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Abstract. In this paper we study two aspects of decision fusion for
enhancing face authentication. First, sequential fusion of scores obtained
on successive video frames of a user’s face is used to reduce the error
rate. Secondly, the opinions of several face authentication algorithms
are combined so that the combined decision is more accurate than the
best algorithm alone. The experiments performed on a realistic database
demonstrate that the fully automatic multi-frame – multi-experts system
proposed in this work allows a significant improvement over the static –
single-expert system.

1 Introduction

Biometrics, which measures a physiological or behavioural characteristic of a
person, such as voice, face, fingerprints, iris, etc., provides an effective and in-
herently reliable way to carry out personal identification. The face modality is
very important for real world applications because it is very well accepted by the
users. In return, the acquired face images contain lots of variability. The pixel
map of facial images varies drastically under variable illumination and 3D pose.
Also the localisation and registration of the face sub-image is difficult when the
background image is uncontrolled.

Robustness of face-based authentication can be improved by combining or
fusing different sources of information related the identity to authenticate. For
example one could use several cameras oriented at different angles, or add other
type of sensors like a microphone or a fingerprint sensor. In all cases strategies
must be devised to combine the information coming from different sources.

In this paper we study two different aspects of decision fusion in the context
of fully automatic face authentication. Firstly decision fusion is used combine
the outputs of several face authentication algorithms. This type of fusion is re-
ferred to as intramodal fusion. Intramodal fusion has been recently studied for
different biometric modalities [1, 2]. Secondly we study sequential fusion, that
is, the fusion of outputs of a single face authentication algorithm obtained on
several video frames. During an access attempt the user is interacting with the
authentication system over a certain period of time. Over this period many video
frames are available for identity verification. For both fusion aspects, strategies



for conciliating the different decisions are presented. Differences between in-
tramodal fusion and sequential fusion are pointed out. The main contribution
of the paper is a fusion architecture which takes into account the distinctive
features of the intramodal and sequential fusion. Our experiments on a realistic
face database show that the proposed architecture allows a significant improve-
ment over a single frame – single expert approach. The paper is organised as
follows. In the next section we present biometric authentication and the decision
fusion aspects considered in this work. In Section 3, face authentication algo-
rithms and the experimental setup is described. Experimental results are given
and discussed afterwards. In the last section we present our conclusions.

2 Intramodal and Sequential Fusion of Face

Authentication Experts

Biometric identity authentication can be stated as follows. When performing
verification, a biometric trait x of the person making the claim is recorded and
compared to a template that has been previously recorded. A score s reflecting
the quality of the match between the template and the unknown biometric trait
is compared to a threshold η to determine whether the claim is genuine (class
ωa) or false (class ωb), i.e.

s(x)
ωa

≶
ωb

η (1)

Two types of errors can be distinguished whether a genuine claim is rejected
or an impostor claim is labelled as genuine. The former is referred to as False
Rejection Rate (FRR) while the latter is referred to as False Acceptance Rate
(FAR).

2.1 Intramodal Fusion

In order to increase the verification performance, one may take advantage of
multiple authentication algorithms, or experts, that provide their opinions on
the same biometric data, and perform intramodal fusion. Various levels of com-
bination are possible [3]: fusion at the feature level, fusion at the confidence level
(also known as soft fusion) and fusion at the abstract level, where accept/reject
decisions are combined (hard fusion). In this work we opt for confidence level fu-
sion, that is, where the scores reported by the experts are combined. We believe
that for authentication, confidence level fusion is a good compromise between
dimensionality and information loss.

Given a measurement x, each expert i outputs a score s(i)(x) based on the
same measurement x. These scores can be concatenated into a score vector s

and a second-level classifier can be trained to learn a decision boundary in the
score space. In [1], a non-parametric Parzen estimation technique is used to
estimate the joint score density for combining several fingerprint matchers. Here
we perform the fusion using a weighted averaging technique and using a Support
Vector Classifier. In the weighted averaging method the decision is based on a



new score sw which is obtained by linear combination of the experts score, i.e.
sw = wT s, where the weights w are obtained by minimising the Equal Error
Rate (EER) on a training set. In the second fusion method, an SVC with a linear
kernel is trained to separate genuine from impostor score vectors.

2.2 Sequential Fusion

When multiple video frames of the same user’s face are available, a score si is
obtained from each frame i. Let us emphasise the difference with the intramodal
case. In the sequential frame combination, all scores are emitted by the same
expert, so that they can be seen as multiple random outcomes of the same score
distribution (the score distribution depends on the expert). For this reason,
the combination should either (i) give the same importance to all scores, i.e.
average the scores, or (ii) have a mechanism of for selecting the “best” frame
or best score. In case (i) the scores are averaged so that each si has the same
importance in the decision. The scores si are drawn from a random variable S
with score probability distributions p(s|ωb) and p(s|ωa) in case of impostors or

clients. It is well known that the sample average S̄ = 1/N
∑N

j=1 Sj of N samples
Sj (considered here as random variables) drawn from a given distribution has the
same mean than the distribution. Also, if the samples are drawn independently,
the variance of S̄ is σ2/N where σ2 is the variance of the score distribution S.
Therefore p(s̄|ωc) (c ∈ {a, b}) has the same mean than p(s|ωc) but a variance
divided by N . Because the error rate depends directly on the overlap between
the impostor and genuine sample mean densities, if the decision is taken using
s̄ rather than s, the error rate decreases as N increases. In case (ii), a simple
solution for choosing the best frame consists of using a template matching-based
method: select the frame that gives the best match with the template in the
sense of a distance measure. In the case of a dissimilarity (similarity) score, this
results in taking the minimum (maximum) score for making the decision, i.e.

min(s1, s2, ..., sN )
ωa

≶
ωb

η. This may favour both genuine accesses and impostor

accesses. The merit of this combination rule depends essentially on the score
probability function as demonstrated in the simulations below.

Suppose that the impostor and genuine score distributions are Gaussian with
equal variance σ2 but different means. We draw independently N samples sj from
the genuine or the impostor distribution and base our decision on the average
of sj or the minimum sj . Figure 1(left) shows the classification error versus the
number of samples N for sample average based and minimum based decision.
Both integration methods improve the decision over the one sample score case,
but clearly the average rule outperforms the minimum rule.

Gaussian hypothesis for scores may not be satisfied in practice. In particular
the genuine score density is usually asymmetric with a heavy tail or bimodal.
The secondary mode is due to users who consistently return large scores (called
“goats” in [4]). Another contributing factor to the heavy tail of the genuine den-
sity comes from failures during pre-processing. A more realistic choice is therefore
to represent the genuine score density by a bimodal mixture of Gaussians. In
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Fig. 1. Classification error versus the number of samples N for Gaussian distributed
scores (left) and Mixture of Gaussian score (right).

this case, the error rates are obtained through simulations and results are pre-
sented in Figure 1(right). Note that the “sample average” curve is quite similar
to the pure Gaussian case. In contrast, the secondary mode changes drastically
the “sample minimum” curve, which now outperforms the average rule for the
first five frames that are combined.

From the simulations, it appears that the average rule is advantageous in the
Gaussian case, while the minimum rule starts to outperform the average rule
when the genuine density has a heavy tail.

2.3 Proposed Fusion Architecture

From the discussion above, we propose the following fusion architecture. For

each expert i, the multiple scores s
(i)
j j = 1, 2, ..., N corresponding to multiple

frames are first fused using either the average or the minimum rule (depending
on the score distribution). The R resulting scores s(i) i = 1, 2, ..., R are then
fused using a second level classifier. The final decision is based on the output
of the second level classifier. The experiments presented below show that this
architecture allows a significant improvement over a single frame – single expert
approach.

3 Experiments

3.1 Face Authentication Experts

Once the face and eyes are located, the face is registered and histogram equalised.
The normalised face image is then used to generate the accept/reject decision.
In the results presented, we have used two different face verification algorithms,
namely a Linear Discriminant Analysis (LDA) based and an SVM based algo-
rithm. Both methods are described in [5], we give hereafter a short description.

The LDA approach is used to extract features from the gray level face image.
LDA effectively projects the face vector into a subspace where within-class vari-
ations are minimised while between-class variations are maximised. The LDA



score s(1) is computed by matching the newly acquired LDA face projection to
the user template using normalised correlation. In the SVM-based method, to
label the face vector x as genuine or impostor, the classifier evaluates the quan-
tity s(2) =

∑l

i=1 yiαiK(x,xi)+b, where xi is the input vector of the ith training
example, l is the number of training examples, the αi and b are the parameters
of the model, and K(x,xi) is the kernel function.

To locate automatically the face in the image, two different face localisation
methods have been used. In the first method, the whole image is exhaustively
scanned at different scales using a small window. The content of each window is
classified by a SVM classifier into face or non-face classes. See [5] for more details.
The expert using LDA face verification and the SVM-based face localisation is
referred to as LDA1. The expert called SVM is using the SVM-based verifica-
tion and localisation. In the second face localisation method, Gabor filters are
used to detect facial features such as corners of eyes, nostrils, etc. in the input
image. Feature configurations that correspond possibly to a face sub-image are
transformed into a normalised face space where classification in face/non-face
classes is performed. More details can be found in [6]. The expert using LDA
face verification and the face localisation method just described is referred to as
LDA2.

3.2 Database and Experimental Results

The experiments presented in this section were performed on the English part of
the BANCA database [7]. The data set contains video recordings of 52 people in
several environmental conditions. Each subject recorded 12 sessions distributed
over several months, each of these sessions containing 2 records: one true user
access and one impostor attack. The 12 sessions were separated into 3 different
scenarios: controlled, degraded and adverse. A low-cost camera has been used to
record sessions in the degraded scenario. For this scenario, the background and
the lighting were uncontrolled, simulating a user authenticating himself in an
office or at home using a low cost web-cam. A more expensive camera was used
for the controlled and adverse scenarios. The adverse scenario simulates a cash
withdrawal machine, and was recorded outdoors. From one video session (about
30 seconds), five frames per person were randomly selected for face verification.
In the experiments presented, two protocols are considered. The first protocol,
referred to as protocol G in [7], uses the first session of the 3 scenarios to enrol
a new user, that is, to create its user template. The second protocol (protocol
P) uses session 1 only to enrol a new user.

Figure 2 shows the average Half Total Error Rate HTER = (FAR + FRR)/2
obtained on the BANCA database using the minimum and the average rules
above for protocol G (left) and protocol P (right). For the three experts consid-
ered, we evaluate the HTER as function of the number of frames fused. Starting
with one frame, we add successively a frame to the set and base the decision on
the set of frames. It appears that, in the case of protocol G, the minimum rule
gives the best improvement, up to several percents, over the single frame tech-
nique. The average rule gives a slightly weaker improvement. In the P protocol
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Fig. 2. Sequential fusion results using minimum (min) and average (avg) rules obtained
on the BANCA database for protocol G (left) and protocol P(right).

case (Figure 2(right)), the HTER is much higher than for the G protocol be-
cause only one session is available for training. Again, with 5 frames, the HTER
is significantly smaller with respect to a single frame based decision. Note that
this time the two rules perform approximatively the same. As expected, when
the number of test frames increases, the HTER decreases, but the improvement
seems to saturate quickly. It is likely that no further improvement could be ob-
tained with a larger number of frames. Table 1 summarises the HTER obtained
in this multi-frame – single expert case.

Table 1. Multi-frame - single expert performance

Experts
Protocol LDA1 LDA2 SVM

G 13.30 10.68 8.95
P 24.39 19.74 23.45

Following the fusion architecture described in Section 2.3, the scores obtained
after sequential fusion can be combined using the second level classifier. These
intramodal fusion results are reported in Table 2. Note that the minimum rule
has been used to fuse the sequential scores. From the table it appears that in
all cases, the intramodal fusion further decreases the HTER over the multi-
frame – single expert results. In particular the fusion of experts SVM and LDA2
leads to an error rate of 5.58% in protocol G and 17.65% in protocol P, using
the SVC-based fusion. For comparison the best result in the single frame –
single expert case is 15.70% in protocol G and 23.84% in protocol P. Note that
the two fusion techniques allow approximatively the same improvement, with a
slight advantage for SVC. Interestingly, the fusion of experts LDA1 and LDA2,
improves the HTER although they differ only by the face localisation procedure.

4 Conclusion

We discussed how decision fusion can be used to improve the performance of
automatic face authentication. Intramodal and sequential fusion are used at



Table 2. HTER obtained on the BANCA database using intramodal fusion for protocol
P and G

Protocol Fusion Combined Experts
techn. LDA1 & LDA2 LDA2 & SVM LDA1 & SVM

G w.avrg 9.53 6.27 8.44
G SVC 9.34 5.58 7.32
P w.avrg 19.60 18.38 20.83
P SVC 18.43 17.65 20.06

two different stages in the authentication process. For the sequential fusion,
two combination rules are presented and it is shown that the minimum rule
is advantageous over that average rule when the genuine score density has a
heavy tail. Both rules allow a significant improvement over the single frame
system. For the intramodal fusion, the very simple weighted averaging and the
more complex Support Vector Classifier have shown to perform similarly on the
BANCA face database. Experiments show that the error rates are substantially
improved thanks to the multi-frame – multi-expert architecture, which gives
practical relevance to the proposed approach. Recently Zhou and Chellappa
proposed to use recursive Bayesian filtering for face authentication or recognition
in video [8]. A performance comparison between this approach and the sequential
fusion presented in this paper could be an interesting future study.
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