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Abstract—The bias problem associated with equation error Il. HYPER-SPHERICAL PARAMETERIZATION

based adaptive infinite impulse response (lIR) filtering can be . . S . .
surmounted by imposing a unit-norm constraint on the autore- All" unit-norm based adaptive IR filtering algorithms in

gressive (AR) coefficients. We propose a hyperspherical parame- the existing literature [2], [6], [7] use the ARMA coefficient
terization to convert the unit-norm-constrained optimization into  parameterization. These algorithms attempt to estimate the

an unconstrained optimization. We show that the hyperspherical AR and MA coefficients that minimize the equation-error
parameterization does not introduce any additional minima 10 g hiact to the constraint that the AR coefficient vector has
the equation error surface. ; . . .
unit norm. It has been proved that this constrained equation-
~ Index Terms—Adaptive IIR filtering, equation error minimiza-  error surface has a unique minimum and that the minimum
tion. of the error surface (under the unit-norm constraint) gives the
true parameters of the system if the model is of sufficient order
|. INTRODUCTION and the input sufficiently rich [3].

RADITIONALLY, finite impulse response (FIR) struc- This constrained optimization problem can be converted

tures have been used for adaptive filters, due to thé?rto an unconstrained optimization by using a hyperspherical

simplicity. However, it could be advantageous to use inﬁnn%arameterlzatlon. That is, rather than directly adapting the MA

1 I f— ... T 1 I
impulse response (lIR) structures rather than FIR structurg?%iﬁ'(cc; en';sb _ (bg’ l;lT’ Wﬁebrgz.)%aigdtrfzevggoﬁ?gﬁegi
for adaptive filters, especially when the desired filter caf grat(fr’ v&é o ojge ada tibg= (Bo. Br, -+~ Dar)T 7 a$1d
be modeled with fewer parameters using both poles ap8 » WE prop P 0) Py =77 BM e

zeros. The potential for reduction in computational complexiPy: (81, 82, -+, 6ar)", where
and improvement in performance has motivated research i@j =rbj, vje{o,1,---, M}
adaptive IIR filtering. Equation-error minimization [1] is a ) '
preferred form of adaptive IIR filtering, since it leads to .
a well-behaved convex minimization problem. However, the .
minimum of the equation-error surface gives a biased estimate® <1:[1 S 9’) cos Og1, Vh€{l, 2, M~ 1}
for the system parameters. ;{

On the qther hand, the minimum of the equation-errop, . H sin ;. (1)
surface subject to the constraint that the autoregressive (AR el
coefficient vector has unit norm provides an unbiased estimate
of the true parameters [3]. The existing adaptive (onlind) can be shown thaflal| = » and thata = a(r,8) =
techniques attempt to solve this constrained optimization prot(1, #). To insure a one-to-one correspondence between
lem using a Lagrange multiplier method [6] or a generalizd#” a’]* andg = [b? » 6"]%, we restrict the values of
Rayleigh quotient [7]. We propose a hyperspherical parametér-such thatd; € [0, 27)Vi € {1, 2, ---, M} andr such that
ization that converts this unit-norm-constrained optimization > 0.
into an unconstrained optimization. Section Il presents the
proposed hyperspherical parameterization. In Section I, it 1. (N ON)-UNIMODALITY |SSUES

is shown that this parameterization leads to a nonconvexGradient-based aloorithms are the most widelv used adan-
unconstrained optimization problem that can be solved usi aﬁ . 9 L y P
g ion algorithms, due to their simplicity and well-understood

ag =7 cos O,

radient based optimization techniques. Section IV providgs, . . :
tghe conclusion P a P ehavior. For small enough step-sizes, these algorithms are

guaranteed to converge to a point where the gradient is
zero. Hence, it is desirable to have the gradient being zero
at a point as a sufficient condition for that point to be
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Proof: In the Appendix, it is shown that the determinanerror surface. Hence, the gradient being zero at a point is not
of Jy is given by a sufficient condition for that point to be a global minimum.
However, the newly formed stationary points are saddle points.
det(Inr) = r*MF sin =1 (0y) sin3(0) -+ sin(frr1). If parameter trajec)tlories go through )(/)Pnear saddle poirf)ts this
. . . N (2) can potentially slow down the convergence of the algorithm.
Thenay = r sin(1) sin(6z) -~ sin(fr) # 0 implies none However, the gradient algorithm will still converge, albeit
of sin(¢;) or r in (2) equals zero. Hencéy, is nonsingular. Eerhaps more slowly, to the global minimum provided there is

Minimizing the equation error (in terms of direct coefficien ome noise present to perturb the adaptation algorithm away
parameterization) under the unit-norm constraint is equivalqcp

N . . . . dm saddle points and provided the saddle points are not
to minimizing the generalized Rayleigh quotient [7] given b%Iense. It is worth adding that there is always some noise due

r T b to measurement and quantization errors.
b* a ]RLJ We can attempt to minimize the cost functidiy(8) of
ala 3) (4), in terms of hyperspherical coordinates, by using the LMS
algorithm. The LMS algorithm is an approximation of the
%teepest descent algorithm, where the true gradients are re-
placed by their (noisy) instantaneous values. Also, siigg)
is independent of (equivalentlydE,/dr = 0), » can be set

Ei(e) 2

where R is a positive-definite autocorrelation matrix. Sinc
there is a one-to-one correspondence betweemd 3, (3)
can be rewritten as follows:

b7 ra(l, 0)T] [ b } to a nonzero positivg constan't (preferably unity) gnd need not

Fi(a) = ra(l, 0) be adapted. A detailed algorithm based on the instantaneous
72 (stochastic) gradient of (4) is presented elsewhere [5]. Over

- b many simulations, no convergence problems were observed

=" a(1, 9)T]R{a(1 0)} that could be attributed to saddle points. There is merely a

temporary slow down of convergence near the saddle point.
Ex(B). (4) This suggests that the effects of saddle points (while they exist

. . . . for some systems) are mitigated by the use of the instantaneous
Thus, E2(8) is the unit-norm-constrained equation-error Costf}radient y ) g y

function after the hyperspherical transformation.

Theorem: Every stationary point off; («) is a stationary
point of E5(83). Furthermore, any newly formed stationary o ) ]
point of E,(f) is a saddle point and the AR polynomial A parameterization that converts the unit-norm constra|r'1ed
corresponding to these saddle points has degree |es§\4hana_1dapt|ve f|Iter|ng_ problem into an unconstrained adaptl_ve

Proof: The gradients of; («) and E»(8) are related as filtering problem is presented. The parameter transformation

a

IV. CONCLUSION

follows: may introduce additional stationary points in the error surface.
. However, additional stationary points in the transformed error
VEs(B) = Iy VaEi(a) (5) surface, if any, are saddle points, so that the unique global

where « = [b? aT(r, §)]. From (5), it follows that if minimum is preserved.

V.Ei(a*) = 0, then the corresponding point in hyperspher-
ical coordinateg* = [b*? r* 7|7, whereb* = »*b* and

a* = a(r*, "), satisfiesVgE>(8*) = 0. This proves the first
part of the theorem. Furthermore, since the Hessians of thel he Jacobian of the hyperspherical transformation can be

APPENDIX
PROOF FOR (2)

error surfacest; (a) and E,(g) are related as follows: written as shown in (A1)-(A4), shown at the top of the
) T ey next page, wherez,, and s, denote cos 6, and sin 6,
ViE2(B) = Iy VoE(a) Iy (6) respectively. Using the partitioned-matrix determinant identity

[8], det(Jys) = det(JiL)det(I32). From (A2) follows that

the nature of the stationary points Bf («) is preserved by the %8“3}\}) — M+, We claim (proved below) that

hyperspherical transformation. That is, minima get mapped
minima and saddle points get mapped to saddle points. det(J32) = ™ sin™ ~1(6;) sin™ =2(8,) - - - sin (pr—1).

If there exists a poin™ such thatVzE»(8*) = 0 while (A5)
V.Ei(a) # 0, wherea* = [r*b*T a(r*, §")]7, it follows Hence
from (5) thatJ,; must be singular. From the Lemma above,det(JM) = MM =19 ) sinM=2(6,) - - sin (Grr_1 ).
Jar being singular implieszp; = 0, which in turn shows (AB)
that the AR polynomial corresponding to any newly formed Inductive Proof for (A5): For M = 1, det(J22) = r,

stationary point off>(8) has degree less thav. Nayeri and |, vih satisfies (A5). Assume that (A5) is true fdi
Jenkins have proved that the newly formed stationary po”lﬁ%ing (Ad)

due to any continuous transformation are saddle pointd]4].

From the above theorem, it is clear that the unimodal det(I37) =rs1--- sy 16y det(IF7 )
constrained equation-error surface [7] in ARMA parame-
terizations, upon hyperspherical transformation, may have
stationary points in addition to the global minimum of the =781 sy—1det(I3_,). (A7)

2
Ri—1-

+7rsy--- 8]\4,18?\4 det(Jﬁfl)
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