Verification of Knowledge Based-Systems
For Power System Control Centres

Jorge Santos®, Luiz Faria®, Carlos Ramos, Zita A. Vale?, Albino Marques®

Y Polytechnic Institute of Porto, Institute of Engineering
Department of Computer Engineering
Rua de S. Tomé, 4200 Porto, Portugal
{jsantos | Iff | csr}@ dei.isep.ipp.pt

2polytechnic Institute of Porto, Institute of Engineering
Department of Electrical Engineering
Rua de S. Tomé, 4200 Porto, Portugal
zav@dee.isep.ipp.pt

*REN - Portuguese Transmission Network, EDP Group
Apartado 3, 4471 Maia Codex, Portugal

Abstract. During the last years, electrical utilities began to install intelligent
applications in order to assist Control Centres operators. The Verification and
Validation (V&V) process intends to assure the reliability of these applications,
even under incident conditions.

This paper addresses the Validation and Verification of Knowledge-Based Sys-
tems (KBS) in general, focussing particularly on the V&V of SPARSE, a KBS
used in the Portuguese Transmission Network for operator assistance in inci-
dent analysis and power restoration.

VERITAS is a verification tool developed to verify SPARSE Knowledge Base.
This tool performs knowledge base structural analysis allowing knowledge
anomalies detection.

Introduction

Nowadays, Control Centres (CC) are of high importance for the operation of electrical
networks. These Centres receive real-time information about the state of the network
and Control Centre operators must take decisions according to this information.

Under incident conditions, a huge volume of information may arrive to these Cen-
tres, making its correct and efficient interpretation by a human operator almost impos-
sible. In order to solve this problem, some years ago, electrical utilities began to install
intelligent applications in their Control Centres. These applications are usually
Knowledge-Based Systems (KBS) and are mainly intended to provide operators with
assistance, especially in critical situations.

The correct and efficient performance of such applications must be guarantied
through Verification and Validation (V&V). V&V of KBS are not so usual as desir-

able but are usually undertaken in a non-systematic way. The systematic use of formal
V&YV techniques is a key for making end-users more confident about KBS, especially
when critical applications are considered.

This paper addresses the Validation and Verification of Knowledge-Based Systems
in general, focussing particularly on the V&V of SPARSE, a KBS to assist operators
of Portuguese Transmission Control Centres in incident analysis and power restora-
tion.

It is known that knowledge maintenance is an essential issue for the success of a
KBS but it must be guaranteed that the modified KB remains consistent and will not
make the KBS incorrect or inefficient. There is no general agreement on the meaning
of these terms. For the remaining of this paper, the following definitions will be used:

- Validation - Allows to assure that the KBS provides solutions that present a confi-
dence level as high as the ones provided by the expert(s). Validation is then based
on tests, desirably in the real environment and under real circumstances. During
these tests, the KBS is considered as a “black box” and only the input and the out-
put are really considered important.

- Verification - Allows to assure that the KBS has been correctly conceived and im-
plemented and does not contain technical errors. Verification is intended to examine
the interior of the KBS and find any possible errors.

Most KBS are only validated and verified. Although validation process can guarantee

that when the system is deployed, its performance is correct, the existing problems

may arise when there is a need to change the Rule Base.

Verification should rely on formal methods requiring the development of tools to
implement these methods. Although there are already some available verification tools
in the market, specific needs of Power System applications usually require the devel-
opment of specific tools. As formal methods of verification rely on mathematical
foundations, they are able to detect a large number of possible problems. In this way,
it is possible to guarantee that a KBS that has passed through a verification phase is
correct and efficient. Moreover, it is possible to assure that it will provide correct per-
formance with examples that have not been considered in the validation phase.

The present section focus the mains aspects related with KBS knowledge mainte-
nance, stressing its relation with V&V stages.

Section 2 describes the SPARSE’s characteristics, namely, architecture, reasoning
model, rule selection mechanism and its implications for Verification and Validation
work.

Section 3 describes the Validation stage of SPARSE development, especially the
field tests and the need of applying formal methods in SPARSE’s V&V.

Section 4 presents VERITAS, a verification tool based on formal methods. This
tool has been successfully applied to several KBS: SPARSE; ARCA, an expert system
applied to Cardiology diseases diagnosis; and another expert system created to assist
in Otology diseases diagnosis and therapy. Finally, section 5 presents some conclu-
sions and future work.

SPARSE

SPARSE is a KBS developed for the Control Centres of the Portuguese Transmission
network, owned and operated by REN?. This KBS assists Control Centres operators in
incident analysis and power restoration [7] [8] [9].

Inference Engine 4—»@
Events
N i
Orders | ?&Zﬂ;gg Knowledge Base @
Fact Rule
Base Base

i

Knowledge Update . Knowledge
Assistant V&V Assistant Acquisition Assistant

Fig. 1 - SPARSE Architecture

SPARSE (see: Fig. 1) has been developed using PROLOG and C language and runs
on-line in a DECstation 5000/240 under ULTRIX operating system. This machine is
connected, through a Local Area Network Ethernet of duplicate configuration, with
two MicroVAX Il machines that support SCADA (Supervisory Control And Data
Acquisition) functions in the Control Centre.

SPARSE presents some features that make the verification work more difficult than
for most KBS. These features include nonmonotonic behavior, temporal reasoning and
the meta-rules used in rule triggering. Considering the following rule:

rule xx : ' EXAMPLE
[
[C1L and C2 and C3]

or
[C4 and C5]

==>

[AL, A2]

The conditions considered in the LHS (Left Hand Side) (C1 to C5 in this example)
may be of one of the following types:

- A fact which truth must be proved (normally these facts are time-tagged);

- A temporal condition;
The actions/conclusions to be taken (Al to A2 in this example) may be of one of the
following types:

- Assertion of facts (conclusions to be inserted to the knowledge base);

L REN is the Portuguese Transmission Network

- Retraction of facts (conclusions to be deleted from the knowledge base);

- Interaction with the user interface.
The rule selection mechanism uses facts with the following structure:

trigger (NF, NR, T1, T2)

This fact means that rule number NR should be triggered, until it is successful, be-
tween instant T1 and T2, because of the arrived fact NF.

SPARSE has passed through a validation phase and is presently installed in one of
the two Control Centres of REN - Vermoim Control Centre, providing real-time assis-
tance to operators.

SPARSE’s Validation and Verification have been especially important for the suc-
cess of this project, namely in what concerns knowledge updating.

Validation

The process of Verification and Validation should start as early as possible during the
development of the application. The SPARSE V&V have been considered since the
very beginning and special arrangements have been made in order to provide condi-
tions for this process performing.

The project team aimed to perform the validation of SPARSE using examples as
close as possible to the ones that the application should face in the real environment.
According to this, it was considered that validation should be based mainly on real
information about the network.

Another important aspect that has been considered since an early stage of develop-
ment is the software required to interface SPARSE with SCADA applications used in
the Control Centre. In fact, it was realised that some limitations imposed by SCADA
should be considered since the very beginning in order to allow to take them into ac-
count during the development of the prototype, namely during the knowledge acquisi-
tion phase.

When integration issues are not addressed in an early phase of the project, the
changes that are required when the system is integrated in the real environment may be
very significant and impose almost a complete rebuilding of the system. The experts
should namely, consider these issues during the knowledge acquisition phase.

REN's staff developed an application named TTLOGW [5] to acquire real-time in-
formation from SCADA and to send it to SPARSE. It acquires information related to
the state of electrical network equipment, which is used to generate material for
SPARSE's validation.

This application acquires the information related to the state of the equipment of

the electrical network.
In this way, files concerning real incidents have been obtained and have been used in
order to validate SPARSE conclusions. Experts involved in the project commented
these conclusions and corrections in the Knowledge Base were made whenever neces-
sary.

New validation techniques need to be applied after SPARSE was first installed in
the control centre, since it now received real-time information from TTLOGW. The
validation of SPARSE considering real-time information was very important due to
several reasons:

- Temporal reasoning should be tested under real situations in order to assure its cor-
rection;

- Consideration of multiple faults is an important aspect of SPARSE performance
that is very dependent from the way information flows;

- Processing times should be tested in order to guarantee real-time performance, even
under incident conditions.

As nowadays electrical networks are very reliable it was not possible to completely

validate SPARSE with real incidents. A large number of different types of incidents

had to be simulated to allow validation. As this simulation should be as accurate as

possible, two different techniques have been used:

(1) Simulation of incidents by operators located in chosen substations

(2) Simulation of incidents using a programmable impulse generator and a Remote

Terminal Unit (RTU).

These two techniques complement each other, allowing a complete validation.

The simulation of incidents by operators allowed to obtain real-time information
that was forced to be generated but presenting exactly the same characteristics as the
information obtained during a real incident. During these tests, operators, making the
whole system act as if a real incident was taking place simulated the behaviour of the
protection equipment. In this way, the information, used by SPARSE was generated,
as it would be under a real incident.

Due to the difficulties of co-ordinating operators in several substations, the simula-
tion is not always correct and the whole process may have to be repeated several times
in order to obtain a good test case.

In spite of all the difficulties and costs involved, this kind of tests has been consid-
ered absolutely essential for the validation of SPARSE, allowing to increase the confi-
dence in its real-time behaviour.

In order to undertake a complete set of tests without the extremely high costs re-
quired by this technique, a different technique of test has also been used. This tech-
nique involves the use of a Remote Terminal Unit (RTU) and of a programmable im-
pulse generator (PIG). The PIG generates impulses in order to force the alarm mes-
sages creation by the SCADA system. This technique was used to simulate a wide set
of incidents allowing a more complete SPARSE Knowledge Base validation with re-
duced costs.

These methods of validation have been considered sufficient to put SPARSE in
service, without the need to undertake formal verification of SPARSE Knowledge
Base. However, when a Knowledge-Based System, as SPARSE, is in continuous use,
the necessity to make changes in the Rule Base arises sooner or later. In the case of the
Portuguese Transmission network, the introduction of new substations, with different
types of operation or layout, has already imposed some modifications. Under these
circumstances, it is not possible to accept the need to undertake complete validation
tests, as the ones described before. Even if the costs are acceptable, the required time

would oblige the Knowledge-Based System to be either out of service or to be in ser-
vice without a validated Rule Base for longer than desirable. This problem must be
addressed with a verification tool using formal methods. The use of this kind of tools
to detect possible problems in the modified Rule Base allows to reduce the time re-
quired in Verification and validation process.

VERITAS, a verification tool

In what concerns SPARSE, there were two major reasons to start the verification
work. First, the SPARSE team carried out a set of tests (see section Validation) in
order to assure the quality of the answers of SPARSE to a set of real and simulated
cases. Considering the expected high reliability and confidence of the tools to be ap-
plied in power systems area, it was decided to develop a verification tool to perform
anomaly detection in SPARSE KB, assuring the consistency of the represented knowl-
edge. On the other hand, tests applied in the Validation phase, namely the field tests,
are very expensive because during it was necessary to assign a lot of technical person-
nel and physical resources for their execution (e.g. transmission lines). It seems obvi-
ous that it is impossible to carry out those tests after each knowledge updating so the
developed verification tool offers an easy and inexpensive way to assure the knowl-
edge quality maintenance.

A specific tool, named VERITAS [6] (see: Fig. 2) has been developed to be used in
the verification of the SPARSE, performing structural analysis allowing to detect
knowledge anomalies.

‘ Internal DB

Administration
D Cannonical \ Internal
| W Form Database DataBase

i — T Operations

Verification
n Blocks <::> Converter @ Tools

|
Proposed %efmement Detected
Corrections perz‘atlons Anomalies
Refinement
Tools

Fig. 2 - VERITAS Architecture

VERITAS is knowledge-domain and rule-grammar independent. It has been devel-
oped with an open and modular architecture (Fig. 2) allowing user-interaction along
all the verification process. Since the tool is independent of KB grammar, theoretically
any rule-based system can be analysed by VERITAS.

The Converter module allows the representation of external rules in an internal ca-
nonical form that is recognised by the other modules. Notice that this module works in
two directions. It can also convert the canonical form into an external KB, generating
new rules during knowledge updating, after anomaly detection, using an external
grammar.

The Internal DB Administration module is responsible for the extraction and classi-
fication of all the information needed during the anomaly detection phase. In the first
step all literals extracted from rules are classified according to the following schema:

- Fact - if it just appears in rule antecedents;
- Conclusion — if it just appears in rule consequents;

- Hypotheses — if it appears in both sides of the rules.

Notice that this classification is domain independent and just makes sense for veri-
fication procedures. This classification offers the advantages of a more compact
knowledge representation and the reduction of the complexity of the rule expansion
generating process. As it will be described later, this process corresponds to the ana-
Iytical calculation of all possible inference chains.

In the second step, the Internal DB Administration module generates useful infor-
mation about existing relations between literals (previously obtained). That informa-
tion will be used not just to make the expansions generation process faster but also in
the automatic detection of Single Value Constraints. VERITAS considers some type
of constraints already described in literature [10]. Considered constraints can be clas-
sified in the following classes:

- Semantic Constraints — this type of impermissible set is formed by literals that can-
not be present at the same time in the KB. Semantic constraints have to be intro-
duced by the user.

- Logical Constraints — there are just two types of logical constraints: A and not(A)
(where A stands for a literal); A and notPhysical(A); this designation is obtained by
analogy with logical negation and allows to represent the constraint defined by a lit-
eral and by its retraction from the KB.

- Single Value Constraints — this type of impermissible set is formed by only one
literal but considering different values of its parameters. Notice that those potential
constraints are automatically detected. After this, the constraint can be either con-
firmed or changed by users.

The anomaly detection module (included in the Verification Tools) works in an

autonomous way with no user interaction (i.e. it can run in batch mode). Presently this

module can be used integrated with a developed tool (Knowledge Update Assistant)
that, among other functions, allows rule edition. This functionality shows the existing
relations between the rules that are to be modified and the remaining existing knowl-
edge in the KB. This information is supplied in a graphical interface using a graph
type representation. Moreover, it is possible to verify the rule in question immediately
and to assure the KB consistency after the insertion of that rule.

When the verified Knowledge Base has large dimensions according to the number
of rules and inference chains, the information generated during anomaly detection can
be huge.

The detected anomalies have to be reported using a form suitable for easing its
analysis. Special care has been put in this task, in order to reduce the time needed for
the information analysis, so, it is possible to aggregate or select information by type of
anomaly, number of rule and literal identification.

The anomaly detection relies on the rule expansions and constraint analysis. This
method is also used by some well known V&YV tools, as KB-REDUCER [1] and
COVER [3]. As it has been described before, SPARSE has some specific features, due
to these features the used technique is a variation of common ATMS (Assump-
tion-based Truth Maintenance System) [2]. Namely, the knowledge represented in the
meta-rules had to be considered in rule expansion generation.

VERITAS allows the rule expansion generation to be done in two different modes
(see: Table 1): normal or exhaustive.

As an example, consider the following KB:

ri: t(X) and r(a) > s(a)
r2: f(a) = t(a)

r3: f(b) => t(b)
rda: h(a) - r(a)
r5: j(a) = r(a)
Table 1 — Rule Expansions Calculation
Normal Mode Exhaustive Mode
t(X) and h(a)—> s(a) f(a) and h(a)—> s(a)
t(X) and j(a)—> s(a) f(a) and j(a)—> s(a)

f(b) and h(a)—> s(a)
f(b) and j(a)—> s(a)

It is possible to notice that “normal mode” generates fewer expansions but, on the
other hand, the information obtained after anomaly detection is more useful. The “ex-
haustive mode” wastes a lot of time generating the rule expansions implying also more
wasted time to analyse them, but, in principle, it will be possible to detect more poten-
tial errors.

The detected anomalies could be grouped in three major classes: redundancy, circu-
larity and inconsistency (see: Fig. 3). There is another type of anomaly that is not, yet,
detected by VERITAS, named deficiency. To detect this anomaly it is not enough to
know the KB and its syntax, since deficiency detection requires that all inputs and
outputs to/from the system are known. For the SPARSE system this work can be done
using all types of SCADA messages.

— Direct
— Circularity —— Indirect
— Considering Identical Conclusions

— Unusable Rule
— Subsumed or Duplicate Rule

| Duplicate Rule Considering
Identical Conclusions

— Between Rule Groups

— Redundancy

From a single chain of inference

— Ambivalence _E From different inference chains

Fig. 3 - Anomaly Classification

This classification is based on Preece classification [4] with some modifications. First,
the matching values are considered in rule analysis, meaning that a new set of anoma-
lies will arise. Considering the following circular rules:

ri: t(a) and r(X) > s(a)
r2: s(a) > r(a)

For X=a some inference engines could start an infinite loop.
Another situation concerns to redundancy between groups of rules. In the following
example:

rl: aand b and ¢ 2 z
r2: not a and ¢c =2 z
r3: not b and c =2 z

rulesr 1, r 2 and r 3 could be replaced by r x rule:

rx: a and b and ¢ or not a and ¢ or not b and ¢ > z
Applying logical simplifications to rule r x, it is possible to obtain the following rule:

rx': ¢ 2>z

Redundancy between groups of rules is a generalisation of the unused literal situation
already studied by Alun de Preece [4]. Notice that this type of redundancy could be
desirable. VERITAS can detect these situations using an improved Quine-McCluskey
method for logical expression simplification.

Conclusions

This paper dealt with some important aspects for the practical use of KBS in Control
Centres, namely knowledge maintenance and its relation to the Verification and Vali-
dation process.

The systematic use of Verification and Validation methods is very important for the
acceptance of Knowledge-Based Systems by their end-users, especially when critical
applications are considered. The use of Verification tools, based on formal methods,
increases the confidence of the user and eases the process of changing KB, reducing
the testing costs and the time needed to implement them.

This paper described SPARSE’s V&V process, focusing on field-tests and tech-
niques used during the validation phase. For the verification of SPARSE it was de-
cided to implement a tool using a formal verification method.

VERITAS is a verification tool that performs the structural analysis in order to de-
tect knowledge anomalies. We argue that the usefulness of VERITAS increases pro-
portionally with KB size and the number of knowledge modifications, which must be
undertaken.

Presently, VERITAS is being improved in order to allow the detection of anomalies
related to temporal and nonmonotonic reasoning. We are also envisaging the use of
VERITAS in verification of knowledge generated by Data Mining applications.

References

[1] Ginsberg, A. 1987. A new approach to checking knowledge bases for inconsistency and
redundancy. In Proceedings of the 3rd Annual Expert Systems in Government Conference.
102-111. Washington, D.C., IEEE Computer Society.

[2] Kleer, J. 1986. An assumption-based TMS. Artificial Intelligence (Holland). 28(2):127-162

[3] Preece, A. 1990. Towards a methodology for evaluating expert systems. Expert Systems
(UK). 7(4):215-223.

[4] Preece, A; and Shinghal, R.1994 Foundation and Application of Knowledge Base
Verification. Intelligence Systems. 9:683-701.

[5] Rosado, C. 1993. Process TTLOGW. EDP Technical Report, RESP/SCDS 20/93,
Electricidade de Portugal

[6] Santos, J. 1997. Verificacdo e Validacdo de Sistemas Baseados em Conhecimento —
VERITAS, uma Ferramenta de Verificagdo. MSc Thesis diss., Dept. de Engenharia
Electrotecnica e Computadores, Faculdade de Engenharia do Porto.

[7] Vale, Z. and Moura, A. 1993. An Expert System with Temporal Reasoning for Alarm
Processing in Power System Control Centres. IEEE Transactions on Power Systems
8(3):1307-1314.

[8] Vale, Z.; Faria, L.; Ramos, C.; Fernandes, M.; and Marques, A. 1996. Towards More
Intelligent and Adaptive User Interfaces for Control Centre Applications. In Proceedings
of the International Conference on Intelligent Systems Applications to Power Systems
(ISAP'96). 2-6. Orlando, Florida.

[9] Vale, Z.; Moura, A.; Fernandes, M.; and Marques, A. 1994. SPARSE - An Expert System
for Alarm Processing and Operator Assistance in Substations Control Centres. Applied
Computing Review. 2(2):18-26. ACM Press.

[10] Zlatareva, N.; and Preece, A. 1994. An Effective Logical Framework for

Knowledge-Based Systems Verification. International Journal of Expert Systems.
7(3):239-260.

