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Abstract

Intrinsic plasticity (IP) refers to a neuron’s ability to regulate its firing activity by adapting its intrinsic excitability. Previously, we

showed that model neurons combining a model of IP based on information theory with Hebbian synaptic plasticity can adapt their

weight vector to discover heavy-tailed directions in the input space. In this paper we show how a network of such units can solve a

standard non-linear independent component analysis (ICA) problem. We also present a model for the formation of maps of oriented

receptive fields in primary visual cortex and compare our results with those from ICA. Together, our results indicate that intrinsic

plasticity that tries to locally maximize information transmission at the level of individual neurons may play an important role for the

learning of efficient sensory representations in the cortex.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Intrinsic plasticity; Information theory; Unsupervised learning; Independent component analysis; Primary visual cortex
1. Introduction

1.1. Mechanistic vs. functional models

Computational models of unsupervised learning of
sensory representations in the brain abound. Frequently,
they fall into one of two categories: mechanistic models or
functional models. Mechanistic models start from neuros-
cientific data about the structure of cortical networks and
cortical plasticity mechanisms (cell types, connection
patterns, plasticity rules, etc.) which are distilled into
simplified models. These models are trained on actual
sensory data or noise patterns and the learned representa-
tions can be compared to neurophysiological observations.
If the resulting representations are similar to those found in
the brain then this provides evidence that the processes in
the brain have been accurately captured, but it does not
clarify why the brain operates this way or in what sense the
brain’s solution may be optimal. An example of a model of
this kind is by Linsker [15], where V1-style orientation
columns are learned from random prenatal visual noise
through Hebbian learning. Later Miller extended this work
e front matter r 2006 Elsevier B.V. All rights reserved.
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to learn many of the various map-structures in V1, and
used model neurons that were somewhat more plausible
[19].
Functional models focus on the abstract computational

goal of the problem. For the case of learning sensory
representations they start by asking: what is the optimal

way to represent sensory stimuli such as natural images,
where optimality is usually defined with respect to certain
statistical criteria (e.g. sparseness, independence, temporal
coherence, etc.) and additional constraints. Algorithms are
derived to learn the optimal solution to the problem, which
can again be compared to neuroscientific data. If the found
solution resembles the biological solution, then this
provides evidence that the brain may in fact be trying to
optimize a similar objective function. Through what
mechanisms the brain may achieve this goal is typically
not answered, however. Some examples of such an
approach will be given below.
Both mechanistic and functional models have their

merits, but for a comprehensive understanding of sensory
coding in the cortex we arguably have to develop models
that bridge functional and mechanistic levels of descrip-
tion. Such models should explain how the physiological
mechanisms contribute to optimizing the system’s informa-
tion processing properties in a meaningful way. In the
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following, we develop a model that can be viewed as a step
in this direction.

1.2. Information maximization

A central idea in many functional models of the
development of sensory representations is information
maximization [1,3,16,20,22]. According to some formula-
tions of this idea, individual neurons should maximize the
entropy of their firing rate distribution. If the firing rate is
constrained to lie in a fixed interval between zero and the
neuron’s maximum firing rate, then entropy maximization
means that the neuron should use all its firing rate levels
equally often. In order to achieve this, it should spread out
its responses in dense regions of the input space and
compress responses in sparse regions such that it maps the
distribution of its inputs to a uniform distribution of its
outputs, maximizing entropy. Biological evidence for this
idea comes from Laughlin, who showed that blowfly large
monopolar cells have been adapted so that their input/
output transfer functions nearly optimally represent the
contrast statistics of the blowfly’s visual environment [13].

Information maximization may not be the only impor-
tant objective, however, and energy considerations may
also play an important role for sensory coding in the brain,
e.g. [14]. In particular, Baddeley et al. found that neurons
in different visual cortical areas of cats and monkeys show
exponential distributions of their firing rate. They have
argued that this maximizes a neuron’s information transfer
given a fixed energy budget [2]. This is because the
exponential distribution has the maximum entropy among
all distributions of a positive random variable (the firing
rate) with a fixed mean. This and other reasons suggest that
sparse representations, where individual units are highly
active only rarely, may be an important principle of
sensory coding [10].

On the modeling side, Olshausen and Field showed that
localized, oriented, and bandpass receptive fields similar to
those observed in primary visual cortex (V1) arise when
optimizing image reconstruction error subject to lifetime
sparseness constraints [21]. They imposed a sparse prior on
the contribution of each basis function in a generative
model with the intuition that among the space of possible
sources of an image, each one is present only rarely. In a
closely related approach, Bell and Sejnowski showed that
the information maximization principle can be applied to
the independent component analysis (ICA) problem. They
applied their technique to natural images and also found
localized, oriented, and bandpass sources [4].

1.3. What is the role of intrinsic plasticity for learning

sensory representations?

Most work on the learning of sensory representations
has focused on synaptic plasticity as the only mechanism
for learning efficient codes. But it is becoming increasingly
clear that biological neurons also regulate their pattern of
firing by adapting their intrinsic excitability through the
modification of voltage-gated channels in their membrane.
Such intrinsic plasticity (IP) seems to be a ubiquitous
phenomenon in the brain [30]. For example, Desai et al.
showed that neurons that had been prevented from spiking
for two days increased their response to current injection
[6]. Consistent with this finding, it is frequently assumed
that IP contributes to the homeostasis of a neuron’s mean
firing activity. A few computational models do in fact
incorporate a mechanism for regulating the mean activity
level of a unit by controlling a ‘‘threshold’’ parameter [7–9].
But it is also plausible that IP may help to optimize the
encoding and transmission of information in a more
sophisticated fashion. Concretely, it has been speculated
that IP may be instrumental in achieving approximately
exponential firing rate distributions in cortical neurons [23].
More recently, we have shown that an IP mechanism that
drives a neuron to exhibit an exponential firing rate
distribution can synergistically interact with Hebbian
learning at the synapses. The two processes lead to the
discovery of heavy-tailed directions in the input space
[24,26].
In this paper we extend these results to networks of

neurons with IP and Hebbian learning. Our specific goal is
to explore the potential role of IP for learning efficient
map-like representations for sensory stimuli. The model we
present in the following attempts to bridge the gap between
mechanistic and functional models. On the one hand, it has
a clear connection to the idea of information maximization
and energy efficient coding [28]. On the other hand, it has a
mechanistic formulation that is biologically viable because
the learning mechanisms make use of information that is
local in time and space. While similar bridges have
been attempted before, e.g. [5,8], our model is distinguished
by utilizing an IP model derived from information theory
as a mechanism for the learning of efficient sensory
representations.
2. Network model with intrinsic plasticity

We consider a network of units learning to represent a
sensory input vector x. The activity of unit i in the network
in response to input x is given by

yiðhiÞ ¼ ½1þ expð�aihi � biÞ�
�1 with hi ¼ x � wi, (1)

where wi is the neuron’s weight vector, ‘‘�’’ denotes the
inner or dot product, and ai and bi are adjustable
parameters of the neuron’s transfer function that are
controlled by IP (compare Fig. 1a). In particular, ai and bi

are adapted in such a way that the unit’s output yi assumes
an approximately exponential distribution. To this end we
have previously derived a learning rule for ai and bi that
performs stochastic gradient descent on the Kullback–
Leibler divergence between the unit’s output distribution
and the desired exponential distribution. This leads to the
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Fig. 1. (a) Illustration of an individual unit of the network. The weights w are adapted through Hebbian learning, the sigmoidal non-linearity is adapted

through intrinsic plasticity. (b) Network architecture. The most activated unit (shaded) determines the sign and amount of synaptic learning in neighboring

units via a neighborhood function. Two examples of neighborhood functions are shown (not drawn to scale).
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following learning rule [25,26]:

ai  ai þ ZIP½a
�1
i þ hi � ð2þ m�1Þhiyi þ m�1hiy

2
i �,

bi  bi þ ZIP½1� ð2þ m�1Þyi þ m�1y2
i �, (2)

where ‘‘ ’’ denotes assignment, ZIP is a small learning rate
and m is the desired mean activity of all units. Since this
learning rule has the effect of making the distribution of yi

a sparse, approximately exponential distribution, it max-
imizes the unit’s entropy under the constraint of a fixed
average activity: the unit transmits information efficiently.
Note that this rule is local in space and time, making it
physiologically viable.

Plasticity of the weight vectors wi is modeled with a
Hebbian learning rule. In [24], we considered a single unit
learning rule of the form Dw / xy. We showed that the
coupling of IP with this form of Hebbian learning allowed
the unit to discover heavy-tailed directions in the input. We
have generalized this result to other Hebbian learning rules
in [26]. To extend this approach to a network of model
neurons, we introduce a neighborhood function N as
illustrated in Fig. 1b. The value of the neighborhood
function for neuron i is determined by its activity yi and the
activities of all other neurons, i.e. Nðyi; yÞ. In particular,
we are considering neighborhood functions that depend on
a unit’s distance to the most activated unit in the layer—as
frequently used in self-organizing maps. Specific forms of
N are introduced below. The general idea is that the
neighborhood functions can take on positive and negative
values, such that learning is Hebbian for some units and
anti-Hebbian for others. This is used to correlate and
decorrelate weight updates in specific sets of units, allowing
different units to develop different stimulus preferences and
facilitating the formation of maps of smoothly varying
stimulus preferences. The decorrelation serves the goal of
reducing redundancy in the representation, the map
formation contributes to wiring length minimization,
because units with similar properties will be grouped
together. After each stimulus presentation, the weights are
updated according to:

Dwi ¼ xyNðyi; yÞ; wi  
wi þ ZHebbDwi

kwi þ ZHebbDwik
, (3)

where ZHebb is a learning rate and the normalization of the
weight vector to unit length mimics competition between
synapses on a neuron’s dendritic tree [19].
3. The ‘‘bars’’ problem

As a first test bed for studying the learning of sensory
representations with networks of units with intrinsic
plasticity we consider the ‘‘bars’’ problem. This is a
standard non-linear ICA problem introduced by Földiák
[9]. Horizontal and vertical bars are presented on a retina
of R-by-R pixels. The presence or absence of a bar is
independent of that of any other bars. The unsupervised
learning problem is to learn filters that correspond to the
individual independent components, i.e. the bars. The
problem is non-linear because the pixel at the intersection
of two bars is just as bright as any other pixel of the bars,
not twice as bright. In our previous work [24,26], we
showed that a single model neuron with IP and Hebbian
learning robustly discovers one of the bars when exposed to
stimuli from the bars problem. Here we use a population of
units to learn the complete problem. We use a retina of size
10-by-10 pixels and the probability of any of the 20 bars
occurring in a given stimulus is 10%. The bar stimuli are
unnormalized such that every ‘‘on’’ pixel has value 1.0 and
every ‘‘off’’ pixel has value 0. Since we want filters that
respond highly when bars are present and not otherwise,
the desired mean firing rate is set to m ¼ 0:1 which
corresponds to 10% of a unit’s maximum activation. N
is chosen to enforce a winner-take-all competition between
the units, so that the maximally activated neuron updates
its weight vector in a standard Hebbian fashion, and all
other units update their weight in an anti-Hebbian manner
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Fig. 3. Fraction of simulations (out of 30) in which a correct

representation was learned for various values of b. When b was 0 or

0.05, a correct representation was never learned. When b was 0.1, 0.15, or

0.2, a correct representation was always learned. When b was 0.3 or

greater, correct representations were learned only rarely. For typical

examples of representations learned in each regime, refer to Fig. 2.
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regulated by a decorrelation parameter b:

Nbarsðyi; yÞ ¼
1; yi ¼ maxðyÞ;

�b else:

(
(4)

All units update their intrinsic parameters independently,
as described in (2).

We examined the learning of bars within the described
framework, systematically probing the value of the
neighborhood-interaction parameter b, which ranged
from 0 to 0.5 in steps of 0.05. Other parameters were:
ZHebb ¼ 0:01, ZIP ¼ 0:005, and m ¼ 0:1. The networks
always consisted of 20 units (the number of individual
bars). For each value of b we ran 30 independent
experiments with 300,000 randomly generated bars stimuli
each. Typical examples of bars stimuli and learned
representations for different values of b are shown in
Fig. 2. We found that the learning result fell in one of three
regimes depending on whether there was too little
neighborhood interaction, a good amount of interaction,
or too much. Perfect learning results were obtained for b
values from 0:1 to 0:2 as illustrated in Fig. 3. This means
that every unit in the network learned to represent one
distinct bar. Learning substantially worsened when b was
less than 0.1 or greater than 0.25. When b is too low, all
bars are learned, but some are duplicated in the population
(some filters learn more than one bar). When b is too high,
all bars are learned exactly once, but some filters learn two
bars, leaving other filters to learn no bars (see examples
in Fig. 2).

Varying the learning rates ZHebb and ZIP affected learning
little, provided both remained above 0. The complete set of
filters would not be learned without intrinsic plasticity,
however. We also studied the influence of m on the learning
result. When m was 0.05, redundant filters were learned, i.e.
multiple units learned to represent the same individual bar
while some bars were not represented at all. When it was
0.2, multiple bars were represented within single filters.
This suggests that when the true mean of the components is
unknown, it may be a better strategy to choose m too high
rather than too low. This way, all true sources will likely be
captured because individual filters each learn to represent
several sources.

Since its introduction by Földiák, a number of different
network architectures for solving the bars problem have
been proposed and a number of variations on the problem
Fig. 2. Left: Example bars stimuli. Stimuli are created by adding bars indepen

low (b ¼ 0), just right (b ¼ 0:2), and too high (b ¼ 0:5), respectively.
have also been considered in the literature. The perfor-
mance of some of the more complex approaches has been
tested quite thoroughly, e.g. [17]. While a comprehensive
review of this literature is beyond the scope of this paper, it
is worth pointing out that our approach shares certain
similarities with Földiák’s original method [9] and some
subsequent approaches. First, our IP mechanism has a
similar function as the adaptive threshold regulation in his
network. Second, we also utilize a combination of Hebbian
and anti-Hebbian weight updates, because the neighbor-
hood function changes the sign of the weight update
(positive for most activated unit, negative otherwise). In
contrast to Földiák’s original method, however, our
network does not require adaptable lateral weights between
the y-units to function. Thus, our solution is conceptually
particularly simple.

4. Modeling the emergence of orientation maps

Receptive fields of simple cells in primary visual cortex
(V1) are oriented, localized, and bandpass. In addition,
neighboring neurons in V1 will have a similar orientation
preference, giving rise to smooth orientation maps. For
modelling the emergence of orientation maps, we consider
the neurons in our network to be located on a two-
dimensional sheet, with neuron i at grid position ðj; kÞi 2
N�N after the fashion of a self-organizing map (SOM).
dently with 0.1 probability. Right: Examples of bars learned when b is too
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The most active unit exhibits a center-surround influence
on learning in its neighbors according to a difference of
Gaussians (DoG) neighborhood function centered around
it. Let d2

i � ðji � j�Þ
2
þ ðki � k�Þ

2 be the squared distance of
neuron i to the most activated unit in the layer at ðj�; k�Þ.
We define

Nmapðyi; yÞ ¼
1

2ps2c
exp

�d2
i

2s2c

� �
�

1

2ps2s
exp

�d2
i

2s2s

� �
, (5)

where sc and ss determine the range of the center and
surround interaction. In our case, this neighborhood
function serves a slightly different role than the Gaussian
weighting function usually used in traditional SOMs. The
role of N in our case is short-range cooperation among
units combined with a decorrelation of weight updates for
units that are less close. Units that are very far away from
the winning unit are prevented from learning altogether.
This simple mechanism avoids the development of a large
amount of redundancy in the learned representation and it
facilitates the formation of maps with smoothly varying
orientation preference.
4.1. Experiment 1: learning over-complete representations

for natural image patches

We trained networks on natural images collected by Van
Hateren [27]. We used log-intensity images because these
have greater contrast and this transform is performed in
the early visual pathway [27]. We convolved the images
with a DoG filter to model the center-surround opponency
of neurons in the lateral geniculate nucleus (LGN) [19]. For
the DoG filter, we used a center width of 1 pixel and a
surround width of 1.2 pixels. From each of 375 images, 500
image patches of size 10-by-10 pixels were drawn at
random, and were presented once to each neuron in our
population (one epoch). The input had positive and
negative values simulating populations of ON and OFF
cells in the LGN [15]. We used networks of various sizes
ranging from 10-by-10 units to 25-by-25 units. Each unit
Fig. 4. Receptive fields learned on various map sizes from natural image patch

Left: 10-by-10 (100 units, complete); middle: 15-by-15 (225 units, 2.25 times ove

were ZHebb ¼ 0:05, ZIP ¼ 0:01, m ¼ 0:15, sc ¼ 1, ss ¼ 1:5.
had a 10-by-10 receptive field size, making the populations
1 to 6.25 times over-complete. Parameters were:
ZHebb ¼ 0:05, ZIP ¼ 0:01, m ¼ 0:15, sc ¼ 1, ss ¼ 1:5. Train-
ing lasted for 50 epochs each consisting of 3000 image
patch presentations for a total of 150,000 natural stimulus
presentations.
Typical results of learning are shown in Fig. 4 for

networks of three different sizes. Learning was robust to
changes in the parameters over a wide range of values. The
learned filters are Gabor-like and exhibit a variety of
orientations, frequencies, and locations. Moreover, they
exhibit smooth interpolation in local regions of the map.
This is reminiscent of the orientation-map structure in V1.
We studied the amount of redundancy in the learned

representation by measuring the mutual information
between all pairs of units in a given network. Here we
used a normalized mutual information measure:

MI�ðX ;Y Þ ¼
2MIðX ;Y Þ

HðX Þ þHðY Þ
, (6)

where MIðX ;Y Þ denotes the mutual information between
random variables X and Y and Hð:Þ denotes the entropy.
This measure varies between 0 and 1, with 0 indicating
independence and 1 indicating maximal dependence of the
filter responses. We calculated the average pairwise
normalized mutual information by analyzing the empirical
firing histograms with six equally spaced bins for networks
of different sizes. Fig. 5 plots the average normalized
mutual information as a function of the amount of over-
completeness of the network. The generally small values of
below 0.04, i.e. less than 4% of the maximum possible
mutual information, indicate that on average a unit’s
responses are highly correlated to only a small number of
other units. The networks successfully avoid learning many
redundant filters, which implies that the network’s repre-
sentation of its input can be considered efficient. Interest-
ingly, as over-completeness increases, the values of the
average mutual information actually slightly decrease. This
decrease in the per-unit redundancy in over-complete maps
es. We plot the set of resulting weight vectors for networks of three sizes.

r-complete); right: 20-by-20 (400 units, 4 times over-complete). Parameters
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Fig. 5. Average normalized pairwise mutual information between units in

networks with different degrees of over-completeness. The generally low

values demonstrate that the network successfully avoids learning many

redundant filters. Small degrees of over-completeness actually reduce the

average pairwise mutual information measure.
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implies that as the number of units increases, representa-
tion space is covered more evenly and efficiently.

The map-formation mechanism based on the neighbor-
hood functionNmap encourages close neighbors to develop
similar weight vectors, making their responses positively
correlated, while somewhat more distant units are driven to
develop anti-correlated responses. In Fig. 6 we plot the
average correlation in the responses of pairs of neurons as
a function of their separation for a network with 15-by-15
units. As predicted, close neighbors have positively
correlated responses while more distant neurons have
anti-correlated responses. Very distant neurons are un-
correlated. This pattern mirrors the shape of the neighbor-
hood function Nmap. Thus, the pattern of correlations can
be influenced by specific choices of Nmap. This result also
reflects the low levels of redundancy in the learned
representation discussed above.

4.2. Experiment 2: role of IP in the learning process

In order to better understand the role of IP in the
learning process, we systematically varied the strength of
IP and observed its impact on the learned filters. Since the
networks develop units whose receptive fields are similar to
Gabor filters, we assessed network performance by
measuring how well the learned filters matched Gabor
filters—the standard model of V1 simple cell responses—
for different learning rates ZIP. To this end, we compared
each learned filter to a large number of Gabor filters by
computing the dot product between the learned filters and
standard Gabor filters. All vectors were normalized to unit
length, so a dot product of 1 indicates identical vectors and
a dot product of 0 indicates orthogonal vectors. The Gabor
filters used for comparison covered odd and even
symmetry, 100 center locations, six sizes of the Gaussian
envelope (ranging from 0.75 to 4.5), 15 values for the
spatial frequency (covering the range from 0.03 cycles per
pixel up to 0.45 cycles per pixel) and eight different
orientations (22.5 degree steps). These values were chosen
to fully cover the range of filters learned on 10-by-10 image
patches by both our IP model and ICA (see below) [11].
The results are shown in Fig. 7. We compared four

conditions: High IP and Low IP used the method described
above with ZIP ¼ 10�2 and ZIP ¼ 10�5, respectively. Con-
dition No IP used a fixed, non-adaptive sigmoid non-
linearity that was chosen to be a ¼ 5 and b ¼ �2:5,
corresponding to a sigmoid that is roughly linear on the
input range 0 to 1. Finally, condition Linear used fixed
linear units. As shown in Fig. 7 (left panel), condition High

IP was fastest to obtain Gabor-like receptive fields.
Interestingly, however, we found that IP is not strictly
necessary to learn Gabor-like receptive fields. Even in
conditions No IP and Linear, Gabor-like receptive fields
will develop in the network, but at a dramatically slower
rate. This suggests that IP’s role in our networks may be
primarily to ensure efficient information transmission in
individual units and to speed the learning process of the
weights, but it does not dramatically alter the resulting
weight vectors. The interesting result that somewhat
Gabor-like receptive fields even emerge in linear units is
caused by the neighborhood function Nmap, which forces
units to perform anti-Hebbian weight updates whenever
the most activated unit is close but not very close to them.
We also measured if and how fast the four different

conditions would lead to exponential activity distributions
in the units of the network. To this end we measured the
marginal activity distributions of individual neurons using
a discrete binning with 50 equally spaced bins and
compared them to the desired exponential distribution
using the L-2 norm. The High IP and Low IP conditions
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Fig. 7. Dynamics of learning with and without intrinsic plasticity (IP). The left panel plots the average similarity of learned filters to Gabor filters as a

function of the number of learning epochs. Similarity to Gabor filters is calculated as the dot product of a filter with its best-fitting Gabor filter. While IP is

not necessary to learn Gabor-like receptive fields, it speeds learning substantially. The right panel shows the average similarity of the marginal distribution

of filter responses to that of an exponential distribution with the desired mean. With IP, units quickly assume exponential activity distributions. This effect

is not observed in linear units and is less pronounced in units with a fixed sigmoidal non-linearity. Each epoch contains 3000 image patch presentations.

Fig. 8. Set of filters learned by ICA. Each filter has been individually

normalized.
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produce activity distributions that are very close to
exponential—the High IP condition achieves this much
faster, however. In the No IP condition (fixed sigmoidal
nonlinearity) the units’ activity distributions move closer to
an exponential shape as their weight vectors are changing,
but the units stop short of exhibiting close-to-exponential
activity distributions in their firing patterns. In the Linear

condition, activity distributions of individual neurons
remain very far from exponential distributions.

4.3. Experiment 3: comparison with ICA

In order to better understand the relation of our model
to conventional approaches, we compared the population
of learned filters with those resulting from ICA. All
simulations were done using Hyvärinen and Hoyer’s
imageica package (http://www.cis.hut.fi/pro-
jectsica/imageica/) [11]. We used the ICA algo-
rithm with 100 filters of 10-by-10 pixels. The training set
contained 15,000 image patches and we learned for 300
iterations. No extra pre-processing was performed beyond
the whitening procedure that is part of this ICA algorithm.
Fig. 8 displays the learned receptive fields from the ICA
algorithm. As expected, we also observe filters that are
localized, bandpass, and oriented, and resemble Gabor
filters.

Our first analysis aimed to quantify how well-receptive
fields learned with our network or with ICA-matched
standard Gabor filters. We found the best fitting Gabor
filter for each learned receptive field by an exhaustive
search over a set of different Gabor filters covering the
complete range of learned filters as described in the
previous section. These discrete filters were chosen to fully
cover the support of the empirical learned-filter distribu-
tions that resulted from both the ICA and IP models. We
found that changing the number or range of discrete filters
did not significantly alter the shape of the resulting
histograms, suggesting continuous underlying filter dis-
tributions. Learned filters were compared to their best
matching Gabor filters by computing the inner product of
the two. On average, filters from our network are more
similar to Gabor filters than the filters resulting from ICA.
The average dot product to the best matching Gabor filter
is 0.8921 for the filters in a 15-by-15 network with IP and
only 0.7675 for ICA. A possible reason for this poor fit of
ICA filters is that they tend to be quite elongated, while we

http://www.cis.hut.fi/projectsica/imageica/
http://www.cis.hut.fi/projectsica/imageica/
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Fig. 9. Comparison of filters learned by our network with those resulting from ICA.
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only consider Gabor filters with rotationally symmetric
Gaussian envelopes.

Our second analysis considered the variety of different
filters learned by the network with IP or by ICA. Fig. 9
shows the distribution of various filter properties in both
cases. Generally, the ICA filters tend to exhibit a greater
variety along many different dimensions. A point in case is
the wider range of spatial frequencies that are covered by
the ICA filters. A part of the explanation for this behavior
is that while ICA tries to achieve independence between all
filters, our simple network merely works to decorrelate the
responses of filters that are sufficiently far apart in the layer
while close-by units are actually encouraged to develop
positively correlated responses.

5. Discussion

Different forms of plasticity are involved in shaping
sensory representations in the brain and it is important to
understand how these different mechanisms interact. In
[24,25] we developed model neurons that maintain sparse
lifetime distributions of their individual activities through
IP. We showed that when IP is combined with various
forms of Hebbian learning at the synapses, a single unit will
discover heavy-tailed directions in its input [24,26]. Here we
constructed networks of such neurons whose learning was
coupled using different neighborhood interaction mechan-
isms: a direct decorrelation method and an approach
facilitating the formation of smooth maps of stimulus
preferences. In the former case, we solved the ‘‘bars’’
problem, a standard non-linear ICA task, and in the latter
we found maps of Gabor-like receptive fields as seen in
primary visual cortex when learning on natural image
patches. We demonstrated that the IP mechanism, while
not being strictly necessary for this behavior, significantly
speeds up the learning process. Moreover, the learned
representations more closely matched the energy-efficient
exponential distributions observed in cortical firing, which
have both information maximizing and sparse coding
properties. When comparing the learned filters in the
network to those resulting from ICA, we found that our
filters (a) provide a closer match to standard Gabor filters
and (b) are automatically arranged on a smooth map. The
learned filters are not as independent as those learned via
ICA because significant correlations between neighboring
units are introduced, which is biologically plausible,
however.
Our simple model is able to learn Gabor-like receptive

fields from natural images and arranges the filters into
smooth maps. A number of previous models (both
mechanistic and functional ones) have demonstrated
similar results. Among them are models based on exten-
sions to the self-organizing map framework [18], BCM-
based models [5], topographic ICA [12], extensions to
sparse coding approaches [29], and others. What distin-
guishes our model from these earlier ones, is that it utilizes
an IP mechanism to obtain energy efficient coding, directly
ensuring approximately exponential activity distributions
in the networks’ units. In addition, we demonstrated that
the IP mechanism contributes to rapid learning in the
network. Overall, our results suggest that IP may play an
important role in the unsupervised learning of sensory
representations in the cortex and it underscores the need to
carefully study how different forms of neuronal plasticity
may interact at the network level.
In the model of visual receptive field development we

have used the simple Hebbian learning rule which was
multiplied with a difference of Gaussian function that
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modulated the sign of Hebbian learning (Hebbian vs. anti-
Hebbian) based on a unit’s distance to the most activated
unit in the map. This implies that units close to the winning
unit will strengthen their connections (long term potentia-
tion, LTP) while far away units will weaken their
connections (long term depression, LTD). Note that a
qualitatively similar effect could be obtained by using a
Bienenstock–Cooper–Munro (BCM) learning rule that has
LTP and LTD components [5], combined with only an
excitatory Gaussian neighborhood function. In future
work we would like to explore such alternative learning
schemes and also consider the combination with neural
fields described by Wilson and Cowan-like dynamics. In
addition we would like to construct hierarchical networks
to model the development of receptive field properties in
higher visual areas.
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