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FIG. 4 a, Oxygen consumption and b, muscle mechanical efficiency in
relation to air density reduction (symbols as in Fig. 1). Sample size is
indicated and is reduced because only continuous traces of oxygen
consumption longer than 5 s were used (hover-feeding events that were
short or composed of intermittent feeding were not used). Oxygen con-
sumption was determined using open flow mask respirometry, as
described previously?. Birds were trained to feed through a cylindrical
mask. During hover-feeding, air was drawn through the feeder mask
and was sampled and analysed by an Applied Electrochemistry S-3A/I
Oxygen Analyzer. Metabolic power input (Pi,,.) Was determined from
the rate of oxygen consumption by assuming a conversion factor of
21.1 J mi~* O, for carbohydrate utilization®® and a respiratory quotient
of 1 (ref. 16). Mechanical flight muscle efficiency (n,,) was estimated as
Pper/(0.9 X Pinput), @assuming that 90% of total metabolism is attributable
to the two pairs of major flight muscles'’. P, was used because hum-
mingbirds can probably store kinetic energy elastically during the dece-
leration phase of the wing stroke®. Calculated values of Pue. and
associated muscle mechanical efficiency were implausibly high, for
example, 349 W kg * of muscle with 25% mechanical efficiency at
failure™®, Repeated-measures ANOVA results indicate a highly signifi-
cant density effect (P<0.001) for oxygen consumption but not for
muscle mechanical efficiency (P=0.078). No trial effect was found for
either variable.

Hummingbirds hovering in normal air already exhibit stroke
amplitudes of 140-150°, and failure occurred universally near
stroke amplitudes of 180°. By contrast, stroke amplitude for
orchid bees hovering in heliox only reached 142°. Opposite wing
interference and even impact is likely when stroke amplitude
exceeds 180°. Thus limits for power production may be indicated
by maximum stroke amplitude, a primary determinant of
induced and total mechanical power during hovering flight.
Further non-invasive studies of animal flight performance are
necessary to evaluate such interactions between morpholo-
gical design and the physiological limits inherent to skeletal
muscle. O
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RECENT work has identified a neuron with widespread projections
to odour processing regions of the honeybee brain whose activity
represents the reward value of gustatory stimuli'>. We have con-
structed a model of bee foraging in uncertain environments based
on this type of neuron and a predictive form of hebbian synaptic
plasticity. The model uses visual input from a simulated three-
dimensional world and accounts for a wide range of experiments
on bee learning during foraging, including risk aversion. The pre-
dictive model shows how neuromodulatory influences can be used
to bias actions and control synaptic plasticity in a way that goes
beyond standard correlational mechanisms. Although several
behavioural models of conditioning in bees have been proposed®”,
this model is based on the neural substrate and was tested in a
simulation of bee flight.

Real and colleagues®™' performed a series of experiments on
bumblebees foraging on artificial blue and yellow flowers whose
colours were the only predictor of the nectar delivery. They
examined how bees respond to the mean and variability of this
delivery in a foraging version of a stochastic ‘two-armed bandit’
problem'>"*. In one series of experiments, all the blue flowers
contained 2 pl of nectar, % of the yellow flowers contained 6 pl,
and the remaining % of the yellow flowers contained no nectar
at all. In practice, 85% of the bees’ visits were to the constant-
yield blue flowers despite the equivalent mean return from the
more variable yellow flowers. In a second series of experiments,
Real showed that bumblebees will forage equally from each
flower type if the mean reward from the variable type is made
surfficiently large.

In the honeybee suboesophogeal ganglion, an identified neu-
ron, VUMmx1, delivers information about reward during class-
ical conditioning experiments'. This neuron projects widely to
brain regions involved in odour processing, becomes active in
response to sucrose applied to the antennae and proboscis, and
its firing can substitute for the unconditioned stimulus in a class-
ical conditioning experiment. Specifically, presentation of an

725



LETTERS TO NATURE

N}
S

;

¢ d
Nectar '-_" Sensory 12,
z ' input 1.0 L
08
®»®® oo
04 /
% Action 02/
o4 )| S -
”Y"B)/ 0 2 4 6 8 10 12
il Pl S (1) Nectar volume (pl)

FIG. 1. Model of a foraging bee. a, Model bee moving about the three-
dimensional arena along with a highlighted cone-shaped region indicat-
ing the field of view available to the simulated cyclopean eye. The arena
was composed of blue and yellow squares (160 by 160) representing
flowers of two different colours (shown here as black and grey). The
model bee could move throughout the arena, though it reflected off the
ceiling and walls. The trajectory of the bee is shown as a black trail. b,
Image formed on the 200 by 200 pixel retina of the model bee illus-
trated in a. ¢, Architecture of the model. The output of neurons ‘B’, 'Y’,

odourant followed by artificial stimulation of VUMmx]1 through
an electrode caused caused subsequent presentation of the
odourant alone to elicit a stereotypic behavioural response which
indicated that the bee expects to receive nectar.

We have compared the behaviour of real bees to a neural
model of bee learning based on VUMmx1 in a simulated three-
dimensional arena containing a field of flowers possessing the
same reward distributions as described above. In the model arch-
itecture, shown in Fig. 1, P was a simple linear unit receiving
convergent sensory information representing the changes in the
percentage of blue (xg), yellow (xy) and neutral (xn) inputs
from the visual field, weighted by wg, wy and wx, respectively.
In the presence of nectar (activity along r(t)), the output of the
linear unit P was

S()=r(t)+ V(t)zr(t)+ Viy—Vv(e—1) (1)
where
V(t)=w(t) - x(1) =wg()xs(t) + wy (D) xy (1) + wn(t)xn(1) (2)

The output of P, §(¢), thus represents an ongoing comparison
of V(t— 1) and the sum r(¢) + V(z), and, in the absence of reward,
(r(t)=0), P’s output labels transitions in sensory input as ‘better
than expected’ (6(¢) >0) or ‘worse than expected’ (5(7) <0). We
interpret the sign of d(¢) as changes in neuromodulator release
about some basal level'*'’.

After landing on a flower and receiving some volume of
reward, the output of P, 5(¢), controlled learning according to:

Aw(t) = Ax(t—1)5(1) (3)

where 4 is a learning rate. This learning rate is similar to one
first proposed by Konorski'® and is a form of Hebb rule'” in
which the postsynaptic factor 5(t) carries a sign permitting the
system to learn predictions rather than correlations'®™
VUMmxI is more highly activated by sensory cues that predict
reward than by cues that do not predict reward and could have
the same function as () in our model'.
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and ‘N’ represented changes in the percentage of blue, yellow and
neutral colours in the visual field, hence their outputs reflect normalized
responses. Such derivatives, typical of early sensory pathways, could
be constructed anywhere along the path from the sensory units to P.
Any portion of the field of view that did not contain blue or yellow was
taken as neutral (white region in b). These neurons influenced the out-
put of a diffusely projecting linear unit P through weights wg, wy and
wn. Wg and wy were adaptable and wy was fixed at —0.5. As the model
bee changed its heading and/or its height above the field, changes in
the activity in these neurons would ensue. Changing the weights upon
encounters with flowers permitted them to represent information about
the predictive relationship between the sensory input and the amount
of nectar'®?**°, d, Response of neuron R that delivers information
about the reward to P and receives input from a sucrose (nectar) sensi-
tive neuron S. The functional form of this relationship is derived from
an empirically determined utility function for bumblebees®*°.
METHODS. The model bee had a single eye with a fixed field of view
that was varied from 20° to 30°. This arrangement was not meant to
represent the eye of the bee, but instead represents the use of visual
information only from the central portion of the visual field along the
direction of motion of the bee. At each iteration, the output of P influ-
enced the decision of the bee to reorient randomly (Fig. 2). If no reorien-
tation occurred, the bee took one step along its direction of flight,
otherwise, it chose a random change in heading from —90° to +90°
and then took a step (stepsize =0.05). A landing was registered once
the model bee’s altitude was less than 0.05. At that point, the flower
intersected by the direction of flight was selected. After landing on a
flower, a reward is given according to the volume of nectar in the
selected flower and activity in r(t) resulted (d). The weights (wg, wy) were
adjusted only on encounters with flowers and otherwise influenced the
decision of the bee to reorient through their influence on the fluctuating
output of neuron P. After the model bee landed on a flower, received
a nectar reward (or not), and had the sensory weights updated, it was
randomly repositioned at the top of the simulated arena with a random
initial heading. This explains the pattern of results shown in Fig. 4 at
high altitudes.

Once the model bee lands on a flower (Fig. 1), we use an
empirically derived ‘utility’ curve®'® to determine the value of
different volumes of nectar (Fig. 1¢,d). We interpret this curve
as an equilibrium measure of the value of different volumes of
nectar that does not specify detailed dynamics of how an indi-
vidual bee might estimate nectar volumes or their subjective util-
ity (see ref. 6). We made the simplifying assumptions that the
utility of the nectar in a given flower could be assessed in one
iteration and that the sensory component is ¥(¢) =0 as the model
gathers nectar at time ¢. At this time r(¢) takes on the value
prescribed by the utility curve and ¥(z—1) is driven exclusively
by the current flower colour. In this way. §() takes on the
form r(t)+ V(t)— V(¢t—1)=r(t)— V(t— 1) making equation (3)
equivalent to the Rescorla-Wagner rule for classical
conditioning® >,

In the absence of reward (r(f)=0), we used the output of
P to bias actions. At each time 7, J(r) determined whether
the bee continued on its present heading for its next movement
or whether it randomly reoriented (tumbled) before its next
movement (Fig. 2a). This model is reminiscent of a biased
random walk with &(¢) choosing the probability of randomly
changing direction. In chemotaxing bacteria, such decision-
making is called klinokinesis®. In various invertebrate systems,
neuromodulator delivery influences motor behaviours and thus
action choice’*™’, however, we arc making the novel proposal
that VUMmx1 or its visually sensitive congeners also have
such effects. The use of a signal such as J(r) to learn to
choose actions appropriately leads to an asynchronous version
of dynamic programming®, an engineering technique that can
be used to find optimal sequences of actions to achieve a
goal.

In the results reported here, we assumed that weight changes
only occurred during encounters with flowers. Thus, the output
from P was used continuously to guide actions but plasticity
was gated. This could occur by modulation of the learning rate
(A in equation (3)) by neurons that become active in response
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FIG. 2. Simulations of bee foraging behaviour using predictive hebbian
learning. a, Influence of §(t) (labelled Delta) on the decision to reorient.
The adaptable (wgs, wy) and non-adaptable (wy) sensory weights influ-
ence the decision to reorient through their influence on the size and
sign of 4(t). P (5(t)) is the probability of reorienting for a given value of
8(t) and has the form 1/(1+exp (mx+b)). The slope m of the linear
region of this curve determines the amount ‘noise’ in the decision func-
tion: dashed line m = 3, line with points m = 30. In the results presented
in this paper, m was varied from 5 to 45 and b varied from 0.1 to 5.0.
b, Fraction of visits to blue flowers for real and model bees: weights
updated only on flower encounters. Each trial represents about 40
flower visits averaged over 5 real bees and exactly 40 flower visits for
a single model bee. Trials 1-15 for the real and mode! bees had blue
flowers as the constant type (2ul in all flowers), the remaining trials had
yellow flowers as constant. Data from real bees are shown as dashed
line. Data for simulated bees shown as connected points (learning rate
A=0.9). The control trace (fluctuating trace around line at 0.5) shows
the sampling behaviour for the model bee where wg=w,=0.5 and no
changes in the weights were made upon encounters with flowers. The
control trace shows that the model for output is not biased toward either
flower by other constraints associated with the chosen representation of
the model bee and the arena. The real bees were more variable than
the model bees and tended to sample the constant flowers at a slightly
higher rate (85% compared to a range of 73%-85%). The real bees
also had a slight preference for blue flowers which can be seen after
the switch of reward distributions at trial 15 (ref. 7). For the model bee,
the rewards were stochastically delivered so there was no effect of
revisits on the effective variance of either the constant or variable flow-
ers. In practice®, this assumption was not controlled, however, moderate
increases in variance for the constant flower would not influence dram-
atically the behaviour of the model.

to signals specifically associated with a flower encounter, such
as touch-sensitive neurons and odourant detectors with appro-
priate thresholds. Similar results were obtained when the learn-
ing rate was varied continuously according to the height of the
bee above the field of flowers (unpublished data).
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Figure 2b shows the behaviour of model bees compared with
that of real bees® in the experiment testing the extent to which
they prefer a constant reward to a variable reward of the same
long-term mean. The constant and variable flower types were
switched after trial 15. The behaviour of the model matches best

FIG. 3 Tradeoff between the mean and variance of nectar delivery for
bee foraging. a, b, Compare indifference points for the model bees
against those for real bees for different learning rates. The coordinates
of indifference points are taken as the mean and variance for which
the bee samples equally from both the constant and variable flowers.
The constant flower contained 0.5ul of nectar. For the variable flower,
the variance was fixed and the mean slowly increased until the percent-
age of visits to the constant flower was less than 50% over 80 flower
visits: the mean and variance were then used as an indifference point.
The stochastic nature of the model bee movement and the delivery of
reward results in the observed spread in the indifference points. a,
Indifference points for A=0.05. b, Indifference points for A=0.9. In
both a and b, the data for real bees are shown as points connected by
a solid line® (units for mean and variance are pl and plz, respectively).
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FIG. 4 Structure of foraging problem in an enclosed arena. The choice
of a particular representation for the arena and the sensory apparatus
of the model bee imposes a number of constraints that influence forag-
ing in the simulated arena. The data presented in a and b are collected
from a total of 1,200 flower landings and 41,735 steps of the model
bee (stepsize =0.05). The learning rate A was 0.9. a, Cumulative histo-
gram of the number of times the model bee viewed primarily neutral
colour (>90% of visual field) as a function of altitude in the arena. As
the model bee gets closer to the field of flowers, this happens far less
frequently. Since wy was fixed at —0.5, this histogram shows how often
reorientations result from viewing regions outside the simulated field
of flowers. b, Histograms of positive and negative fluctuations in 4(t) as
a function of altitude. Top trace: distribution of all reorientations. Middle
trace: distribution of negative fluctuations in §(t) excluding those due
to viewing primarily neutral colour (&(t) < —0.1). Bottom trace: distribu-
tion of positive fluctuations in (6(t)> 0.1). As the model bee approached
the simulated field, a given change in orientation resulted in larger
fluctuations in &(t). In both panels, binsize =0.014 (70 bins).

the observed data for a learning rate of 1=0.9, suggesting that
the real bee uses information over small time windows for con-
trolling its foraging decisions®. These data show that for an equal
sized reward between two behavioural choices, bees are biased
to choose the more certain predictor of nectar. The uncertainty
of a predictor can, however, be balanced by the expected size of
the reward.

For example, as shown in Fig. 3, real bumblebees will forage
equally on the constant and variable flower types if the mean
reward from the variable type is made sufficiently large. This
tradeoff behaviour was also exhibited by the model bee. For a
given variance in reward from the variable flower, the mean
reward was increased until the model bees foraged equally from
each flower type: at that point the mean and variance was
recorded as the point at which the model bee sampled indiffer-
ently from each type. Figure 3a,b show such indifference plots
for two learning rates, 0.05 (a) and 0.9 (b). As before, the behav-
iour of real bees was matched best by the higher learning rate
(0.9). The reason for the shape of the observed plots can be
traced to the nonlinear response function in Fig. 1d, which pro-
vides diminishing returns for larger volumes of nectar.
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This tradeoff between the expected value of reward and its
uncertainty is not, however, universal. In choice experiments in
honeybees, Greggers and Menzel® showed that honeybees can
be induced to maximize their return by choosing a single flower.
This paper was one of the first to show how learning might affect
foraging based on the Rescorla-Wagner model of conditioning.
We extend this view, showing how the learned weights can be
used to choose appropriate actions and how the resulting action
choices influence the learning. In addition, the actions taken by
the model are also influenced by the structure of the simulated
environment in which it moved. Figure 4 shows how the output
of the diffuse neuron P was influenced by the structure of the
foraging problem faced by the model bee. Hence, although learn-
ing (weight changes) was one major influence in the behaviour
exhibited by the model, the structure of the environment played
an important role in shaping its behavioural decisions.

The success of the model in accounting for the choice behav-
iour of bumblebees allows us to connect the performance of a
simple neural system using known anatomical and physiological
constraints and descriptions of a behaviour previously explained
mainly in terms of a decision-theoretical framework for minimiz-
ing risk (ref. 8 but see ref. 6). Visual, gustatory and VUMmx1
inputs converge on the antennal lobes and the mushroom bodies,
thus making these regions good candidate sites for the learning
rule in equation (3). Delivery of octopamine, which is released
by VUMmxI, directly to these regions can substitute for the
firing of VUMmxI in some conditioning experiments®.

There is good evidence for similar predictive responses in pri-
mate mesencephalic dopaminergic systems'*'>*°. Hence, dopa-
mine delivery in primates may be used by target neurons to guide
action selection and learning, suggesting the conservation of an
important functional principle, albeit differing in its detailed
implementation. O
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