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Abstract 
The paper presents a novel approach for extracting structural features from segmented cursive 
handwriting. The proposed approach is based on the contour code and stroke direction. The 
contour code feature utilises the rate of change of slope along the contour profile in addition 
to other properties such as the ascender and descender count, start point and end point. The 
direction feature identifies individual line segments or strokes from the character’s outer 
boundary or thinned representation and highlights each character's pertinent direction 
information. Each feature is investigated employing a benchmark database and the 
experimental results using the proposed contour code based structural feature are very 
promising. A comparative evaluation with the directional feature and existing transition 
feature is included. 
 
 
1. Introduction 
 
Interest in the recognition of off-line handwritten cursive words has been ongoing for over 
four decades. Off-line handwriting recognition refers to the problem of computer-based 
reading of handwritten characters or words that have been written on a common surface (i.e. 
paper). This is significantly different to on-line handwriting recognition whereby words are 
generally written on a pressure sensitive surface from which real time information, such as the 
order of strokes made by the writer, is obtained and preserved [1]. 

One of the first investigations in the literature that confronted the cursive word 
recognition problem was that of Frishkopf and Harmon [2]. In their research, the authors 
investigated a letter-by-letter or segmentation-based approach in addition to a holistic 
approach for reading cursive script. To this very day, the main approaches that exist for off-
line cursive word recognition may be divided into segmentation-based and holistic ones. 
Generally, the former utilises a strategy based on the recognition of individual characters 
whereas the latter deals with the recognition of the word image as a whole [1]. Since 
Frishkopf and Harmon’s seminal work, research into the recognition of cursive handwriting 
still continues to be intense. This continued motivation may be attributed in part to the 
challenging nature of the problem as well as the countless number of commercial areas that it 
may be applied to [3]. Applications that have received particular attention in recent times 
include: Postal Address Recognition [4][5], Bank Cheque Processing [6][7] and Forms 
Processing [8]. 

In the segmentation-based strategy for handwritten word recognition, the objective is 
to over-segment the word a sufficient number of times to ensure that all appropriate letter 
boundaries have been dissected. To determine the best segmentations, a set of hypotheses are 
tested by merging segments of the image and invoking a classifier to score the combinations. 
Most techniques employ an optimisation algorithm making use of some sort of lexicon-
driven, dynamic programming technique and possibly incorporating contextual knowledge. 
The basic approach described above was proposed simultaneously by a number of researchers 
[5][9][10][11][12]. 



A crucial component of the segmentation-based strategy is the development of a 
classification system for scoring individual characters and character combinations. The 
literature is replete with high accuracy recognition systems for separated handwritten 
numerals [13][14][15], however the same measure of success has not been attained for 
segmented or cursive characters [11][16][17][18][19][20][21][22]. There are three main 
problems faced when dealing with segmented, handwritten character recognition. The first 
relates to the ambiguity of the character without the context of the entire word i.e. an ‘l’ may 
look very similar to an ‘e’. The second problem relates to the illegibility of certain characters 
due to the nature of cursive writing i.e. ornamentation, distorted character shape etc. [23]. 
Finally, the process of segmentation may itself introduce some anomalies depending on the 
algorithm used. Certain algorithms may not locate the segmentation path or anchorage point 
accurately and may sometimes dissect adjacent character components [24]. 

In order to address the problems discussed above, researchers have explored two 
main approaches: 1) Determining features best suited for recognition and 2) investigation of 
different classification schemes [19]. Yamada and Nakano [16] investigated a standard 
technique for feature extraction based on direction histograms in character images. They used 
a multi-template strategy with clustering for the recognition of segmented characters from 
words in the CEDAR database [25]. Kimura et al. investigated a similar feature extraction 
technique calculating local histograms based on chain code information in segmented 
handwritten characters. They used statistical and neural classifiers for the recognition of 
segmented CEDAR characters. Gader et al. have proposed a feature extraction technique 
utilising transition information [11]. Their technique is based on the calculation and location 
of transitions from background to foreground pixels in the vertical and horizontal directions. 
The authors used neural networks trained with the backpropagation algorithm for recognising 
characters obtained from U.S. postal words. Other recent studies by Camastra and Vinciarelli 
[20][22] have proposed feature extraction techniques generating local and global features. 
The local features are obtained from sub-images of the character including foreground pixel 
density information and directional information. The global features used included the 
fraction of the character appearing below the word baseline and the character’s width/height 
ratio. The authors used Learning Vector Quantization (LVQ) [20] and a combination of 
neural gas and LVQ classifiers [22] for the recognition of segmented (cursive) characters 
from the CEDAR database.  

In this research, a novel approach is presented for extracting structural features from 
segmented handwritten characters. The approach is based on the character’s contour code and 
stroke direction. The contour code feature is based on information extracted from each 
characters contour profile such as slope change, direction change, starting points and end 
points. In contrast, the direction feature obtains information based on the identification of 
individual line segments (or strokes) and distinguishes each segment in terms of its 
normalised direction. The approach is tested using a benchmark database of handwritten 
characters and the results are promising. 
 The remainder of this paper is broken down into 4 sections. Section 2 describes the 
handwriting recognition system along with the proposed feature extraction approach, Section 
3 provides experimental results, a discussion of the results takes place in Section 4, and 
finally Section 5 presents conclusions and future research. 
 
2. Overview of Handwriting Recognition System 
 
The techniques described in this research form part of a larger handwriting recognition system 
as shown in Figure 1 below. 



 
Figure 1 Overview of Handwriting Recognition System 

 
The main components to be discussed in this section are 1) Preprocessing and Normalisation 
2) Segmentation and 3) Recognition of Segmented Cursive Characters. 
 
2.1 Preprocessing and Normalisation 
 
The following sections describe the databases chosen and the operations performed on them 
to facilitate the recognition of cursive characters. 
 
2.1.1 Cursive Character Datasets 
 
The first character data set used for training and testing was extracted from words in the 
training and test directories (CITIES/BD) of the CEDAR CD-ROM [25]. These directories 
contain 3106 training words and 317 test words. A total of 18655 lower case and 7175 upper 
case character patterns were generated for training. A further 2240 lower case and 939 upper 
case patterns were used for testing. This will be referred to as the CEDAR Automatically 
Segmented (CAS) data set. The techniques employed for segmentation will be discussed in 
later sections. The second data set was comprised of pre-segmented, Binary Alphanumeric 
Characters (BAC) from the CEDAR CD-ROM found in the BINANUMS/BD & BL 
directories. The BAC dataset contained a total of 19145 characters for training and 2183 
characters for testing. 
 
2.1.2 Thresholding 
 
The words that were obtained from the CEDAR database were in a grey-scale format. It is 
common for grey-level images to be thresholded prior to further processing in most 
handwriting recognition systems. Thresholding is advantageous as it is easier to manipulate 
images with only to levels of colour, processing is faster, less computationally expensive and 
allows for more compact storage. Otsu's method [26] was employed to threhsold the 
handwritten words used in this research. The characters in the BAC dataset were already in a 
binary format and did not require thresholding. 
 
2.1.3 Slant estimation and correction 
 
Arguably, slant estimation and correction may be one of the most important steps in word 
preprocessing and normalisation. It is helpful in transforming handwritten words into a 
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normalised form that more easily facilitates segmentation and the extraction of 
features. A large proportion of real-world handwritten words exhibit some sort of slant 
usually in the forward direction. The "cities" directory of the CEDAR database is no 
exception. The Slant estimation and correction strategy employed in this research is a slightly 
modified version of that described in Bozinovic and Srihari [27]. Through correction of all 
words in the CEDAR database it was found that the slant was adequately corrected in most 
cases. 
 
2.1.4 Baseline computation 
 
Baseline computation is another important technique in handwriting recognition. Baselines 
are used for size normalization, correcting rotation, extracting features etc.  The baseline 
detection algorithm incorporated in this research is very simple and is similar to those 
employed by other researchers in the area. It is briefly described below and an illustration is 
shown in Figure 2: 
 
Step 1: Calculate the horizontal histogram row by row. 
Step 2: Calculate changes between the histogram and store the relevant values. 
Step 3: Find the maximum value of the histogram and its corresponding row. 
Step 4: Start from the row that has the maximum histogram value, look for the biggest change 

in the histogram density or until the bottom of the image is reached. The row that has 
the biggest change in histogram density will be the baseline. 

Step 5: Similarly repeat for the upper baseline working towards the top of the image 
 

 
 

Figure 2 Reference line estimation based on horizontal density histogram 

 
2.1.5 Noise and underline removal 
 
A set of rules was implemented to detect and eliminate noise elements that were either 
prominent in the original word images or that were introduced at the thresholding stage. Two 
components were introduced for removing anomalies that were found to be prominent within 
the handwritten images.  

The first was a technique to remove salt and pepper noise as well as small foreground 
objects such as interfering strokes that intercepted the word's bounding box. This was 
achieved by first detecting all the segregated components in the image through connected 
component analysis. The perimeters of contours belonging to each connected component 
were recorded, summed and averaged. Any connected component contours that were smaller 
than the calculated average were deemed to be either noise or irrelevant stroke fragments.  

The second noise removal technique was a simple algorithm designed to remove 
underlines from the word images. It was noted that a small number of words in the database 
had underlines present and it was later found that segmentation and further processing was 
impeded due to their presence. This prompted the implementation of a simple underline 
removal algorithm. The algorithm searched the word images horizontally for the presence of 
underlines. Upon detection of a relatively long unbroken horizontal line of foreground pixels, 
a potential underline had been identified. Its length was recorded, and if its length exceeded 
that of a threshold that had been calculated earlier based on the size of the word, then it was 
marked as an underline and removed. This simple algorithm worked for some underlines but 
did not perform well on some of the more difficult, erratic and skewed underlines that were 



present in some word images. The remainder of undetected underlines were removed 
manually to facilitate further processing. 
 
2.2 Segmentation 
 
This section describes the segmentation algorithm and sub-algorithms incorporated employed 
in the handwriting recognition system. An overview of is shown in the stepwise algorithm 
below and also in Figure 3. 
 
Step 1. Locate features (such as upper and lower word contours, holes, upper and lower 
contour minima, vertical density histograms, etc.) and over-segment the word using the 
heuristic, feature-based segmenter. 
Step 2. Obtain confidence values from character and Segmentation Point Validation (SPV) 
neural networks.  
Step 3. Fuse all confidence values. 
 
 
 

   
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3 An Overview of the Segmentation Algorithm 

 
2.2.1 Over-segmentation 
 
To assign Prospective Segmentation Points (PSPs) that could be validated through further 
processing, a heuristic, over-segmentation algorithm was developed [28][29]. Initially, a 
number of preliminary processing steps were required prior to segmentation point assignment.  
Following these steps, an algorithm was devised to propose segmentation points based on 
various handwriting features such as upper and lower word contours, holes, upper and lower 
contour minima, vertical density histograms and confidence assignment. 
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2.2.1.1 Preliminary Processing 
 
The first step of processing required connected components in the image to be determined. 
These components represented isolated characters or sections of joined or cursive 
handwriting. The larger components would be split into smaller components in further steps. 
Conversely, small connected components were deemed as being "noise" in the word image 
and were hence removed to facilitate the segmentation process. 

The next steps of processing required calculation of certain measurements that would 
assist in locating segmentation points: 1) Stroke width estimation, 2) Word height estimation 
and 3) Average character width estimation. These measurements were invaluable for serving 
as threshold values when assigning segmentation points (refer to Section 2.2.1.2). 
 
2.2.1.2 Segmentation Point Assignment 
 
Segmentation points in each word were assigned based on confidence values derived from 
examining various features located in the word image. Confidence values for PSPs were 
increased if the particular area under examination contained minima in the upper and lower 
contour (i.e. possible ligatures in cursive writing) and areas in the word that exhibited a low 
vertical pixel density. Finally, a PSP's confidence was decreased if it was located in an area of 
the word that contained "holes" (i.e. found in such letters as "a" and "o"). The PSPs bearing 
the highest confidences were retained for further examination i.e. redundant segmentation 
point removal, and equally distributing segmentation points throughout the word. Hence the 
PSPs generated where used as input to the next phase of the entire segmentation procedure. 
The reader may refer to [30] for a detailed description of the over-segmentation algorithm. 
 
2.2.2 Neural Confidences 
 
Following heuristic segmentation it is necessary to discard "incorrect" segmentation points 
while preserving the "correct" points. This is achieved by calculating a number of confidences 
for each segmentation point generated by the heuristic segmenter. Three neural networks are 
used for this step. Firstly, a neural network is trained with features extracted from 
segmentation areas originally located by the heuristic algorithm. The neural network verifies 
whether each particular area is or is not characteristic of a segmentation point [28]. If an area 
is positively identified as a segmentation point, the network outputs a high confidence (> 0.5). 
Otherwise the network will output a confidence close to 0.1. 

Two other neural networks trained with handwritten characters (upper case and lower 
case) are then used to confirm the first neural network's output. Each network is presented 
with areas immediately centred on/adjacent to each segmentation point. Area width is 
calculated based upon average character width. If for example, the area immediately to the 
left of the PSP proves to be a valid character, the network will output a high confidence 
(LCC) for that character class. At the same time, if the area immediately centred on the 
segmentation point provides a high confidence for the reject neuron (CCC), then it is likely 
that the PSP is a valid segmentation point. The "reject" output is specifically trained to 
recognise non-character patterns (ie. joined characters, half characters or unintelligible 
primitives). If this neuron gives a high confidence, this will usually indicate that the particular 
area being tested is a good candidate for a segmentation point. Otherwise, if any valid 
characters are given a high confidence (in the centre character area), it is unlikely that that 
particular area should be segmented. 
 



2.3 Contour features for segmented character recognition 
 
2.3.1 Contour extraction 
 
This section describes the proposed methodology for the extracting the contour between the 
two segmentation points. The contour between two consecutive segmentation points is 
extracted using the following few steps. In the first step disconnect the pixels near the first 
segmentation point; disconnect the pixels near the second segmentation point. Find the 
nearest distance of the first black pixel from the first segmentation point and the three 
baselines. Follow the contour path across that baseline having minimum distance is closest. 
Find the connecting contour. Mark it as visited once it is visited. If the contour is already 
visited then discard that, take the other part if any. 
 
2.3.2 Proposed contour code based structural feature 
 
A novel feature extraction technique is proposed to extract the feature between the two 
contours. The values for feature extracted are structural feature from the contour profile. So 
the feature is named as contour code feature. The rate of change of slope along with the point 
where it is changing is extracted. With the contour slope, a few additional values that count 
number of ascenders, number of descenders, start point, end point, etc. are taken into 
consideration to capture the structural properties of the contour profile. The contour code 
feature vector size is taken as 25. The contour code feature is described below. 
 
Slope:  The slope of the consecutive points is estimated using linear regression. The rate of 
change of slope is used as the main feature. The feature is described below in Figure 4. 

 

Figure 4 Contour code feature 

 
The input to the contour code feature extraction module is the set of coordinate (x, y) of the 
contour extracted from the contour extraction phase. With the coordinate the slope of two 
consecutive points are estimated. The slope estimation is done using linear probing. Linear 
regression attempts to explain this relationship with a straight line fit to the data. The linear 
regression model postulates that  
 

Y a bX= +      (1) 
 
The coefficients a and b are determined by the following equations. 
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The slope is between the two points (x1, y1) and (x2, y2) is represented by the parameter b. 
The following values are calculated and stored as a contour code in a single dimension vector. 
 
Point of Change: The point with respect to the main body of the contour where the slope is 
changing is taken.  
 
Direction Change (Up/Down): The point with respect to the main body of the contour where 
the direction is changing is taken. The change of direction is denoted by the contour, which is 
changing the direction upwards to downward or vice versa. 
 
Number of Ascenders: The number of point above the upper baseline is counted and stored. 
 
Number of Descender: The number of point below the lower baseline is counted and stored. 
 
Start Point: Start point of a character (position with respect to baselines) is detected and 
stored. 
 
End Point: End point of a character (position with respect to baselines) is detected and 
stored. 
 
2.4. Proposed Direction based structural feature  
 

The second technique (direction feature) sought to simplify each character's boundary or 
thinned representation through identification of individual stroke or line segments in the 
image. Next, in order to provide a normalized input vector to the neural network classification 
schemes, the new character representation was broken down into a number of windows of 
equal size (zoning) whereby the number, length and types of lines present in each window 
was determined. The line segments that would be determined in each character image were 
categorised into four types: 1) Vertical lines, 2) Horizontal lines, 3) Right diagonal and 4) 
Left diagonal. Aside from these four line representations, the technique also located 
intersection points between each type of line. 

To facilitate the extraction of direction features, the following steps were required to 
prepare the character pattern: 

 
1. Starting point and intersection point location 
2. Distinguish individual line segments 
3. Labeling line segment information 
4. Line type normalization 

 
2.4.1 Starting point and intersection point location 
 
To locate the starting point of the character, the first black pixel in the lower left hand side of 
the image is found. The choice of this starting point is based on the fact that in cursive 
English handwriting, many characters begin in the lower, left hand side. Subsequently, 
intersection points between line segments are marked (these locations are a component of the 
final feature vector). Intersection points are determined as being those foreground pixels that 
have more than two foreground pixel neighbours. 
 
2.4.2 Distinguish individual line segments 
 
As mentioned earlier, four types of line segments were to be distinguished as compromising 
each character pattern. Following the step described in Section 2.3.1, neighbouring pixels 
along the thinned pattern/character boundary were followed from the starting point to known 
intersection points. Upon arrival at each subsequent intersection, the algorithm conducted a 



search in a clockwise direction to determine the beginning and end of individual line 
segments. Hence, the commencement of a new line segment was located IF: 
 
1. The previous direction was up-right or down-left AND the next direction is down-right or 

up-left OR 
2. The previous direction is down-right or up-left AND the next direction is up-right or 

down-left OR 
3. The direction of a line segment has been changed in more than three types of direction 

OR 
4. The length of the previous direction type is greater than three pixels 
 
The above rules were consulted for each set of pixels in the character pattern. The thresholds 
in rules 3 and 4 above were determined by manually inspecting a subset of the character 
database.  

Firstly, it was noted that the object of “line type normalization” (Section 2.4.4.) was 
to normalize individual lines in a character pattern matching one of the four line types 
described earlier; specifically pixels which did not significantly deviate from one single 
direction type. Hence, it was posited that a line changing in more than three directions could 
not be called a single line. 

Secondly, in rule 4 above, the threshold of three was chosen as it was found through 
visual inspection that a suitable “minimum line length” could be deemed as being one 
composed of at least four pixels all marked with the same direction value. 
 
2.4.3 Labelling line segment information 
 
Once an individual line segment is located, the black pixels along the length of this segment 
are coded with a direction number as follows: Vertical line segment - 2, Right diagonal line - 
3, Horizontal line segment - 4 and Left diagonal line - 5. Figure 5 illustrates the process of 
marking individual line segments. 
 
2.4.4 Line type normalization 
 
Following the steps described in Sections 2.4.2 and 2.4.3, line segments were composed of 
marked direction pixels (Figure 5). 
 

 
Figure 5 (a) Original line, (b) Line in binary file, (c) After distinguishing directions, (d) 

After direction normalization 
 

As line segments were marked by following either the character boundary or thinned 
image pattern on a pixel-by-pixel basis, some spurious direction values may have been 
marked in any particular line segment due to the presence of anomalous pixels introduced 
through the thinning or boundary extraction process. Hence to "normalize" a particular line 
segment (discarding spurious direction values), the number of values belonging to each 



direction type was tallied in a particular line. The direction value most frequently represented 
in a particular line segment was used to replace spurious direction values (Figure 5).  
 
2.4.5 Formation of feature vectors through zoning 
 
As neural classifiers require vectors of a uniform size for training, a methodology was 
developed for creating appropriate feature vectors. In the first step, the character pattern 
marked with direction information was zoned into windows of equal size (the window sizes 
were varied during experimentation). If the image matrix was not equally divisible, it was 
padded with extra background pixels along the length of its rows and columns. In the next 
step, direction information was extracted from each individual window. Specific information 
such as the line segment direction, length, intersection points, etc. were expressed as floating 
point values between –1 and 1. 

The algorithm for extracting and storing line segment information first locates the 
starting point and any intersections in a particular window. It then proceeds to extract the 
number and lengths of line segments resulting in an input vector containing nine floating-
point values. Each of the values comprising the input vector was defined as follows: 1. The 
number of horizontal lines; 2. The total length of horizontal lines; 3. The number of right 
diagonal lines, 4. The total length of right diagonal lines; 5. The number of vertical lines; 6. 
The total length of vertical lines; 7. The number of left diagonal lines; 8. The total length of 
left diagonal lines and 9. The number of intersection points (Figure 6). 

As an example, the first floating point value represents the number of horizontal lines 
in a particular window. During processing, the number starts from 1.0 to represent “no line” 
in the window. If the window contains a horizontal line, the input decreases by 0.2. The 
reason a value commencing at 1.0 and decreasing by 0.2 was chosen was mainly because in 
preliminary experiments, it was found that the average number of lines following a single 
direction in a particular window was 5. However in some cases, there were a small number of 
windows that contained more than 5 lines, and hence in these cases the input vector contained 
some negative values. Hence values that tallied the number of line types in a particular 
window were calculated as follows: 

 
  2))10lines ofnumber ((-1  value ×=   (4) 

 
For each value that tallied the number of lines present in a particular window, a 

corresponding input value tallying the total length of the lines was also stored. To illustrate, 
the horizontal line length can be used as an example. The number starts at 0 to represent “no 
horizontal lines” in a particular window. If a window has a horizontal line, the input will 
increase by the length of the line divided by the maximum window length or window height, 
(depending on which one is the largest) multiplied by two. The reason this formula is used, is 
because it is assumed that the maximum length of one single line type is two times the largest 
window size. As an example, if the line length is 7 pixels and the window size is 10 pixels by 
13 pixels, then the line length will be 7 / (13 × 2) = 0.269. 
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The operations discussed above for the encoding of horizontal line information must 

be performed for the remainder of directions. The last input vector value represents the 
number of intersection points in the character. It is calculated in the same manner as for the 
number of lines present. Figure 6 illustrates the process of input vector creation. 
 



 
Figure 6: (a) Processed image, (b) Zoned windows, (c) Input vector components 

 

2.5 Configuration of the neural classifiers 
 
The neural classifiers chosen for the task of character recognition were Back-Propagation 
(BP) and Radial Basis Function (RBF) networks. For experimentation purposes, the 
architectures were modified varying the number of inputs, outputs, hidden units, hidden layers 
and the various learning terms.  

The number of inputs to each network was associated with the size of the feature 
vector for each image. The most successful vector configurations were of size 25 for the 
contour code feature, 81 for the direction feature and 100 for the transition feature. For the 
BAC data set (whilst testing the contour code feature), two separate neural networks were 
trained for lowercase and uppercase characters. The number of outputs considered for this 
data set was 26 for each (characters a-z and A-Z). With the CAS data set, two separate neural 
networks were trained for lowercase and uppercase characters. This time the number of 
outputs considered for this data set was 27 (characters a-z and 1 reject neuron for non-
character patterns). The non-character category was specifically used to identify character 
patterns that were smaller than approximately half a regular character and those character 
components that had not been correctly split i.e. multiple characters. For the BAC data set 
(whilst testing the direction feature), a single neural network architecture was considered with 
36 outputs similar to that proposed by Singh and Hewitt [18].  
 

2.6 Preparation of training and testing data 
 
For neural network training it was necessary to include samples for each type of character (a-
z, A-Z). In the case of the CAS data set, training and test files needed to be manually 
prepared, however character matrix patterns were determined based on the output of our 
heuristic segmenter. To summarise the character extraction process, our technique first 
proceeded to sequentially locate all non-cursive/printed character components through the use 
of character component analysis. Next, x-coordinates (vertical segmentations) for each 
connected character component (defined by the heuristic segmenter [28][29]) were used to 
define the vertical boundaries of each character matrix. The horizontal boundaries of the 
character matrix were deemed as the top-most and bottom-most y-coordinates of the 
connected component being examined. Each extracted character was viewed by a human 
operator and was labelled manually as belonging to a particular character class. 
 
3. Experimental results 
 
The first set of character recognition experiments tested the contour code feature using a back 
propagation neural network. The number of characters used for training and testing were 1500 
and 1200 respectively from the BAC dataset. The results obtained for character recognition 
using the contour code feature were compared to the performance of the transition feature and 
are shown in Table 1.  

Table 2 presents top results using the CAS dataset, the BP algorithm and the direction 
and transition feature extraction techniques described in Section 2. Separate experiments were 
once again conducted for lower case and upper case character patterns. A total of 18655 lower 
case and 7175 upper case character patterns were generated for training. A further 2240 lower 
case and 939 upper case patterns were used for testing. 



 Finally, Table 3 presents results for the entire BAC dataset processed by the direction 
feature extraction technique using the BP network for non-resized patterns. The BAC dataset 
contained a total of 19145 characters for training and 2183 characters for testing. Resized 
patterns were excluded from these experiments on the basis that in preliminary experiments 
with the CAS dataset, the results suggested that on average the non-resized dataset 
outperformed the resized one. The results are once again compared to those obtained using 
the transition feature extraction technique. 
 

Table 1 Top character recognition rates using the BP network and the BAC dataset 

Recognition Rate [%]  
Lowercase Uppercase 

Contour Code 86.84 85.34 
Transition 83.46 84.64 

 

Table 2 Top character recognition rates using the BP network and the CAS dataset 

Recognition Rate [%]  
Lowercase Uppercase 

Direction (resized thinned) 69.78 78.70 
Direction (resized boundary) 69.73 77.32 

Direction (non-resized thinned) 69.02 80.62 
Direction (non-resized boundary) 67.19 79.98 

Transition 67.81 79.23 
  

Table 3 Top character recognition rates using the BP network and the BAC dataset 

 Recognition Rate [%] 

Direction (non-resized thinned) 83.10 
Direction (non-resized boundary) 83.65 

Transition 82.82 
 

4. Discussion of results 
 
4.1 Contour vs Transition feature 
 
The novel contour code feature extraction technique was compared with the transition feature 
and it was found that the proposed contour code feature produced, on average, much higher 
recognition rates. 
 
4.2Direction vs Transition feature 
 
Across all experiments that were performed, it was found that the direction feature 
outperformed the transition feature in all cases. However, whilst using the BP network, small 
differences in recognition rate may sometimes be attributed to variations in the starting 
conditions of the network. Hence, to confirm the veracity of the recognition rates attained, 
extra experiments, using the BP network configuration that provided the top result for 
direction and transition features, were conducted. For each feature type, a total of six 
experiments were conducted and the average recognition rate was calculated. In each case the 
direction feature outperformed the transition feature technique by 2% for lowercase characters 
and almost 7% for uppercase characters.  
 
4.3 Contour vs Direction feature 
 
From the experiments, it was found that the contour feature outperformed direction feature. 
The average recognition rate was slightly higher using the contour code feature at 86.09% in 
comparison to 83.65% for the direction feature. 



4.4 General discussion 
 
As may be seen from the results in Table 2, the use of non-resized patterns resulted in a 
comparable or slightly higher recognition rate. Whereas the difference in character 
classification rate when features were extracted from thinned character images and the 
character boundary was negligible. 
 
4.5 Character recognition results  
 
It is always a difficult task to compare results for handwritten character recognition with other 
researchers in the literature. The main problems that arise are differences in experimental 
methodology, experimental settings and the handwriting database used. The comparisons 
presented below have been chosen for two main reasons. The handwriting database (CEDAR) 
used by the researchers is identical to the one used in this research and the results are some of 
the most recent in the literature. Yamada and Nakano [15] presented a handwritten word 
recognition system, which was trained on segmented characters from the CEDAR benchmark 
database. They recorded recognition rates of 67.8% and 75.7% for the recognition of 
characters where upper case letters and lower case letters were distinguished and not 
distinguished respectively. Therefore, if the top lower case (86.84%) and upper case (85.34%) 
character recognition scores in this research are averaged, a recognition accuracy of 86.09% is 
obtained, which compares well with their results. Kimura et al. [17] used neural and statistical 
classifiers to recognise segmented CEDAR characters. For case sensitive experiments, their 
neural classifier produced an accuracy of 73.25%, which was comparable to the lower case 
and upper case average of 86.09%. Singh and Hewitt [18] employed the modified Hough 
Transform on characters from the CEDAR. They obtained a recognition rate of 67.3%, our 
best result using their network configuration (83.65%) compares favourably with their top 
recognition rate. Finally, the techniques proposed in this research compared favourably to 
those presented by Camastra and Vinciarelli [20][22]. 
 
5. Conclusions and future research 
 
We have presented a novel contour code and direction feature based approach for the 
recognition of segmented handwritten characters. Both techniques were compared to other 
popular techniques in the literature. In general, the proposed techniques outperformed the 
transition feature technique and were comparable to other techniques in the literature. The 
contour code technique seems to be very promising producing top results. In future research 
the contour code will be integrated into an off-line handwritten word recognition system. 
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