instruction: Errors in all fields of loads, stores,
and instructions that change control flow (branches and
jumps) are propagated to the retirement queue. These errors
are assumed to cause failure when the instruction retires.
This is because these errors can change the op code, pro-
gram control flow, memory addresses, or the value stored
in memory, which are assumed to be observable externally.
Waiting until retirement to flag a failure ensures that mis-
speculated instructions do not flag failures.

For instructions other than the above, we do not consider

errors in fields that specify source registers to cause fail-
ures. Instead, we propagate the errors in these fields into the
value in the destination register. Errors in all other fields are
considered to cause failure at retirement (similar to loads,
stores, and branch instructions).
Fields in iTLB and dTLB: Any errors in the TLBs are
propagated to the retirement queue entry of the correspond-
ing instruction, and considered to cause failure on retire-
ment of that instruction. This is because an error in these
structures can lead to memory address related failures.

4 Resaults

We evaluate 21 SPEC CPU2000 benchmarks (9 integer
and 12 floating point) with the reference input set. We
use sampled traces with 100 million instructions per bench-
mark that were validated for acceptable representativeness
against the full trace.

HibufSidu Hreg Biq MdtibSitlb Ofxu Efpu\

o /Mibuf Sidu HWreg Eig Mdilb Sitlb Ofxu fpu\
O

FIT Rate
FIT Rate

FIT Rate

Figure 2. FIT rates (a) for raw errors, (b) with architectural masking for SPECint benchmarks, and (c)

with architectural masking for SPECfp benchmarks.

41 Metrics

Our experiments report MTTF for an application (Sec-
tion 2.3). We also compute MTTF for individual structures,
assuming zero raw SER for other structures. An alterna-
tive method of reporting reliability is in terms of FITs. For
failure mechanisms with constant failure rate (i.e., expo-
nential distribution for time between failures), FIT rate =
1/MTTF and the FITs of individual system components can
be added to give the FITs of the entire system. This addi-
tive property is convenient when attempting to understand
the relative contribution of failure rate and importance of
different system components. However, while the constant
failure rate assumption for raw soft errors is reasonable, it
is unclear that the assumption holds after the errors are ar-
chitecturally masked. Our model does not make such an
assumption since it computes MTTF from first principles.
Nevertheless, due to the small raw SERSs, for our results, we
find that the FIT rates across components are indeed addi-
tive. Therefore, for convenience and following other liter-
ature (e.g., [7]), we report our results in terms of FITs (=
1/MTTF) for the entire system and for each component.

4.2 Overall Results

Our results are presented in Figures 2 — 5. Figure 2
shows the FIT rate for an entire application. Figure 2(a)
shows the raw processor FIT rate, which is calculated as-
suming that each raw error causes a program failure. Fig-
ures 2(b) and (c) show the FIT rates for our SPECint and
SPECfp benchmarks respectively, with the rightmost bars
showing the average. Each bar in these figures is further
divided to show the contribution to the FIT rates from the
different structures — instruction buffer (IBUF), instruction
decode unit (IDU), register file (REG), instruction queues
(1Q), data TLB (dTLB), instruction TLB (iTLB), integer
functional unit (FXU), and floating point unit (FPU).

_ |Mibuf Sidu Wreg Eiq Mdilb Sitlb Ofxu fpu\
9

FIT Rate

Figure 3. FIT rate for each structure, averaged
across SPECint and SPECfp benchmarks.

Figure 3 summarizes the structure-wise information by
showing the average FIT rate for each structure across the
SPECint and SPECfp benchmarks. Figures 4(a) and (b)
show the architectural derating factors for each structure
and the entire processor for SPECint and SPECfp respec-
tively (again, the rightmost bars are the average). The derat-
ing factor is defined as —£LL_ (i.e., the ratios of the values
of the bars in Figure 2(a) and Figure 2(b) or (c)), and is also
referred to as the architectural vulnerability factor (AVF) by
Mukherjee et al. [7]. Note that the lower the derating factor,
the less vulnerable the structure is.

Finally, to understand dynamic application behavior,
Figure 5 reports the time variation in processor and per-
structure FIT rate for two representative applications. We
divide each application’s execution into intervals of 64K in-
structions, and plot the FIT rate (Y-axis) for each such in-
terval (X-axis), for each structure and the full processor.

The above data shows the following high level results
(these are consistent with prior work, but they are more
comprehensive since they cover more structures on chip
than [7] and longer application runs than [12]):
Architectural derating. Architectural masking has a large

800 W ibuf B idu H reg E iq | dtlb itth O fxu fpu O chip |
o 0
S 70%r
8 60%
L 5006
2 40%-
‘" 30%
o 20%
0O 10%
O_
600 B ibuf E idu H reg B iq B dtlb N itlb 0 fxu fpu 0 chip \
0
S (=)
% 50%] M
LL 40%
2 30%
g 20% L9
A 10%
o T =2

facerec equake

(b)

lucas

sixtrack swim wupwise AVG

mgrid

Figure 4. Architectural derating factor for each structure (a) for SPECint and (b) for SPECfp bench-
marks. Note that the scales on the two graphs are different.

chi p 0T Lt ML T T o]

fpou A~ [.~]
fXUPWWM%m
itlbr] LA N
dt | b, O R T T A A | ol
9 o N BT e]
reQWMmMF—{
L PO e O P O s DU | W

ibufW ST
0

200 400 600

(a) facerec

ML T

e

1000

L
800

chip oI] I NEm \
fpuj |
fxu - L 4
itlb1T 7 [1 [u 11 \
dt | b PRI NI] Sl M1
Iq }"“ L ST, it ierrty f‘wr‘f"'—“*%
reg ——— | 1
i buf | T : [=
0 500 1000 1500 2000
(b) wupwise

Figure 5. Intra-application variation in FIT rate for intervals of 64K instructions.

impact on the overall processor FIT rate (Figures 2 and 4).
While the raw failure rate is 42 FITs, the average architec-
turally masked rate for SPECint and SPECfp is 10 and 6
FITs respectively.* Thus, on average, only 21% and 13%
of the raw errors cause program failure for the SPECint and
SPECfp benchmarks respectively.

Variation across workloads. Different benchmarks exhibit
significant differences in FIT rates, with a range of 2.6 for
art to 16 for perlbmk (Figure 2). In general, SPECfp appli-

4The absolute FITs may appear low; however, these are for only one
processor, at 90nm, for soft errors only due to neutrons, and assume sig-
nificant protection overhead in the caches.

cations have a lower FIT rate than SPECint.

Variation across structures. Different structures con-
tribute in different proportions to the overall FIT rate (Fig-
ures 2 and 3). Although there are workload-specific vari-
ations, we can identify general trends. For SPECint appli-
cations, the major contributor to the FIT rate is the dTLB
followed by the iTLB and instruction buffer. For SPECfp,
the major contributors are the instruction buffer, register
files, and dTLB, closely followed by iTLB. The logic el-
ements are insignificant and the instruction queues are not
a strong contributor to the SPECfp applications. Further,
Figures 2(a) and 4 show that the difference in contribution

from the structures come both from a difference in the raw
SER and in the architectural derating.

Intra-application variation is significant for the overall
and per-structure FITs (Figure 5).

4.3 Analysis

We next describe the reasons for our results. The archi-
tectural FIT rate for a structure for a given application is
determined by the following three factors for the structure:
Raw FIT rate: This depends on the structure size and the
raw SER per bit or logic chain for the technology.

Base utilization: For logic, this is the fraction of time that
the structure is used. For storage, this is the fraction of val-
ues that are live; i.e., values that will be read before being
overwritten or before program termination.

Effective utilization: This is the fraction of values that are
read or computed from the structure that contribute to pro-
gram outcome. For example, if the instruction queues are
always full, then their base utilization is high. However, if
most of these instructions will be squashed, then the effec-
tive utilization is low. The product of the base and effective
utilization is the architectural derating factor.

The above factors explain the differences in contribu-
tions to architectural FIT rates from the different structures
as follows. The instruction buffer and instruction queues
have relatively low raw FIT rates due to their small size (rel-
ative to the register files and TLBs). However, the instruc-
tion buffer has a high derating factor due to its high base and
effective utilization; therefore, it is one of the three largest
contributors to the architectural FIT rate on average. The
instruction queues, on the other hand, have a more modest
derating factor, and hence a modest to low contribution to
the architectural FIT rate.

For the register file, the raw FIT rate is among the high-
est. For SPECint, however, its architectural FIT rate is much
lower than that of the TLBs because the base utilization of
the floating point register file is negligible. For SPECfp, the
register file is one of the three largest FIT contributors.

The raw FIT rate of the dTLB and iTLB are the same;
however, the dTLB’s FIT rate is larger than that of the iTLB
for SPECint, and is larger for SPECint than for SPECfp. We
consider any erroneous value read from the TLBs to cause
program failure; therefore, the above differences occur from
the base utilization. Thus, the fraction of values that are live
appears higher for the dTLB than for the iTLB for SPECint
(likely because of smaller footprint for instructions), and
higher for the dTLB for SPECint than for SPECfp (partially
corroborated with prior data cache lifetime results).

For the IDU, FXU, and FPU, the main reason for the
low contribution to the overall FIT rate is the low raw FIT
rate of logic and latches relative to arrary structures. Some
predictions expect this trend to reverse for future technolo-
gies [10], in which case the logic elements can be expected

to contribute more to the overall SER.

Similar analyses explain the differences between and
within workloads. For example, consider mcf with its low
FIT rate. It is well-known that it spends most of its exe-
cution stalled for memory. Thus, most structures exhibit a
small FIT rate because of low base utilization. The instruc-
tion buffer and queues, however, contain live instructions
stalled for memory, and so show higher derating.

4.4 Implicationsand Limitations

The above results have at least three broad implications.
First, they motivate selective protection, and can be used
to determine which parts of the processor are most cost-
effective to protect. Second, they motivate application-
aware protection. As shown, different applications have dif-
ferent behavior, both in absolute FIT rate and in the struc-
tures that contribute most to the FIT rate. Our model can
be used to determine the best protection schemes for the
anticipated workloads at design time or to adapt the protec-
tion scheme depending on the application at runtime. Third,
along the same lines, our results show significant variations
in FIT rate and in the structures contributing to FIT rate
within an application. This is similar to the phase behav-
ior noted in prior studies for other metrics (e.g., IPC, cache
miss rate) [9]. These results motivate consideration of dy-
namic adaptation schemes for managing soft errors, much
like adaptation for energy and temperature management.

SoftArch has at least two limitations. First, it depends
on architectural timing simulation. Typically, such simula-
tors do not include all microarchitectural and circuit-level
details, introducing inaccuracies (e.g., use of ejoq;c and
latch/gate count estimates). Second, SoftArch does not sim-
ulate changes to the execution path after an error; therefore,
it cannot model effects such as application-level masking.

5 Redated work

There have been two broad approaches to architecture-
level modeling of the impact of soft errors. The first in-
volves fault injection in a simulator to determine whether an
injected error is exposed at the architeture level [1, 4, 12].
Of these, the study by Wang et al. [12] is the most rele-
vant to ours since it models a modern superscalar processor.
Wang et al. perform fault injection experiments on a latch-
accurate Verilog model of a modern Alpha processor (about
25,000 experiments on about 10,000 cycles of each bench-
mark). Key strengths of this work are that the low level Ver-
ilog model allows for high accuracy and the methodology is
able to simulate the execution path after an error occurs (en-
abling evaluation of effects such as application level mask-
ing). The limitation, however, is the slow speed — each run
is slow and many tens of thousands of runs are needed for
each benchmark, limiting the simulations to about 10,000

cycles of an application’s execution. SoftArch uses a higher
level (hence faster, but less accurate) simulator with only
one run required per benchmark, thereby enabling simula-
tion of millions of instructions per benchmark.

The second approach, by Mukherjee et al., proposes the
concept of ACE or architecturally correct execution bits,
which are the bits required to be correct for correct pro-
gram execution [7]. The average fraction of bits in a struc-
ture that are ACE is termed as the architecture vulnerability
factor (or AVF) for that structure (equivalent to the derat-
ing factor). The product of AVF and the raw SER for a
structure gives its architectural failure rate. To determine
the processor’s architectural failure rate, they implicitly as-
sume that a given structure’s architectural failure rate is con-
stant in time (i.e., exponential distribution for time between
failures). The sum of the architectural failure rates of all
structures then gives the total processor failure rate, and the
reciprocal gives the processor MTTF.

The key to the above methodology is determining
which bits in a structure are ACE. This is done using an
instruction-based approach — each instruction is monitored
through all stages of the pipeline, keeping track of how long
it spends in each structure. Various criteria are then used to
determine whether specific instruction bits are ACE (e.g.,
the result of a dynamically dead instruction is not ACE).
They report the AVF for the instruction queue and execu-
tion units in an Itanium 2 processor.

Given the instruction-based approach used, it is unclear
how to determine ACE bits for structures such as register
files that store data values (vs. structures through which
instructions flow). For example, a value deposited in the
register file may stay live for a long or a short time after
the instruction that computed it has retired. There is likely
some form of analysis that could track the AVF contribution
for such values; however, the analysis is not obvious and not
provided in [7]. In contrast, the SoftArch approach is value-
based and treats instruction and data bits with a unified
mechanism, calculating MTTF from first principles. This
allows the evaluation of the soft error behavior of various
structures, including those carrying instructions and data.

Our experimental results and observations are qualita-
tively similar to those in [7, 12]. However, our method-
ology allows us to report results from significantly longer
application runs than [12] and for more microarchitectural
structures than [7] (including structures carrying data).

6 Conclusionsand Future Work

This paper has presented SoftArch, a model and tool for
studying and analyzing architecture-level soft error behav-
ior of modern processors. SoftArch can be integrated into
high-level performance simulators and used to (1) deter-
mine the architecture-level soft error MTTF of a proces-
sor running a specified workload, (2) identify the soft er-

ror contributions from various microarchitectural structures,
and (3) study the soft error contributions of different phases
of an application. We demonstrated the use of SoftArch
by applying it to a modern out-of-order processor running
SPEC2000 benchmarks. Our results, which are consistent
with, but more comprehensive than, prior work show sig-
nificant architecture-level derating and large variations of
soft error failure rate across workloads, processor struc-
tures, and within the same workload. In the future, we plan
to integrate SoftArch with circuit-level tools to improve its
accuracy and to compare it with fault-injection based tools.
We also plan to explore application-aware, dynamic, and
selective microarchitectural soft error protection schemes.

References

[1] E. W. Czeck and D. Siewiorek. Effects of Transient Gate-
level Faults on Program Behavior. In Proc. Intl. Symp. on
Fault-Tolerant Computing, June 1990.

[2] F.Irom etal. Single-Event Upset in Commercial Silicon-on-
Insulator PowerPC Microprocessors. IEEE Transactions on
Nuclear Science, 49(6):3148-3155, Dec. 2002.

[3] T. Karnik et al. Characterization of Soft Errors Caused by
Single Event Upsets in CMOS Processes. IEEE Trans. De-
pendable and Secure Computing, 1(2):128-143, June 2004.

[4] S. Kim and A. K. Somani. Soft Error Sensitivity Charac-
terization for Microprocessor Dependability Enhancement
Strategy. In Proc. Intl. Conf. on Dependable Systems and
Networks, Sept. 2002.

[5] C.Moore. The POWER4 System Microarchitecture. In Mi-
croprocessor Forum, 2000.

[6] M. Moudgill et al. Environment for PowerPC Microarchi-
tectural Exploration. In IEEE Micro, 1999.

[7] S.S. Mukherjee et al. A Systematic Methodology to Com-
pute the Architectural Vulnerability Factors for a High-
Performance Microprocessor. In Proc. 36th Intl. Symp. on
Microarchitecture, 2003.

[8] H. T. Nguyen and Y. Yagil. A Systematic Approach to SER
Estimation and Solutions. In Proc. 41st IEEE Intl. Reliabil-
ity Physics Symposium, 2003.

[9] T. Sherwood et al. Phase Tracking and Prediction. In Proc.
30th Intl. Symp. on Computer Architecture, 2003.

[10] P. Shivakumar et al. Modeling the Effect of Technology
Trends on the Soft Error Rate of Combinational Logic. In
Proc. Intl. Conf. Dependable Systems and Networks, 2002.

[11] G. M. Swift et al. Single-Event Upset in the PowerPC750
Microprocessor. IEEE Transactions on Nuclear Science,
48(6):1822-1827, Dec. 2001.

[12] N.Wang et al. Characterizing the Effects of Transient Faults
on a Modern High-Performance Processor Pipeline. In Proc.
Intl. Conf. on Dependable Systems and Networks, 2004.

[13] C. Weaver et al. Techniques to Reduce the Soft Error Rate
of a High-Performance Microprocessor. In Proc. 31st Intl.
Symp. on Computer Architecture, 2004.

[14] J. F. Ziegler. Terrestrial Cosmic Rays. 1BM Journal of Re-
search and Development, 40(1):19-39, 1996.

