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Abstract—The bias problem associated with equation error
based adaptive infinite impulse response (IIR) filtering can be
surmounted by imposing a unit-norm constraint on the autore-
gressive (AR) coefficients. We propose a hyperspherical parame-
terization to convert the unit-norm-constrained optimization into
an unconstrained optimization. We show that the hyperspherical
parameterization does not introduce any additional minima to
the equation error surface.

Index Terms—Adaptive IIR filtering, equation error minimiza-
tion.

I. INTRODUCTION

T RADITIONALLY, finite impulse response (FIR) struc-
tures have been used for adaptive filters, due to their

simplicity. However, it could be advantageous to use infinite
impulse response (IIR) structures rather than FIR structures
for adaptive filters, especially when the desired filter can
be modeled with fewer parameters using both poles and
zeros. The potential for reduction in computational complexity
and improvement in performance has motivated research in
adaptive IIR filtering. Equation-error minimization [1] is a
preferred form of adaptive IIR filtering, since it leads to
a well-behaved convex minimization problem. However, the
minimum of the equation-error surface gives a biased estimate
for the system parameters.

On the other hand, the minimum of the equation-error
surface subject to the constraint that the autoregressive (AR)
coefficient vector has unit norm provides an unbiased estimate
of the true parameters [3]. The existing adaptive (online)
techniques attempt to solve this constrained optimization prob-
lem using a Lagrange multiplier method [6] or a generalized
Rayleigh quotient [7]. We propose a hyperspherical parameter-
ization that converts this unit-norm-constrained optimization
into an unconstrained optimization. Section II presents the
proposed hyperspherical parameterization. In Section III, it
is shown that this parameterization leads to a nonconvex
unconstrained optimization problem that can be solved using
gradient based optimization techniques. Section IV provides
the conclusion.
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II. HYPER-SPHERICAL PARAMETERIZATION

All unit-norm based adaptive IIR filtering algorithms in
the existing literature [2], [6], [7] use the ARMA coefficient
parameterization. These algorithms attempt to estimate the
AR and MA coefficients that minimize the equation-error
subject to the constraint that the AR coefficient vector has
unit norm. It has been proved that this constrained equation-
error surface has a unique minimum and that the minimum
of the error surface (under the unit-norm constraint) gives the
true parameters of the system if the model is of sufficient order
and the input sufficiently rich [3].

This constrained optimization problem can be converted
into an unconstrained optimization by using a hyperspherical
parameterization. That is, rather than directly adapting the MA
coefficients , and the AR coefficients

, where is the vector transpose
operator, we propose adapting , , and

, where

(1)

It can be shown that and that
. To insure a one-to-one correspondence between

and , we restrict the values of
such that and such that

.

III. (N ON)-UNIMODALITY ISSUES

Gradient-based algorithms are the most widely used adap-
tation algorithms, due to their simplicity and well-understood
behavior. For small enough step-sizes, these algorithms are
guaranteed to converge to a point where the gradient is
zero. Hence, it is desirable to have the gradient being zero
at a point as a sufficient condition for that point to be
a global optimum of the function being optimized. In this
section, we analyze whether the equation-error surface, after
hyperspherical transformation, satisfies the global optimality
property.

Lemma: If , the Jacobian of the hyperspherical
transformation is nonsingular.
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Proof: In the Appendix, it is shown that the determinant
of is given by

(2)
Then implies none
of or in (2) equals zero. Hence is nonsingular.

Minimizing the equation error (in terms of direct coefficient
parameterization) under the unit-norm constraint is equivalent
to minimizing the generalized Rayleigh quotient [7] given by

(3)

where is a positive-definite autocorrelation matrix. Since
there is a one-to-one correspondence betweenand , (3)
can be rewritten as follows:

(4)

Thus, is the unit-norm-constrained equation-error cost
function after the hyperspherical transformation.

Theorem: Every stationary point of is a stationary
point of . Furthermore, any newly formed stationary
point of is a saddle point and the AR polynomial
corresponding to these saddle points has degree less than.

Proof: The gradients of and are related as
follows:

(5)

where . From (5), it follows that if
, then the corresponding point in hyperspher-

ical coordinates , where and
, satisfies . This proves the first

part of the theorem. Furthermore, since the Hessians of the
error surfaces and are related as follows:

(6)

the nature of the stationary points of is preserved by the
hyperspherical transformation. That is, minima get mapped to
minima and saddle points get mapped to saddle points.

If there exists a point such that while
, where , it follows

from (5) that must be singular. From the Lemma above,
being singular implies , which in turn shows

that the AR polynomial corresponding to any newly formed
stationary point of has degree less than . Nayeri and
Jenkins have proved that the newly formed stationary points
due to any continuous transformation are saddle points [4].

From the above theorem, it is clear that the unimodal
constrained equation-error surface [7] in ARMA parame-
terizations, upon hyperspherical transformation, may have
stationary points in addition to the global minimum of the

error surface. Hence, the gradient being zero at a point is not
a sufficient condition for that point to be a global minimum.
However, the newly formed stationary points are saddle points.
If parameter trajectories go through or near saddle points this
can potentially slow down the convergence of the algorithm.
However, the gradient algorithm will still converge, albeit
perhaps more slowly, to the global minimum provided there is
some noise present to perturb the adaptation algorithm away
from saddle points and provided the saddle points are not
dense. It is worth adding that there is always some noise due
to measurement and quantization errors.

We can attempt to minimize the cost function of
(4), in terms of hyperspherical coordinates, by using the LMS
algorithm. The LMS algorithm is an approximation of the
steepest descent algorithm, where the true gradients are re-
placed by their (noisy) instantaneous values. Also, since
is independent of (equivalently ), can be set
to a nonzero positive constant (preferably unity) and need not
be adapted. A detailed algorithm based on the instantaneous
(stochastic) gradient of (4) is presented elsewhere [5]. Over
many simulations, no convergence problems were observed
that could be attributed to saddle points. There is merely a
temporary slow down of convergence near the saddle point.
This suggests that the effects of saddle points (while they exist
for some systems) are mitigated by the use of the instantaneous
gradient.

IV. CONCLUSION

A parameterization that converts the unit-norm constrained
adaptive filtering problem into an unconstrained adaptive
filtering problem is presented. The parameter transformation
may introduce additional stationary points in the error surface.
However, additional stationary points in the transformed error
surface, if any, are saddle points, so that the unique global
minimum is preserved.

APPENDIX

PROOF FOR (2)

The Jacobian of the hyperspherical transformation can be
written as shown in (A1)–(A4), shown at the top of the
next page, where and denote and ,
respectively. Using the partitioned-matrix determinant identity
[8], . From (A2) follows that

. We claim (proved below) that

(A5)
Hence

(A6)
Inductive Proof for (A5): For , ,

which satisfies (A5). Assume that (A5) is true for .
Using (A4)

(A7)
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(A1)

(A2)

(A3)

...
...

...
...

...
. . .

(A4)

Hence,
and, by induction, (A5) holds for all positive integer
values of .
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