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Abstract

Many semistructured objects are similarly, though not identically, structured. We study the
problem of discovering “typical” substructures of a collection of semistructured objects. The
discovered structures can serve the following purposes: (a) the “table-of-contents” for gaining
general information of a source, (b) a road map for browsing and querying information sources,
(c) a basis for clustering documents, (d) partial schemas for providing standard database access
methods, (e) user/customer’s interests and browsing patterns. The discovery task is impacted
by structural features of semistructured data in a non-trivial way and traditional data mining

frameworks are inapplicable. We define this discovery problem and propose a solution.

1 Introduction

1.1 Motivation

Many on-line documents, such as HTML, Latex, BibTex, SGML files and those found in digital
libraries, are semistructured. Semistructured data arises when the source does not impose a rigid
structure (such as the Web) and when data is combined from several heterogeneous sources (such as
data warehousing). Unlike unstructured raw data (such as image and sound), semistructured data
does have some structure. Figure 1 shows a segment of semistructured movie objects maintained
by IMDb (http://us.imdb.com). Each circle plus the text inside represents a subobject (e.g., a
HTML file) and its identifier (e.g., URL). The links and their labels, identifiable by special tags or
a grammar, represent subobject references and their roles. In this paper, the term structure refers
to the hierarchy of such references and roles. The structure of an object gives a sense of what

sort of questions might be answered by a more intensive examination of the object and how the
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Figure 1: A segment of movie objects

information is represented. A recent review has revealed that nearly always, references to important

objects are labeled rather than in the form of free-running text [HB97].

Unlike structured data (such as relational or object-oriented databases), semistructured data
has no absolute schema or class fixed in advance, and each object contains its own “schema”. For
example, some movies have more actors than others; some fields (e.g., Award) are missing for
some movies; some actors have birthday recorded and some do not; some have spouses and some
do not; etc. As a result, the structure of objects is irregular and a query over the structure is
as important as query over the data. This structural irregularity, however, does not imply that
there is no structural similarity among semistructured objects. On the contrary, it is common for
semistructured objects describing the same type of information to have similar structures. For
example, every movie object has Title and Director labels; every Actor object has Name label;
50% of Actor objects have a Nationality label, etc. Some examples of semistructured objects
having similar structures are those about universities, countries, census data, branch information
within an organization, etc. The topic of this paper is discovering the structural similarity of a

collection of semistructured objects. We first define the problem and then discuss its applications.

1.2 Main results

We consider the following discovery problem: given a collection of semistructured objects, find
all “typical” (sub)structures that occur in a minimum number of objects specified by the user.
We formally define this problem in Section 2. It is worth mentioning that though we refer to the
“structure” of an object, it is up to the user to specify what the structure is. For example, if the user
wants to find frequent co-occurrences of keywords in several text documents (thus, no structure in
the usual sense), he/she can specify keywords as labels, in which case a typical structure is a set of
keywords that co-occur in some minimum number of text documents. In this view, our framework
generalizes the classical association rule problem motivated in the supermarket environment [AIS93]
where the core problem is finding typical subsets of (supermarket) items that are contained in some
minimum number of (supermarket) transactions. The generalization lies in that we consider general
structures, instead of flat sets, that have interesting features such as hierarchy, labeling, ordering,

and cyclicity.



It should be pointed out that our work differs from those on extracting the structure of a
single individual object [Work97]. We consider a collection of graph structures, each representing
a semistructured object, and discover substructures that appear in some minimum number of
graph structures. In particular, we have to deal with the requirement on the minimum number of
occurrences of substructures. Prior to the discovery task, the structure of each object should be
extracted by removing unstructured data such as image and video that do not contribute to the
structure of the source. Often, a low-level representation (such as HTML) should be transformed
to a conceptual model at a higher level of abstraction to hide away details not interesting to the
user. These could include links and layers that are not interesting to the user. Some sources provide
“wrappers” or one can write a parser to do this [Work97]. We assume that such extraction has been
done. Another issue concerns with when the discovery is performed. Depending on applications.
the discovery can be performed either off-line where discovered structures are saved for future
retrievals, or on-line where the discovery is done for a specific request. Each discovered structure
can be associated with identifiers (e.g., URL) of the objects that contain the structure. This will

allow relevant objects to be retrieved and examined for further analysis.

1.3 Application

The following list gives a taste of applications of discovering typical structures of semistructured

objects.

¢ Road maps for querying/browsing information sources. One limitation of querying
and browsing semistructured data is the disorientation resulting in the infamous “lost-in-
hyperspace” syndrome, due to the lack of external schema. To formulate any meaningful
query, say in WebSQL [MMM96] or W3QS [KS95] for Web documents, that matches some
of the source’s structure, we first need to discover something about how the information is
represented in the source. This subtask can be formulated as discovering typical structures
of objects. Some Web query languages allow specification of a wild-card label in a query that
matches any label. Discovering typical structures that may contain wild-cards is helpful for

formulating such queries.

e General information content. Very often a user may not be looking for anything specific
at all but rather may wish to discover the general information content of a source. For such
users, it is hard to formulate a query precisely and painful to browse all documents. A more
appropriate search mode would be examining the structure of the source, just like examining
the table-of-contents if a reader likes to gain a gist of a book. This can be done by requesting
the display of the structure of each document if there are only a few documents, or the
display of some typical structures if there are many documents. Since such requests are likely
to be frequent, typical structures should be discovered off-line and stored in a database that
is queried or browsed on demand. Based on the structures examined, the user may at any
time switch to a more focused search method, such as formulating a query or browsing some

documents.



e A guideline for building indexes and views. To speed up information retrieval, it is
desirable to construct indexes and views on frequently retrieved, typically occurring struc-
tures. Discovering typical structures can help this task. We quote [Abi97] for the motivation
in this context: “one could envision the use of general purpose data mining tools to extract
structuring information. One can then use the information extracted from the files to build a
structured layer above the layer of more unformed data. This structured layer references the
lower data layer and yields a flexible and efficient access to the information in the lower layer
to provide the benefits of standard database access methods”. For example, if Phone label
is typical of person objects and are often used to retrieve personal information, building an

index on Phone (e.g., by a B-tree, hash table, or inverted list) can speed up the retrieval.

e Structure-based document clustering. The tree-like structure of subdocument references
within a document is usually ignored by traditional clustering methods. In a semistructured
document, each subdocument reference is labeled by its role, and the “topic” of a document
is represented by the tree-like structure of such roles rooted at the document. Consequently,
the topic of a subdocument is relative to that of its superdocument. For example, nations’
birthday and persons’ birthday are considered as different topics. If documents are clustered
based on such topical structures, the search for nations’ birthday information will not return

persons’ birthday information.

¢ Discovering interests/access patterns. Detecting user’s interests and browsing patterns
on the Web can help organize Web pages and attract more businesses. This can be modeled as
discovering typical structures of a collection of semistructured objects. Each semistructured
object consists of hyperlinked Web pages accessed in a single session. By labeling each page
with either topic or site information, a typical structure captures user’s interests or access

patterns.

This paper is organized as follows. Section 2 defines the problem of discovering typical struc-
tures. Section 3 presents an algorithm. Section 4 evaluates the efficiency of the algorithm. Section
5 presents a case study using a real dataset. Section 6 reviews related work. Section 7 concludes

the paper.

2 The Problem

We first define a representation of semistructured data. Then we define the discovery problem.

2.1 The object exchange model

We adopt the Object Fxchange Model (OEM) for representing semistructured data. For a detailed
account of the OEM, the interested reader may refer to [Abi97, BDH96, PGMW95]. In OEM,
every object o consists of an identifier, denoted &o, and a value, denoted val(&o). The identifier
&o uniquely identifies object 0. The value val(&o) is either an atomic, such as an integer or a

string; or a list < [y : &oy,....0, : &o, >, p > 0; or a bag {l; : &oy,...,l, : &o,}, p > 0. &o;



are identifiers of subobjects o0;. [; are labels that describe the role of subobjects o;. There is no
requirement that subobjects o; are uniformly lists or bags. As usual, the order in a bag does not
matter, but it does in a list. Repeating of subobjects &o; or labels [; is allowed in a bag and a list.
The original OEM considers only the bag semantics. We extend it to the list semantics to deal with
ordered subobject references. For example, actor subobjects of a movie object are usually listed in

the order of actors’ credits; subroutine calls in a procedure are listed in the order of calls.

OEM is conveniently represented by a labeled multi-graph. In the graph, each node represents
an object identifier &o and each edge (&o, &o;) labeled [; represents a reference [; : &o; in val(&o).
The outgoing edges at node &o may or may not be ordered, depending on whether val(&o) is a
list or a bag. We use a circled node to represent an identifier &o of a bag value val(&o) and use
a squared node to represent an identifier &o of a list value val(&o0). An OEM database is cyclic if
its graph is cyclic. Indeed, OEM graphs of many Web documents are cyclic. For example, Spouse

links are cyclic.

For the discovery task (defined shortly), the user needs to specify a collection of objects in
the OEM graph for which typical structures are discovered. These objects are called transaction
objects. For example, if the user is interested in typical structures of a collection of movie objects,
the nodes representing movie objects should be specified as transaction objects; however, if the
user is interested in typical structures of actor objects, the nodes representing actor objects should
be specified as transaction objects. (Note that transaction objects are not necessarily the root
nodes in the whole OEM graph.) The purpose of specifying transaction objects is analogous to
that of specifying transactions in the context of mining association rules [AIS93] where the user
has to decide, for example, whether to include data from shoe department, toy department, food
department, for a particular discovery task. Typically, transaction objects should contain similar
types of information — it does not make sense to discover common structures of actor objects and
country objects. To automate the specification of transaction objects, one can quantify the sequence
of leading labels (thus, the role) of transaction objects in the OEM graph. For example, the sequence
of labels Mowvie : Director : Award specifies all award objects of directors as transaction objects.
More generally, the collection of transaction objects could be returned by a query for semistructured
data [MMM96, KS95]. Thus, in one case we could find common structures for movies in English,

and in another case we could find common structures for movies in foreign-languages.

2.2 Generalizing several objects

A key concept in our discovery problem is that of generalizing the structure of objects. This
is done by partially expanding subobject references: if object &o contains subobject references
li : &oy, ..., 1, : &op, a partial structure of &o consists of some of these references and optionally
their partial structures. The expansion is partial because it can ignore some references and can
stop at any level. The significance of partial structures lies in that several objects may share partial
structures even though they do not share the full structure. For the rest of the paper, symbol ?
denotes the wild-card label that matches any label, and symbol L denotes the nil structure that
contains no label. A partial structure of &o is represented by a tree of labels, called tree-expressions

below.
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Figure 2: Some tree-expressions of movie objects

Tree-expressions. First, we consider an acyclic OEM graph. For any label [, let [* denote
either [ or the wild-card label 7.

1. The nil structure L is a tree-expression of any object;

2. Suppose that te; are tree-expressions of objects o;, 1 < ¢ < p. If val(&o) = {l1 : &oy,.... 1, :
&o,} and {iy,...,i} is a subset of {1,...,p}, & > 0, then {I7 : te;,....[7 : te;,} is a

SRR

tree-expression of object o;

3. Suppose that te; are tree-expressions of objects 0;, 1 < i@ < p. If val(&o) =< i : &oq,...,1,:
&op > and < dy,..., 4 > is a subsequence of < 1,...,p >, k > 0, then < [7 :te;,..., [} :

SRR

te;, > is a tree-expression of object o.

One additional requirement is that 7 should not appear as the “terminal” label on a label path
in a tree-expression. This follows from the intended use of wild-card label 7, i.e., to ignore an
upper part of an object’s structure in order to discover somethings common at a lower part. This
requirement can be phrased as: if te;; is L, li*] must be [; . A tree-expression {l;, : te; ..., l;, : te; }
or < l; :te;,...,l; :te;, > has a natural tree representation: it consists of k subtrees tei,, each

being labeled /; .

Example 2.1 Consider Figure 1. By recursively applying construction 2 of tree-expressions,
tey = {Director : {Name : L}, Title : L} is a tree-expression of &1. Similarly, te; is a tree-
expression of &2 and &3. If we replace Director with 7 in tey, the result is still a tree-expression of
&1, &2, &3. However, if we replace Name or Title with 7 in teq, the result is not a tree-expression
because a “terminal” label cannot be the wild-card. te; = {Director : {Name : L, Nationaltiy :
1}, Title : L} and tes = {Director : {Name : L, Nationaltiy : L, Award : L} Title : L} are
tree-expressions of &1 and &2, but not of &3. tes = {7 : {Name : L, Nationality : L}} is a

tree-expression of &1, &2, &3. Figure 2 shows the tree representation for tey, teq, tes, tey. O

We like to mention that other choices of wild-card labels are possible. For example, a wild-card
label could match any label in a given set but not any label outside it. If such wild-card labels
are fixed, our framework can be easily modified to discover tree-expressions that may contain such

wild-cards. However, if there is no fixed set of such wild-card labels, the complexity of the discovery
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Figure 3: Tree-expressions extended to represent cycles

problem will be drastically increased because every wild-card defined by a superset containing label

[ is a generalization of [. To keep the problem manageable, we do not consider such wild-cards.

For a cyclic OEM graph, tree-expressions defined above may be infinitely large. To address
this problem, we allow a leaf node in a tree-expression to be named by a special symbol L;, 7z > 0.
Essentially, a leaf node named 1; is the alias of the ancestor that is ¢ nodes above the leaf node.
This ancestor is called the ith ancestor. Figure 3 shows how a cycle (on the left) is represented in a
tree-expression (on the right). The “leaf” named Ls is the alias of its third ancestor A. By treating
each L; node as a leaf node, we are able to deal with a tree-expression containing cyclic references
(like the one on the left in Figure 3) as a tree (like the one on the right in Figure 3) without losing

information. Therefore, all tree-expressions, cyclic or acyclic, are treated as trees.

Sometimes, we are interested in the most “informative” partial structures. For example, in
Figure 2, tes is more informative than te; which is more informative than te;. The “weaker than”
relationship below compares the informativeness of tree-expressions.

Weaker than. The nil structure L is weaker than every tree-expression. 1; is weaker than
itself.

o Tree-expression {l1 : tey,...,l, : tey} is weaker than tree-expression {l} : tey,... Iy : tey} if
for 1 <@ < p, te; is weaker than some te’; , where either I’ =1[; or [; =7, and {j1,...,jp} is a
subset of {1,...,¢};

o Tree-expression < [y :tey,...,l, :te, > is weaker than tree-expression < [y :tey,... [, : te) >
if for 1 <7 < p, te; is weaker than some te;i, where either l;i =lorl; =7 and < ji,...,5p >
is a subsequence of < 1,...,¢ >;

o Tree-expression te is weaker than identifier &o if te is weaker than val(&o).
Intuitively, if tree-expression te is weaker than tree-expression te’, all structural information of te
(about labeling, nesting, and ordering) are found in te’, starting at the root of te’.
2.3 The discovery problem

Definition 2.1 Consider a collection of transaction objects in an OEM graph and a minimum

support MINISUP (in percentage). The support of a tree-expression te is the percentage of



transaction objects ¢ such that te is weaker than &t. te is frequent if the support of te is not less
than MINISUP. te is mazimally frequent if te is frequent and is not weaker than other frequent
tree-expressions. The discovery problem is to find all frequent tree expressions. The mazimal

discovery problem is to find all maximally frequent tree-expressions. O

Example 2.2 In Figure 1, suppose that &1,&2,&3 are the user-specified transaction objects,
written in bold face. Refer to Figure 2 for tree-expressions tey,tes, tes,tey. The support of tey
and tey is 3/3, and the support of tey and tes is 2/3. tey,teq, teq are weaker than tes. There-
fore, if MINISUP = 2/3, tey,tey, tes, tey are frequent, but only tez is maximally frequent. If
MINISUP = 3/3, both te; and tey are maximally frequent. O

Using the discovered frequent tree-expressions, one can derive association rules about sub-
structures of objects. An association rule has the form a — 3, where a and 3 are frequent
tree-expressions such that « is weaker than 3. Assume that ¢ and b are supports of o and j3.
a — [ says that a transaction object containing « will contain § at confidence of b/a and support
of a. Interesting association rules o — 8 must satisfy a minimum confidence and minimum sup-
port specified by the user. Since constructing association rules from frequent tree-expressions is
straightforward, for the rest of the paper, we focus on the discovery problem and maximal discovery

problem.

Before ending this section, let us explain our choice of trees as substructures versus graphs.
First of all, without changing the role of a subobject, an OEM graph can be equally represented by
a tree through replicating shared subobjects. As such, our goal of discovering roles of subobjects
is not affected by using trees as substructures. There is indeed some information loss on sharing
of subobjects by going from graphs to trees: it is no longer possible to tell if several references in
a tree-expression are referring to a shared or different subobjects. To obtain such information, the
identity of nodes involved (in addition to labels) needs to be kept in a tree-expression. This will
drastically increase the number of tree-expressions and blow up the search space. Our choice of
trees as substructures is a compromise between the completeness of information and the efficiency

of implementation.

3 The Algorithm

In this section, we present an algorithm for the discovery problems in Definition 2.1. The problem of
finding frequent subsets from a collection of supermarket baskets [A1S93] is related to our problems
here. However, [A1S93] is not directly applicable to objects having structures, in the form of labeled
hierarchical subobject references. Also, the flat representation in [AIS93] is not able to represent
partially ordered references. In addition, our search space includes substructures containing the
wild-card label that match any label. These new requirements justify to present a new mining

algorithm.

We do not assume that the OEM graph G fits in the memory. Each node in the graph is
accessed by its address, either on disk or in memory. To avoid repeatedly traversing subgraphs,
due to multiple edges between two nodes in a multi-graph, we assume that there is at most one

“physical” edge from one node to another and that a set of labels is associated with each edge.



L(&w, &z) denotes the set of labels associated with edge (&w, &z), defined as the set of labels
for &z in val(&w). The intended use of L(&w,&z2) is as follows: each time a path &wy, ..., &wy
is traversed, where &w;’s are nodes, all paths &wy, Iy, &ws, ..., I, &wy are considered traversed,
where (l3,...,lx) is in the cross product L(&wy,&wsy) X ... X L(&wg_1,&wy). The information
stored at each node &w in G includes (a) the address and L(&w, &z) for every subnode &z, and
(b) the positions in val(&w) for each label in L(&w,&z). For example, suppose that &o = {/; :
&oy,ly @ &oy,ly - &og}. Then L(&o,&o01) = {l1,12} and L(&o,&o03) = {l1}. At node &o, the
following information are stored: (a) the addresses of &oq and &oq, L(&o,&o01) and L(&o, &oq),
and (b) &o; is labeled {1 and I3 at positions 1 and 2, and &oy is labeled I at position 3.

An important property of our algorithm is traversing only simple paths of G in the depth-first
order (a path is simple if only the last node on it can repeat). Ideally, nodes of GG should be stored
in this depth-first order. However, since several supernodes may reference the same subnode, nodes
adjacent in the depth-first order may not be necessarily on the same disk page. To reduce the disk
access, frequently referenced nodes, i.e., those with a large in-degree and at lower levels, can be
stored in memory and infrequently referenced nodes stored on the disk. This can be implemented
by pinning the pages containing frequently referenced nodes in memory until they are not needed.

However, the exact implementation on disk is transparent to the presentation of our algorithm.

3.1 Representing tree-expressions

The set of tree-expressions defines the search space of the discovery problem. Before presenting a
search algorithm, we need a convenient representation of tree-expressions.

A k-tree-expression is a tree-expression containing exactly k leaf nodes (i.e., nodes for L or
1;). Each leaf node corresponds to a label path (path for short) of the form [T, /y,...,1,, L], where
symbol T represents a generic transaction object and [; are labels on a simple path in G starting
from a transaction object. As discussed in Section 2, 1 is replaced with L; if the last node on the
path repeats its ¢th ancestor. Each k-tree-expression can be constructed by a sequence of k paths
(p1s- .., pk) of the above form, where no p; is a prefix of another. (py,..., px) is called a k-sequence.
Intuitively, the tree-expression is the “prefix tree” of k “strings” given by pi,..., pr such that the
left-to-right order of these strings is preserved. To construct the “prefix tree”, initially, the T node
of all paths p; form the root of the tree-expression. Recursively, under each node all paths sharing
the same next label [; will go to a branch labeled [;, provided that p; is the ¢th root-to-leaf path

from left to right in the final tree. The next example illustrates this construction.

Example 3.1 Consider the transaction object ¢ defined as
val(&t) = {Director : &d,Cast : &c},
val(&c) = {Actor : &ay, Invited_Actor : &az, Actor : &as},
val(&az) = {Org : &oy1, Nationality : &oy}.
and consider two tree-expressions of ¢:
tey = {Cast : {Invited_Actor : {Org : L, Nationality : L}, Actor : L}},
te; = {Cast : {7 : {Org: L, Nationality : L}, Actor : L }},
tes = {Cast : {Invited_Actor : {Org: L}, Actor : L, Invited_Actor : {Nationality : L}}}.
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Figure 4: Constructing tree-expressions

As shown in Figure 4, teq is constructed by the 3-sequence (pi, p2, p3) (the first tree), and tey by
the 3-sequence (pa, ps, p3) (the second tree), and tes by the 3-sequence (p1, p3, p2) (the third tree),
where p;’s are path-expressions:

p1 = [T, Cast, Invited_Actor,Org, 1],

pe = [T, Cast, Invited_Actor, Nationality, 1],

ps = [T, Cast, Actor, 1],

py=[T,Cast,?,Org, L],

ps = [T,Cast,?, Nationality, 1].
Note that different orders (p1, pa, ps) and (p1,ps,p2) represent different tree-expressions, despite
the fact that all values val(&o) are bags. On the other hand, (p1, p2, p3) and (pz, p1, ps) represent

the same tree-expression because the children of a bag node are not ordered. O

However, the above representation suffers from two problems. The first problem is that some
children with repeating labels cannot be constructed. For example, 2-tree-expression {C'ast :
{Actor : L, Actor : 1}}, which says that the movie has two actors, cannot be constructed by using
path [T, Cast, Actor, L] twice. This is because the construction does not know whether Actor labels
in the two paths are for same or different actors. We can solve this problem by superscripting re-
peating Actor label in val(&c): instead of generating only one path [T, Cast, Actor, L], we generate
two paths [T, Cast, Actor!, 1] and [T,Cast, Actor?, 1], to represent the first and second actors in
val(&c), respectively. In general, for each label [ in val(&o), I’ represents the ith occurrence of [ in
val(&o). The maximal superscript ¢ of [ with respect to &o, denoted Occur(&o,1), is the number
of occurrences of [ in val(&o). The second problem is that the wild-card label ? is not considered.
To solve this problem, we add ? to L(&w, &z) for each edge (&w,&z). Occur(&o,?) is defined as

the number of references to non-atomic objects in val(&o).
With these modifications, a k-tree-expression can now be constructed by a k-sequence (p1, ..., pi),

each p; of the form [T, l{l, oo bn L or [T, l{l, ..., lin, L], satisfying the following conditions:

‘v tn ‘Y

1. (l,...,1,) is in the cross product L(&t, &wq) x ... X (L(&wy,—1, &w,) L {?}) for some simple
path &t, &wy, ..., &w, in G starting at some transaction object &t;

2. for 1 < i < n, superscript j; ranges from 1 to UP;, where U P; is the largest Occur(&w;_1, ;)

for all nodes &w;_; in condition 1;

10



3. no p; is a prefix of another;

After the superscripting, we consider only k-tree-expressions in which superscripted labels lf’
branching out of a node are distinct. Paths p;’s of the above form are called path-expressions.
For the rest of the paper, the concatenation py ...p; denotes the k-tree-expression constructed by

the k-sequence (p1,...,pk).

3.2 The overview

The core of the algorithm is computing all k-sequences (py, ..., px) such that p;...px are frequent
tree-expressions. This set of k-sequences is denoted by Fj3. Note that several k-sequences may
construct the same tree-expression because the latter does not depend on superscripts of labels (as
shown by (p1, p2) and (p1, ps) in Figure 9), and thus, that Iy, may contain redundant k-sequences as
far as tree-expressions are concerned. We will deal with this problem in Section 3.5 by pruning the
search space so that at most one k-sequence is generated for each frequent tree-expression. Until
Section 3.5, we focus on finding all k-sequences (pi, ..., px) such that p;...p are frequent, k > 1.
Obviously, searching the entire space of k-sequences is prohibitive. Fortunately, we do not need
to examine a k-sequence if some “substructure” of it is known to be infrequent. This observation

forms the foundation of our algorithm, which is stated as follows.

Theorem 3.1 (The downward closure property) Let p; denote a path-expression. If k-tree-
expression py ...pg is frequent, then any (k L 1)-tree-expression py...pi—1pit1...Pk 1S frequent,

where 1 <1 < k; in particular, p1...pg_opr_1 and py...pr_opr are frequent.

Proof: This follows because the (k L 1)-tree-expressions are weaker than the k-tree-expression and
because the weaker than relationship is transitive. O

Following Theorem 3.1, we compute Fj in the order of k in two phases. In Phase I, we
make one pass over transaction objects to find all path-expressions p; representing frequent 1-
tree-expressions, i.e., Fy. In Phase II, in the kth (k > 1) pass over transaction objects we generate
a k-sequence (p1,...,pr) only if (k L 1)-sequences (pi, ..., pr—2,Pr—1) and (p1,..., pr—2,pr) are in
Fr_1. (p1,...,pr) is only a candidate k-sequence because p; ...p; may not be frequent. We find
Fy by computing the support of candidates in one scan of transaction objects. Phase Il termi-
nates when Fj is empty for some k. The search space can be pruned by ignoring the order of
the children of a bag node. We will discuss this pruning in Section 3.5. For the maximal dis-
covery problem, we need one additional phase, Phase 1II, to remove all non-maximally frequent
tree-expressions. In general, non-maximally frequent tree-expressions, such as py...p;—1Pit1 - - Dk
if p1...pr is frequent, cannot be removed immediately because they are needed to generate maxi-
mally frequent tree-expressions, such as py ...pr. However, we will identify one special case where
some non-maximally frequent tree-expressions can be removed before the end of Phase 11.

At this point, the above computation seems similar to Apriori in [AS94] that is based on the
subset property in [AS94]: an itemset {iy,..., i} is frequent only if both {iy,... ix_2,ix—1} and
{i1,...,1k—2,1} are frequent. The reader may wonder why not simply map each tree-expression
p1...pr to itemset {py,...,pr}, by considering each p; as an item, and apply Apriori to solve

the problem at hand. Unfortunately, this “reduction” does not work for the following reasons.
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compute the support:

foreach transaction object &t do
foreach simple path &t, &wy, ..., &w, do
foreach label sequence (ly,...,[,) in
L(&t, &wy) x L(&wy, &wy) X ... x (L(&w,—1, &w,) L {7}) do
Case 1: &w,, # &w; for all ¢
if sup(ly,...,l,, L) was not increased for &t then sup(ly,...,l,, L)+ +
Case 2: &w,, = &w; for some i < n
if sup(ly,...,l,, L;) was not increased for &t then sup(ly,...,l,, L;) ++
return frequent path-expressions:
foreach sup(ly,...,l,, L) or sup(ly,...,l,, L;) not less than MINISUP do
output path-expressions [T, l{l, ol L or [T, l{l, LU 1], 1< 4 <UP

‘v tn ‘Y

Figure 5: Computing F3

First, py...pg is weaker than p)...pl, does not imply {pi1,...,px} is a subset of {p},...,p..};
consequently, py ...pr may be frequent, but itemset {py,...,px} is not. For example, in Figure 4,
papsps is weaker than pypops, but {p4, ps, ps} is not contained in {py, p2,ps}. This example also
shows that it does not work either to map tree-expression p; ...pj to sequence (p1, ..., pg) of items
p; and replace the weaker than relationship with the subsequence containment. We use k-sequences
(p1,-..,pk) only as a representation of tree-expressions; to decide if it generalizes an object, the

represented tree-expression and the weaker than relationship must be used.

3.3 Phase I: Computing F}

This phase finds all 1-sequences p; representing frequent 1-tree-expressions in the form of path-
expressions [T, l{l, o L or [T, l{l, ..., ", 1;]. These 1-sequences are later used to construct
k-tree-expressions pi ...pr as discussed in Section 3.1. The first question is how to compute
the support of a path-expression. It is important to note that all path-expressions that dif-
fer only in superscripts of labels represent the same 1-tree-expression. Therefore, the support
of path-expression [T, l{l, s n 1] or [T, l{l, ..., 7, 1;] should be associated with the sequence
Ly ...y, Loor Iy, ... 1, L;. We denote this support by sup(ly,... 1., L) or sup(ly,...,l,, L),
defined as the number of transaction objects from which there is a simple path labeled I4,...,1[,.
Figure 5 gives the computation of Fy. UP; is the largest Occur(&w;_1,!;) for all simple paths
&t, &wy, ..., &w, that are labeled [y,...,1,, where &t is a transaction object. We have omitted

the computation of UP; for clarity.

Example 3.2 For the rest of this section, we use the OEM graph in Figure 6 to illustrate the
discovery algorithm. Recall that a circled node denotes a bag and a squared node denotes a list.
Suppose that &ty and &ts are transaction objects, containing information about two electronic
shopping transactions. For example, &t; consists of subtransaction &a followed by a purchase of

item &oq in cash. &a consists of two purchases of &oy in any order, one by credit card and the
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Cash

Figure 6: Example 3.2

path-expressions tree-expressions represented
p1:[T,Cash®, 1] < Cash: L >

p2 :[T,70, Credit', 1] <?:{Credit: 1} >

ps :[T,24,Cash!, 1] <?:{Cash: L} >

py i [T,78, Cash?, 1] (pruned) <?:{Cash: L} >

ps [T, Unused, Credit*, 1] < Unused : {Credit : 1.} >
pe : [T, Unused',Cash', 1] < Unused : {Cash : L} >
pr 2 [T, Unused', Cash?, 1] (pruned) | < Unused : {Cash : 1} >

Table 1: F; in Example 3.2

other in cash. The definitions of &ty and &ty are given by

val(&ty) =< Unused : &a,Cash : &op >

val(&ty) =< Unused : &b, Cash : &oy >

val(&a) = {Credit : &oy,Cash : &o1}

val(&b) = {Credit : &oy,Cash : &oy,Cash : &oz}.
Occur(&b, Cash) = 2 because C'ash occurs in val(&b) twice; Occur(&ty,?7) = Occur(&ty,?) = 1
because there is only one non-atomic object in val(&t;) and val(&ty). Suppose that MINISUP =
2/2. Path-expressions py through pr are frequent, shown in Table 1. For example, sup(Unused,Cash, L) =
2 because both transaction objects have a simple path labeled Unused, C'ash. From this support,
pe and p7 are generated because among all paths of the form &t;, Unused, wy, Cash, woy, the largest
Occur(&t;, Unused) is 1 and the largest Occur(&wq, Cash) is 2 (i.e., when &wy = &b). The other
frequent path-expressions are similarly generated. py and p; will not be included in the final Iy by

the pruning strategies to be discussed in Section 3.5. O

3.4 Phase II: Computing Fj}

The search space. Following Theorem 3.1, the storage structure of Fj_; should facilitate efficient
retrieval of pairs (p1,...,pk—2,Pk—1) and (p1, ..., Pr—2, px) and in addition, dynamically grow from
Fy_1 to I}, without reorganization. We propose the (k L 1)-candidate-trie, denoted Il;_1, to meet
these requirements. Il;_; is a trie of maximal depth & L 1. (A trie is a tree in which each non-leaf

node has at least one child.) In Il;_1, each non-root node represents a path-expression p; in Fy, and
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Figure 7: 11y, [1y, 113

foreach transaction object &t do
foreach k-sequence (py,...,px) in Il do
if py ...py is weaker than &t
then increase the support for (p1,..., k)
foreach k-sequence (py,...,px) in Il do
if the support for (p1,...,px) is less than MINISUP
then delete the leaf node for (p1,...,px) from Il

Figure 8: Computing the support of k-sequences

each path (root, py,...,p;) represents a j-sequence (pq,...,p;) in F;. Without confusion, we omit
the root node and use the j-sequence (py, ..., p;) to refer to such paths in II;_;. Consequently, each
non-root node in Il;_; represents two things: the path-expression at the node and the j-sequence
ending at the node. We will freely speak of terms like “frequent j-sequences”, “maximally frequent
j-sequences”, “the support of j-sequences”, and “some j-sequences weaker than others”, with the
obvious understanding that these refer to the tree-expressions represented by the j-sequences. The

following corollary follows from our representation of search space.

Corollary 3.1 The pair p;...pr_2pr—1 and py...pr_2pr in Theorem 3.1 is represented by two
(k L 1)-sequences ending at sibling leaf nodes in Il;_;.

Generating candidates. Following Corollary 3.1, to generate Il from I1;_; we consider every
pair of (k L 1)-sequences (p1,...,pk—2,Pk—1) and (p1,...,Pk—2, Pk), ending at sibling leaf nodes [
and " in TIx_y, and create a child under [ to represent the k-sequence (pi,...,pr—1,pr). We say
that [ is extended by ', or that (p1,...,pr—2, pr—1) is extended by (p1,...,pr—2,pr). We also say
that (p1,...,pk—2,pr—1) and (p1, ..., pr—2, Pr) are used in this extension. Figure 7 shows Ily, Iy, 113
generated by three path-expressions pq, p2, p3 without any pruning. We will address the pruning of
search space shortly.

Counting the support. Figure 8 shows a conceptual computation of the support of k-
sequences in 1I;. For each transaction object ¢, we read the hierarchy of ¢, examine each k-sequence
and increase its support if it is weaker than &t. In implementation, we use IlI; to prune scans
of k-sequences: we traverse Il in a depth-first manner, and if p; ...p; for the current j-sequence

(p1s...,p;) is not weaker than &, further descending into the tree can be pruned. Since this
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Figure 9: Constructing natural by non-natural
implementation is straightforward, we do not elaborate it further.

3.5 Pruning of search space

Phase II described above faces two problems that seriously affect the efficiency and scalability of
the algorithm. First, the search space Il; grows very fast, as illustrated in Figure 7. Second,
all k-sequences representing the same frequent tree-expression are generated. For example, both
(p1,p2) and (p1, ps) in Figure 9 will be generated, though both represent the same tree-expression,
fe, {{:{l:L/l:1}}. We now address these issues by pruning the search space. Recall that a
k-tree-expression is constructed by k-sequence (pi,...,px), where each p; is a path-expression of
the form [T, l{l, sl 1 or [T, l{l, ..., 7, 1;]. Superscripts j;’s serve to create repeating labels
for child nodes in a tree-expression; however, once the tree-expression is constructed, superscripts
are not useful anymore and can be ignored. As a result, several k-sequences could construct the
same k-tree-expression (up to ignoring the superscripts of labels), and it suffices to consider only
one of these k-sequences. What we need is a systematic method to refer to those k-sequences that
need to be considered. The idea is to impose certain conditions on superscripts of labels in the

tree-expressions constructed. This motivates the following definitions.

Consider a tree-expression pj ... py constructed by k-sequence (p1,...,px). A list node is mono-
tone if all outgoing labels [* for the same [ are strictly ordered by i from left to right. A bag node
is monotone if all outgoing labels [ are strictly ordered by the lexicographic order of (/,7) from
left to right. In other words, for a list node we order only repeating occurrences of labels, but for
a bag node we order both labels and repeating occurrences. A (list or bag) node is natural if it
is monotone and each outgoing label [* is the ith occurrence of { from left to right. A k-sequence
(p1s- .., pk) is natural (monotone, resp) if every non-leaf node in tree-expression p; ...py is natu-
ral (monotone, resp). For example, in Figure 9, (p1,p2) and (p1, p2, ps) are natural; (p1, ps) and

(p1, p2, p4) are monotone but non-natural; (ps, p1) is non-monotone.

Several observations are useful for the subsequent discussion.

Observation I For every non-natural k-sequence, there is a natural k-sequence that represents
the same tree-expression. Consequently, a search is complete if all frequent natural k-

sequences are generated.

Observation IT Every prefix of a natural (monotone) k-sequence is natural (monotone).
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Observation III Every permutation of a natural (monotone) k-sequence is not natural (mono-
tone). This implies that there are much more non-natural (non-monotone) k-sequences than
natural (monotone) ones. Therefore, if we can prune all non-natural or non-monotone k-

sequences, the search space will be substantially reduced.

However, simply pruning all non-natural k-sequences does not work if we use Theorem 3.1 to
generate candidate sequences. In fact, some non-natural (k L 1)-sequences (p1, ..., pk—2,pr) must
be generated in order to generate natural k-sequences (p1, ..., pk—1,pk). For example, in Figure 9,
to generate natural (p1, p2, ps), we first need to generate natural (pq,p2) and non-natural (pq, ps).
On the other hand, from Observation II, extending a non-natural (k L 1)-sequence (p1,...,Ppk—1)
always generates a non-natural k-sequence (py,...,px). For a similar reason, the result of such an
extension cannot be used to generate a natural j-sequence, 7 > k. This gives us the first pruning
strategy, concerning what (k L 1)-sequences should be extended.

Strategy 1. In the kth pass, only natural (k L 1)-sequences should be extended. After all
extensions in the kth pass, all non-natural (k L 1)-sequences can be pruned.

Since there are a lot more non-natural (k L 1)-sequences than natural ones (Observation I1I),
Strategy I prunes most extensions at each level. Next, we would like to characterize k-sequences
(p1, ..., pr) that should be generated. First of all, all natural (py,...,px) should be generated for
the completeness of search. Second, a non-natural (py, ..., px) should be generated if it is useful for
extending a natural (k L1)-sequence. In this case, the prefix (p1, ..., pr—1) must be natural because
it is shared with a natural (k L 1)-sequence. Third, a non-natural (p,...,px) should be generated
if it can be used to generate a natural j-sequence, in one or more extensions. From Observation II,
such (p1, ..., px) must be monotone. These three cases are summarized by the notion of near-natural
sequences: a k-sequence (py, ..., px) is near-natural if (py, ..., px) is monotone and (p1,...,pgp—1) is
natural. Every natural k-sequence is near-natural, but not vice versa. In Figure 9, all k-sequences
are near-natural; only (p1,p2) and (p1,pe, p3) are natural; any permutation of these sequences is
not nearly-natural (because not monotone). Now we have the second pruning strategy, concerning
what k-sequences should be generated.

Strategy II. Only near-natural k-sequences should be generated.

Observation III implies that Strategy Il prunes most extensions at a level because every non-
monotone k-sequence is not near-natural. Strategies | and II together imply that the only type of
extensions that we need to consider is extending a natural sequence with a near-natural sequence.
The next pruning strategy applies only to the maximal discovery problem. The idea is to prune a
non-maximally frequent candidate if it is not useful in any later extension. Suppose that a frequent
k-sequence (pi1,...,p) is generated by extending (pi1,...,pr—2,Pk—1) by (P1,-.., Pk—2, Pr). Since
both (p1, ..., Pk—2, pk—1) and (p1, ..., Pr—2, px) are weaker than (p1, ..., pg), they are non-maximally
frequent. Further, these (k L 1)-sequences will not be used in any extension after the kth pass.
This gives us the following pruning strategy.

Strategy III. For the maximal discovery problem, a (k L 1)-sequence that is used to generate

at least one frequent k-sequence can be pruned.

This strategy prunes all (k L 1)-sequences ending at non-leaf nodes because non-leaf nodes are

used to generate their child nodes. It also prunes all (kL 1)-sequences at leaf nodes that are used to
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generate k-sequences:

foreach natural (k L 1)-sequence (p1,...,pk—2,Pr—1) in llx_1 do /* Strategy I */
foreach (k L 1)-sequence (p1,...,pk—2,pk) in I, do
if pr_1 and pg are not a prefix of each other and
k-sequence (p1,...,Pr—1,pk) is near-natural /* Strategy Il */
then extend (p1,...,pe—2,Pk—1) by (p1,- .., Pk—2, Pk);
delete all leaf nodes representing non-natural (k L 1)-sequences; /* Strategy I */

compute the support of k-sequences:

foreach transaction object &t do
foreach k-sequence (py,...,px) in Il do
if py ...py is weaker than &t then increase the support for (p1,..., )
foreach k-sequence (pi,...,px) do
if the support for (p1,...,px) is less than MINISUP
then delete the leaf node representing (p1, ..., px) from 1l

else mark (p1,...,pk—2,pr—1) and (p1,...,pr—2,px) as used; /* Strategy I */

Figure 10: Generating Il from I1;_

extend their sibling nodes. In Section 4, we will experimentally verify the effectiveness of Strategies
I, II, 111. Figure 10 summarizes the generation of Il from Il;_;. The following theorem follows

from the above discussion.

Theorem 3.2 Assume that 1l is the candidate-trie at the end of Phase II and that 1 < j <k.

e Let I; be the set of j-sequences in IIj; that are not pruned by Strategies Il and III. Then F}

contains exactly the j-tree-expressions for the discovery problem.

e Let F} be the set of j-sequences in I that are not pruned by Strategies I, II, III. Then F}

contains all (possibly more) j-tree-expressions for the maximal discovery problem.

We now show that each j-sequence in F); computed in Theorem 3.2 represents a unique tree-

expression. Importantly, this implies that no tree-expression is generated more than once.

Theorem 3.3 For any two distinct j-sequences (py,...,p;) and (pi,...,p;) in F; computed in

Theorem 3.2, tree-expressions py ...p; and pj .. .p; are distinct.

Proof: First, observe that all j-sequences in F); are natural because non-natural ones are pruned
by Strategy I. Suppose that j-sequences (py,...,p;) and (pj,...,p;) in F; represent the same tree-
expression (after ignoring superscripts of labels). Consider corresponding nodes u and «" in py ...p;
and py...p}. Let l{l, ..., 7, from left to right, be the outgoing labels at u and l’{{, .. .,l’ff be the
outgoing labels at u'. Clearly, I; = [}, for 1 <7 < n. Since both (py,...,p;) and (p,...,p}) are
natural, there is only one “natural” superscripting of labels, so j; = j/, for 1 < ¢ < n. This implies
that path-expressions p; and p) are identical for 1 < ¢ < n, contradicting the assumption that

(p1,---,p;) and (py,...,p) are distinct. O
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Pap1 <?:{Credit : L}, Cash: L >
P3p1 <?:{Cash: L1}, Cash: L >
p3p2 <?:{Cash: L, Credit: L} >
Psp1 < Unused : {Credit : L}, Cash: 1L} >
PepP1 < Unused : {Cash : L}, Cash: 1L} >
PepPs < Unused : {Cash : L,Credit : L} >
F3
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(c) Tree representation

Figure 11: Example 3.3
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Example 3.3 Continue with Example 3.2 where MINISUP = 2/2. Figure 11(a) shows 1y, I1y, I13,
corresponding to the portion above levels 1, 2, and 3, respectively. Please refer to Table 1 for fre-

quent 1l-sequences p;, 1 <1+ < 7. Here is the generation of Il; from I1;.

e Extensions of pi: p; is not extended because all its extensions are not frequent. In fact, C'ash

does not appear on the left side of any label in either val(&t1) or val(&ts).

e Extensions of py: (p2,p1) is generated. (pz,p3) and (pz, ps) are not generated because they
are non-monotone (Strategy II). (p2, ps), (p2, ps), and (pz2, p7) are not frequent.

e Extensions of ps: (P37P1) and (P37P2) are generated. (P37P4)7 (P37P5)7 (P37P6)7 and (P37p7)
are not frequent.

e Extensions of ps: py is not extended because it is non-natural (Strategy I).

e Extensions of ps: (ps, p1) is generated. (ps, p2), (ps, p3), and (ps, pa) are not frequent; (ps, ps)
and (ps, pr) are non-monotone (Strategy II).

e Extensions of ps: (pe, p1) and (ps, ps) are generated. (ps, p2), (ps, P3), (Ps, pa), (Ps, pr) are not
frequent.

e Extensions of p7: pr is not extended because it is non-natural (Strategy I).

After 2-sequences are generated, non-natural py and p; are pruned from Il; by Strategy I.

The generation of Il from Il; follows as:
e Extensions of (ps, p1): (ps, p1,p2) is not frequent (nor near-natural).
e Extensions of (ps, p2): (ps3, p2, p1) is generated.

e Extensions of (ps, p1): (pe, p1,ps) is not frequent (nor near-natural).

o (ps,ps): (pe, ps, p1) is generated.

Figure 11(b) shows I and F3 and the tree-expressions represented. Figure 11(c) shows their tree
representations. At this stage, Iy, Fy, F5 are returned for the discovery problem.

For the maximal discovery problem, Fj is empty because each 1-sequence is either pruned by
Strategy 1 (i.e., ps and pr) or marked as used (i.e., p1, p2, ps, Ps, ps). F2 contains only (pz,p1) and
(ps, p1) because (ps,p1), (ps,p2), (Ps,P1), (Ps, p5) are marked as used. I contains (ps, p2, p1) and
(Pe, ps,p1). O

3.6 Phase III: The maximal phase

For the maximal discovery problem, we must remove remaining non-maximally frequent sequences.
One observation is that, for 7 > 7, no i-sequence can be weaker than a j-sequence. This suggests
the following pruning. For each 1 < j <k, we find j-sequences in I that are maximally frequent
with respect to F};. Let this result be M;. Then for j from % to 1 in that order, we add a j-sequence
in M; to the final result only if it is not weaker than any sequence already in the final result. Figure

12 shows this computation.
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foreach j from k to 1 do
let M; be F;
foreach sequence s in M; do
if 5 is weaker than some sequence in M; then remove s from M;
foreach j from k to 1 do
foreach sequence s in M; do

if s is not weaker than any sequence already output then output s

Figure 12: The maximal phase

Example 3.4 Continue with Example 3.3. From that example, F} is empty, I, contains (pz, p1)
and (ps,p1), F5 contains (ps, p2, p1) and (ps, ps, p1). After removing non-maximally frequent se-
quences in Fj, M; is empty, M, contains (ps,p1), and Ms contains (pe, ps,p1). Since (ps,p1) is
weaker than (pe, ps, p1), tree-expression < Unused : {Cash : L, Credit: L}, Cash: L >, repre-

sented by (ps, ps, p1), is the answer to the maximal discovery problem. O

3.7 Testing “weaker than”

It remains to see how to test whether a tree-expression te; is weaker than a tree-expression tey (as
defined in Section 2). Basically, we need to search for a “match” of the tree te; inside the tree teg,
such that the root of te; matches the root of te;. Recursively, a match is found for a non-leaf node
v in tey if matches are found for the label of v (ignoring superscripts) and for all subnodes of v. An
additional requirement is that a node matches only a node of the same type (i.e., list or bag). For
a bag node in tey, a complete bipartite match in tey is required, whereas for a list node in tey, a
sublist match in tey is required. Since algorithms for finding subtree matches are well known [R77],
we omit the detail. Assume that te; has n nodes and tes has m nodes. The time complexity of
testing whether te; is weaker than tey is O(nm!®) or better, depending on how good an algorithm
one has for a complete bipartite matching [R77]. This complexity, however, does not affect the 1/0O

cost because the testing is done im memory.

4 Efficiency

We now study the efficiency of the algorithm. The efficiency depends not only on database size,
but also on factors such as minimum support and pruning strategies. Therefore, it is difficult to
derive a closed, tight bound on the computational cost. On the other hand, the worst-case analysis
assuming that nearly everything is frequent is far from typical cases, thus, of little value. We take
a more practical approach by analyzing the 1/0 scan of the database and studying experimentally
other factors of the cost for various data characteristics. These factors include size of search space

expanded, execution time, effectiveness of pruning strategies, and scalability for large databases.
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notation | meaning

number of level-: labels

number of level-: identifiers

average size of val(&o) for level-i identifiers &o
average size of potentially large sets in 7;

number of potentially large sets in 7;

T SR

maximal nesting level

Table 2: Parameters

4.1 1I/0 scan

To analyze the I/O scan, we assume that the OEM graph (i.e., the database) is stored on disk and
that the candidate-trie 11 is stored in memory. The choice of storing Il; in memory is based on
the following reasons. The minimum support that defines a “typical” substructures is specified by
the user and is often highly effective in restricting the search space. In the case of a “very small”
minimum support, many substructures could become frequent. But this is also the case where the
user should question the usefulness of such a large amount of “typical” substructures. Our view is
that any substructures that cannot fit in a modern computer memory will not be comprehensible
to a human user. If this happens, the user should rise the minimum support to reduce the number
of typical substructures.

In Phase I, the hierarchy of each transaction object is read once. Similarly, in each pass of
Phase 11, the hierarchy of each transaction object is read to compute the support of candidates.
Phase 11T does not read transaction objects. Assuming that k is the number of passes in Phase II,
there are k+ 1 scans of hierarchies of transaction objects. Our experiments show that k is typically
small, i.e., 3 or 4. Therefore, our algorithm has a linear 1/O cost. To reduce the number of page
accesses, we can store frequently accessed nodes, called hot-spots, in memory and leave infrequently
accessed nodes on disk. This can be implemented by pinning the “hot-spots” in memory so that
they are not selected for page replacement by the buffer manager. Hot-spots usually have large
in-degrees and/or are buried at lower levels in the graph. Another heuristic is to store nodes in an
order “close” to the depth-first order in which nodes are traversed in our algorithm, so as to ensure

that one page access can bring in several nodes that will be needed subsequently.

4.2 Experimental study

To have a feel of the real performance of the algorithm, we have conducted many experiments for
various data characteristics and minimum supports. We focus on four indicators of efficiency: size of
search space, effectiveness of pruning strategies, execution time, and scalability for large databases.
We consider data characteristics such as similarity of objects, number of objects, number of labels,
depth of nesting, and size of datasets.

Dataset generation. We consider only acyclic datasets because only simple paths of a cyclic
OEM graph are traversed. To model similarities of objects, we borrow from [AS94] the concept of

potentially large sets. Informally, potentially large sets are itemsets that are more likely to contain
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common items than a random case. This property is attained by choosing items in a potentially
large set in a controlled manner. For more details, please refer to [AS94]. However, we have to deal
with nesting, labeling, and bag and list types of objects, all having impacts on the data mining
problem. The idea is to treat subobject references as supermarket items and construct objects
at higher levels using bags or lists of such items. At first, all atomic objects are at level I. An
object o is at level [ + 1 if [ is the maximal level of subobjects of 0. Let m be the maximal level of

non-transaction objects. All transaction objects are at level m + 1.

Documents are generated in a bottom-up manner, from level 1 to level m + 1. At level i, we
treat each subobject reference [ : &o at level ¢ 1.1 as an item and construct a level-i object as a bag
or list (half-half in our case) of such items, as in [AS94]. This is done by picking several potentially
large sets from the pool 7 U...U7;_1, at least one from 7;_;, where 7 ; is the set of potentially large
sets for level j. Refer to Table 2 for notation of parameters. As in [AS94], overlapping of objects
is controlled by parameters I; and F;. Each level-: object constructed is assigned a new identifier.
Subobject references [ : &o at level ¢ are created by assigning each label [ to some number of level-¢
identifiers &o, determined from the Poisson distribution with mean N;/L;. We then construct the
set of potentially large sets 7; for level :. The above processing is repeated until transaction objects

at level m 4+ 1 are constructed.
We use the following convention to represent a dataset:
(L1, N1)(Lay NoyTo, Iy Py) oo o (Liny Ny Ty Ly Pi) (Non1, Tty L1y Prag1) -
The first group (L1, N1) are parameters for level-1 labels and atomic objects. The last group
(Npt1, Trot1s L1, Prng1) are parameters for transaction objects. Ly, 11 is not used because trans-
action objects have no label. (L;, N;, T3, I;, P;), 2 < i < m, are parameters for level 7. We restrict to
datasets in which the setting of (L;, N;, T}, I;, P;) is the same for all 2 < ¢ < m. The default values

of maximal nesting level m and number of transaction object N,,41 are 4 and 100K, respectively.
k(L;, N;,T;, 1;, P;) denotes k repetitions of (L;, Ny, T;, 1;, P;). In Table 3,

e @ denotes the default setting (L; = 1K, N, = 10K,T; = 20,1; = 8, P, = 200), 2 < ¢ < m.
e & denotes the default setting (Ny41 = 100K, 7,41 = 20, [,,41 = 8, P = 200).

For example, dataset [I=(1K,10K)3@& in Table 3(a) refers to the dataset
(1K,10K)(1K,10K,20,8,200)(1K,10K,20,8,200)(1K, 10K, 20,8,200) (100K, 20, 8, 200).

Let us explain our choices of these default values. For the average number T; of subobject
references in an object, we choose the default value 20 on the basis that a Web page usually
contains a small number of links. For example, the top level of Yahoo! has 13 categories. In
order to have non-trivial sharing of low-level objects, we choose the number of level-¢ objects N;
(¢ < m) to be much smaller than the number of transaction objects N, 4i. Indeed, in many
applications there are more transaction objects than non-transaction objects. For example, there
are more research papers (i.e., transaction objects) than active authors, their organizations, and
research topics (i.e., non-transaction objects); there are more movies than active actors, directors,
categories, types of awards; there are more students than available courses and professors; etc. We
have also tried (Section 4.2.1) larger N; (and larger L; as well), but our experiments show that

doing so only reduces the search space, rather than increases it. This is expected because more
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objects at lower levels usually means less sharing of subobjects, thus, less sharing of substructures.
For example, as the number of available courses is increased, the probability that two students take
the same course will be reduced (assuming that the number of courses a student takes does not
change).

Our experiment environment is a Sun Ultral-1 workstation with CPU rate of 167 MHz and
memory size of 128 MB. In all experiments, the OEM graph & is stored in a unix file. The nodes
are stored in the depth-first order in which nodes are visited in our algorithm. If a node has already
been stored, any later reference to the node is made through its location, rather than storing another
copy of the node. For nodes that are frequently accessed, usually those at lower levels, we allow to
“pin” them in the memory after they are read for the first time. A hash table can map the location
in the file to the location in memory for pinned nodes. For the rest of this section, we examine

several factors of efficiency.

4.2.1 Size of search space

In this group of experiments, we study how the search space is affected by various data character-
istics and minimum supports. We use the number of leaf nodes in II; to estimate the size of search

space.

a. Effect of sharing of subobjects. Larger T,,4+1 and [I,,4; lead to more sharing of subob-
jects. For datasets [, I1, and 1l in Table 3(a), weset (141 = 10, L1 = 4), (Trny1 = 20, L1 = 8),
(Tht1 = 30, I,,11 = 16), respectively. Table 3(a) shows the number of leaf nodes in I1;. For exam-
ple, for dataset IT at MINISUP = 2%, there are 145, 32, and 3 leaf nodes in levels 1, 2, and 3,
respectively, and there are 4 maximally frequent tree-expressions, indicated in the pattern column.
Other entries are interpreted similarly. Comparison of datasets I, I1, 111 shows that the search space

grows as more subobjects are shared. A similar effect is observed for lower levels ¢ < m.

b. Effect of number of labels. In Table 3(b), we set the number of labels L; at 500, 1K,
2K for datasets I, I1, and Il1, respectively, with other parameters unchanged. Table 3(b) shows the

number of leaf nodes. As expected, a smaller L; implies a larger search space, due to more sharing

of labels.

c. Effect of number of objects. In Table 3(c), we set the number of object identifiers N;
at 5K, 10K, 20K in datasets I, II, and III. Table 3(c) shows that the number of object identifiers
has an effect similar to the number of labels in b above: a smaller N; implies a larger search space.
Importantly, these trends show that simply having more labels and objects (without increasing the
sharing of subobjects) only decreases the search space. For this reason we did not experiment with
larger L; and N,.

d. Effect of number of levels. In Table 3(d), we set the maximal level m at 2, 4, and 6 in
datasets I, 11, and IlI, while fixing other parameters. Table 3(d) shows that as m increases, so does

the size of search space.
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4.2.2 Pruning strategies

In Table 3(e), we compare the number of leaf nodes generated with and without pruning Strategies
I, II, 1II. We have shown the result for the default dataset (1K,10K)3@&; other datasets have
similar trends. The comparison shows that these pruning strategies lead to a quick drop in the size

of search space. This confirms our expectation about the effectiveness of pruning strategies.

4.2.3 Execution time

The figures al, bl, cl, d1 and el in Figure 13 show the execution time for the five experiments in
Table 3. Two general trends can be observed: (i) As the minimum support decreases, the execution
time increases; with a maximum of 500 seconds in all cases. (ii) The execution time is consistent

with the size of search space in Table 3.

4.2.4 Scale up

For each experiment on the left side of Figure 13, we scale up the number of transaction objects
Npqq from 100K to 1000K, with other parameters unchanged. The right side of Figure 13 shows
the relative time with respect to the time for the corresponding experiment with N,,4; = 100K
on the left side. The time is averaged over the different minimum supports used. All cases show a

clear linear growth with the number of transaction objects.

We now summarize these experiments as follows.

e The search space is increased when more subobjects are shared and when the minimum
support is reduced (Section 4.2.1a). Simply increasing the number of objects and labels
does not intensify the computation, unless the sharing of subobjects and labels are increased
(4.2.1b and 4.2.1c¢).

e There is a clear indication that pruning Strategies I, 11, and I1I are effective. All experiments
show a quick drop in the number of level-k leaf nodes as k increases. The small search space
justifies the choice of storing I1; in memory. Note that we have used small minimum supports,
ranging from 2% to 10%, which generally require a larger search space than large minimum

supports do.

e No more than 500 seconds are needed for 100K transaction objects in tested data character-

istics. Experiments show that the algorithm scales linearly for larger datasets.

e The number of frequent tree-expressions can be large, especially for a small minimum sup-
port. The number of maximally frequent tree-expressions is usually very smaller, at most
8 in all cases studied. Unlike frequent tree-expressions, reducing the minimum support can
add a maximally frequent tree-expression that makes several previous maximally frequent
tree-expressions no longer maximally frequent. This explains why the number of maximally

frequent tree-expressions sometimes is decreased as the minimum support is reduced.
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NIMISUP | I=(1K,10K)3@(100K,10,4,200) T1=(1K,10K)30& ITT=(1K,10K)3@(100K,30,16,200)
(%) I /I /.. /0 pattern | IIy /TIo/... /Iy | pattern | IT;/TI5/... /Tl pattern
10 10 2| 38 3| 47/1 3
8 19 1 | 57/4 1| 77/3 5
6 32 5 | 82/11/1 5 | 101/39/1 1
1 47/5 3 | 102/22/2 4 | 135/53/2 1
2 63/12 6 | 145/32/3 4 | 196/73/42/4 6
(a)
MINISUP | 1=(500,10K)3(500,10K,20,8,200)/& T1=(1K,10K)30& ITT=(2K, 10K)3(2K, 10K,20,8,200) /&
(%) I /I /.. /T pattern | IIy /TIo/... /Iy | pattern | II; /IIx/ ... /T, pattern
10 48 5 | 38 3| 13 2
8 77/4 1| 57/4 1| 22 1
6 93/26/3 5 | 82/11/1 5 | 40 5
1 132/46/5 7| 102/22/2 1| 63/2 3
2 199/52/30/3 7 | 145/32/3 4| 88/25/1 1
(%)
MINISUP | I=(1K,5K)3(1K,5K,20,8,200)& T1=(1K,10K)30& TTT=(1K,20K)3(1K,20K,20,8,200)&
(%) I /I /.. /T pattern | II;/TIo/... /Iy | pattern | II; /TI5/... /Tl pattern
10 61/4 5 | 38 3119 3
8 70/21/1 5 | 57/4 1| 30 1
6 111/39/2 7| 82/11/1 5 | 42 1
1 162/50/17/4 8 | 102/22/2 1 | 66/3 5
2 215/76/38/5 8 | 145/32/3 4 | 93/4 7
()
MINISUP I=(1K,10K) @& [I=(1K,10K)3@& 1= (1K, 10K)5a&
(%) I /I /.. /10 pattern | II;/TIo/.../Il; | pattern | II; /TI5/.../II; | pattern
10 28 2| 38 3 | 30/1 3
8 41 3 | 57/4 4 | 62/3 5
6 59/4 5 | 82/11/1 5 | 85/30/4 6
4 86/29/3 5 | 102/22/2 4 | 119/40/5 7
2 6 114/37/3 | 145/32/3 4 | 179/59/16/2 7
(d)
MINISUP w/o pruning pruning
(%) I, /Iy /... /TIy | pattern | II; /IIy/ ... /Il | pattern
10 38 3| 38 3
8 57/39 1| 57/4 1
6 82/78/41 5 | 82/11/1 5
1 102/134/85 4 | 102/22/2 1
2 145/199/113 4 | 145/32/3 1
(e)

Table 3: Size of 11}
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Figure 14: A segment of the “Star Wars” movie document

5 The Movie Dataset

We applies the algorithm to the Internet Movies Database (IMDb) at http://us.imdb.com to dis-
cover typical structures of movies documents. As of June 1998, IMDb covers more than 150,000
movies, over 2,250,000 filmography entries, and over 560,000 people. All information is organized
into HTML documents. Figure 14 shows a segment of the movie document for “Star Wars” at
http://us.imdb.com /Title?Star+Wars4(1977). The reader can take a quick tour of the source at
http://us.imdb.com/tour. After randomly inspecting some movie titles, we found that some movies
have very little information documented, especially those that are very old or from non-English
speaking countries. To get movie titles that are sufficiently documented, we ran a query using con-
dition (1950 < Released_Y ear < 1998) A (Country = USA) at http://us.imdb.com/list. In return,
we got more than 20,000 movie titles. In the next step, we extracted important fields from these
movie documents and build the OEM graph. This requires a large number of automated requests
from a remote site. We selected only the first 5,000 of returned movie titles for our experiment.
We wrote a profile to tell the extraction program what to extract in a particular context. This is
necessary because certain labels can appear in different contexts and at different levels and we do
not want all of them. For example, Title of movies appears at level 1 as well as within each actor
objects, and if we are not interested in the movies in which an actor acts, we can ignore T'itle labels
within actor objects. A movie usually has many actors, but we restricted to only “active” actors,
which we defined as the top 5 actors in each movie (by the way, actors are listed in the order of
credits in the source). We ignored certain links such as Costume_Design, Sound_Miz, Language
and all links to images. The top part of Figure 15 shows the full structure of a movie document

from the perspective of our experiment.

We set MINISUP to 50% and find the two maximally frequent tree-expressions in Figure 15
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(L is omitted for simplicity). In Pattern 1, none of Director, Producer, Writer, Editor, Composer,
C'inematographer individually has enough support for the substructure Bio : { Born_Year, Born_W here}.
In Pattern 2, the wild-card label 7 matches any of these labels, thus, this substructure is found.
There are many non-maximally frequent tree-expressions and such tree-expressions usually have
much higher supports. For example, every movie document has labels Title, Released Year,
Country, and Director, thus {T'itle, Released Y ear, C'ountry, Director} has 100% support. Dis-
covered tree-expressions can be stored and retrieved through a query interface. One can retrieve
such information to gain the general information content of the movie source, or to discover the
vocabulary and structure of the source, or to find out statistics of missing or known information
(such as Born_Year and Bore_ W here of actors). Often, it is useful to keep track of the identifiers
of movie documents that support each typical structure, i.e., URL addresses in this case. This can

be easily incorporated into our algorithm when counting the support of each candidate.

6 Related Work

Our work is related to mining association rules from a collection of baskets of items (called trans-
actions) [AIS93, AS94]. An example of association rules is “if a customer buys diapers, he/she also
buys beer with 80% confidence”. The core of the association rule problem is finding all itemsets
that are contained in at least some number of baskets. A larger candidate itemset is constructed
by joining two smaller frequent itemsets and the support is computed by testing containment of
the candidate in baskets. Our work has some important differences. Unlike a flat basket, subobject
references in an object can be hierarchical, labeled, ordered, and cyclic; and unlike an itemset, a
tree-expression has a tree-like structure, and constructing tree-expressions and counting support
require more than joining flat sets and testing set containment. Also, the rich data in our frame-
work requires new pruning strategies. Finally, the use of the wild-card label makes our problem

very different from the association rule problem.

There are some works on discovering structural information from semistructured data. [NAM9T7]
discovered the type of objects (i.e., sets of labels) based on the relative importance of labels in
a larger set and constructs the type hierarchy. The type hierarchy is a lattice organization of
discovered types ordered by the standard set containment, therefore, very different from a tree-
expression that generalizes the subobject relationship in the original data. [NUWC97] extracted
the schema in a single graph structure. We considered “schemas” that are repeated in a number of
graph structures. Consequently, we have to deal with the interestingness of substructures such as
confidence and support. [SLLLIT7] derived a uniform object-oriented database schema for multiple
objects. They first find the hierarchy for each object and merge them into a global schema. We
do not construct any global schema. Instead, we discover “typical” substructures of objects. Most
information extraction systems treat an object as a collection of keywords. We treat an object as
a structure of labels, like those found on the Web. Preliminary versions of our work were reported
in [WL97, WL98]. Beyond [WL97, WL98], we have shown that each tree-expression is generated

only once (Theorem 3.3), and we have included the full version of the experimental results.
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The full structure:

{Title,

Country,

Released_Year,

Award,

Production,

Genre:{Keyword},

Director:{Category,Bio:{Born_Year,Born_Where,Award,Spousel}},

Cast:{Actor:{Category,Bio:{Born_Year,Born_Where,Award,Spousel}},
Actor:{Category,Bio:{Born_Year,Born_Where,Award,Spouse}},
Actor:{Category,Bio:{Born_Year,Born_Where,Award,Spouse}},
Actor:{Category,Bio:{Born_Year,Born_Where,Award,Spouse}},
Actor:{Category,Bio:{Born_Year,Born_Where,Award,Spouse}}},

Writer:{Category,Bio:{Born_Year,Born_Where,Award,Spousel}},

Cinematographer:{Category,Bio:{Born_Year,Born_Where,Award,Spousel}},

Producer:{Category,Bio:{Born_Year,Born_Where,Award,Spousel}},

Editor:{Category,Bio:{Born_Year,Born_Where,Award,Spousel}},

Distributor:{Category,Bio:{Born_Year,Born_Where,Award,Spouse}}}

Pattern 1 (support = 61.7%):

{Title, Released_Year,Country,Genre:{Keyword},
Director:{Category},
Cast:{Actor:{Bio:{Born_Year,Born_Where,Spouse},Category’,

Actor:{Bio:{Born_Year,Born_Wherel},Category},
Actor:{Category},
Actor:{Category},
Actor},
Producer:{Category}}.

Pattern 2 (support = 50.2%):

{Title, Released_Year,Country,Genre:{Keyword},

Cast:{Actor:{Bio:{Born_Year,Born_Where,Spouse},Category’,
Actor:{Bio:{Born_Year,Born_Wherel},Category},
Actor:{Category},
Actor:{Category},
Actor},

7:{Bio:{Born_Year,Born_Where},Category}t’}.

Figure 15: The full structure and maximally frequent tree-expressions
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7 Conclusion

As the amount of data available on-line grows rapidly, most references to important fields are
labeled and hierarchical (sometimes also ordered and cyclic). The label of a reference tells the role
of the field and the hierarchy of references tells how the information is structured in the source.
Traditional data mining methods have treated an object (such as a document) as either a set or a
list of items and have not explored internal structures of objects. Our treatment of structures is
based on the observation that many objects containing the same type of information are similarly
structured, though not identically structured. Typical (sub)structures shared by a large number
of objects reveal general information content and representation of the source, and discovering
such structures is important for both the end user and the source builder. We have defined the
discovery problem and proposed a solution based on a new representation of search space. The
efficiency and effectiveness were evaluated on both synthetic datasets and real datasets. Traditional
information access tends to emphasize the narrowly specified querying and the largely dis-oriented
browsing approaches. The approach of mining typical structures of objects provides an alternative
to information access.
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