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Abstract

The paper presents a novel approach for extracting structural featuresefyorented cursive
handwriting. The proposed approach is based on the contour code and strolendifbet
contour code feature utilises the rate of change of slope alongriteuc profile in addition
to other properties such as the ascender and descender count, stamgend point. The
direction feature identifies individual line segments or strdkes the character's outer
boundary or thinned representation and highlights each character's medinection
information. Each feature is investigated employing a benchmatabae and the
experimental results using the proposed contour code based structiwad fage very
promising. A comparative evaluation with the directional featurd existing transition
feature is included.

1. Introduction

Interest in the recognition of off-line handwritten cursive words ieen ongoing for over
four decades. Off-line handwriting recognition refers to the problemsoaiputer-based
reading of handwritten characters or words that have been writtearcemmon surface (i.e.
paper). This is significantly different to on-line handwritingagmition whereby words are
generally written on a pressure sensitive surface from whalitime information, such as the
order of strokes made by the writer, is obtained and preserved [1].

One of the first investigations in the literature that confronted cursive word
recognition problem was that of Frishkopf and Harmon [2]. In theirarebe the authors
investigated a letter-by-letter or segmentation-based appriva@ddition to a holistic
approach for reading cursive script. To this very day, the main ag@®dhat exist for off-
line cursive word recognition may be divided into segmentation-basddholistic ones.
Generally, the former utilises a strategy based on the remogmit individual characters
whereas the latter deals with the recognition of the word ingsg@ whole [1]. Since
Frishkopf and Harmon’s seminal work, research into the recognitionrefve handwriting
still continues to be intense. This continued motivation may be a#dbint part to the
challenging nature of the problem as well as the countless numbemafercial areas that it
may be applied to [3]. Applications that have received particitantéon in recent times
include: Postal Address Recognition [4][5], Bank Cheque Processing] [@ifjd Forms
Processing [8].

In the segmentation-based strategy for handwritten word recognfimobjective is
to over-segment the word a sufficient number of times to ensuraltha@ppropriate letter
boundaries have been dissected. To determine the best segmentat@us,lgypotheses are
tested by merging segments of the image and invoking a @adsifscore the combinations.
Most techniques employ an optimisation algorithm making use of samieof lexicon-
driven, dynamic programming technique and possibly incorporating contextoalddge.
The basic approach described above was proposed simultaneously by a number beresearc
[51[9][10][11][212].



A crucial component of the segmentation-based strategy is theogement of a
classification system for scoring individual characters andacker combinations. The
literature is replete with high accuracy recognition systdansseparated handwritten
numerals [13][14][15], however the same measure of success hasemtatiained for
segmented or cursive characters [11][16][17][18][19][20][21][22]. Ther three main
problems faced when dealing with segmented, handwritten charactgnition. The first
relates to the ambiguity of the character without the contexteoémtire word i.e. an ‘I' may
look very similar to an ‘e’. The second problem relates to tegiliility of certain characters
due to the nature of cursive writing i.e. ornamentation, distorted atbarshape etc. [23].
Finally, the process of segmentation may itself introduce someadiesndepending on the
algorithm used. Certain algorithms may not locate the segnaniadith or anchorage point
accuratelyand may sometimes dissect adjacent character components [24].

In order to address the problems discussed above, researchers havedetpb
main approaches: 1) Determining features best suited for recvgaitd 2) investigation of
different classification schemes [19]. Yamada and Nakano [16] tigaé=d a standard
technique for feature extraction based on direction histograms in chansages. They used
a multi-template strategy with clustering for the recognitibrsegmented characters from
words in the CEDAR database [25]. Kimwtal. investigated a similar feature extraction
technique calculating local histograms based on chain code informatiGegmented
handwritten characters. They used statistical and neural ®esdiér the recognition of
segmented CEDAR characters. Gaderal. have proposed a feature extraction technigue
utilising transition information [11]. Their technique is based on thaulzdion and location
of transitions from background to foreground pixels in the vertical ariddmbal directions.
The authors used neural networks trained with the backpropagationhatgtat recognising
characters obtained from U.S. postal words. Other recent studienms@a and Vinciarelli
[20][22] have proposed feature extraction techniques generating localeval features.
The local features are obtained from sub-images of the chaiaclieding foreground pixel
density information and directional information. The global features uiseluded the
fraction of the character appearing below the word baseline antidhecter’'s width/height
ratio. The authors used Learning Vector Quantization (LVQ) [20] acdnabination of
neural gas and LVQ classifiers [22] for the recognition of segede(cursive) characters
from the CEDAR database.

In this research, a novel approach is presented for extractingusaittfeatures from
segmented handwritten characters. The approach is based on the character’s conama code
stroke direction. The contour code feature is based on information tegtriom each
characters contour profile such as slope change, direction changeggtaints and end
points. In contrast, the direction feature obtains information based ddethification of
individual line segments (or strokes) and distinguishes each segmeterms of its
normalised direction. The approach is tested using a benchmark datdbaesedwritten
characters and the results are promising.

The remainder of this paper is broken down into 4 sections. Sectiorrtbdeghe
handwriting recognition system along with the proposed feature aatragiproach, Section
3 provides experimental results, a discussion of the results pékes in Section 4, and
finally Section 5 presents conclusions and future research.

2. Overview of Handwriting Recognition System

The techniques described in this research form part of a langgwhiting recognition system
as shown in Figure 1 below.
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Figure 1 Overview of Handwriting Recognition System

The main components to be discussed in this section are 1) Preprg@ssiNormalisation
2) Segmentation and 3) Recognition of Segmented Cursive Characters.

2.1 Preprocessing and Normalisation

The following sections describe the databases chosen and the opgratfonmed on them
to facilitate the recognition of cursive characters.

2.1.1 Cursive Character Datasets

The first character data set used for training and testingewtascted from words in the
training and test directories (CITIES/BD) of the CEDAR CDMR [25]. These directories
contain 3106 training words and 317 test words. A total of 18655 lower cagd @hdipper
case character patterns were generated for training. A fl24€r lower case and 939 upper
case patterns were used for testing. This will be referrexb tihe CEDAR Automatically
Segmented (CAS) data set. The techniques employed for segmentétioa discussed in
later sections. The second data set was comprised of pre-sedni&intay Alphanumeric
Characters (BAC) from the CEDAR CD-ROM found in the BINANUMAD & BL
directories. The BAC dataset contained a total of 19145 charaotetmaining and 2183
characters for testing.

2.1.2 Thresholding

The words that were obtained from the CEDAR database werereyacple format. It is
common for grey-level images to be thresholded prior to further gsge in most
handwriting recognition systems. Thresholding is advantageoussasasier to manipulate
images with only to levels of colour, processing is faster,desyputationally expensive and
allows for more compact storage. Otsu's method [26] was employeldrabsold the
handwritten words used in this research. The characters in thelB#&€et were already in a
binary format and did not require thresholding.

2.1.3 Slant estimation and cor rection

Arguably, slant estimation and correction may be one of the mosttaempateps in word
preprocessing and normalisatidhis helpful in transforming handwritten words into a



normalised form that more easily facilitates segmentation taedextraction of
features.A large proportion of real-world handwritten words exhibit some sbrslant
usually in the forward direction. The "cities" directory of the DR database is no
exception. The Slant estimation and correction strategy employkis iresearch is a slightly
modified version of that described in Bozinovic and Srihari [27]. Throwgtection of all
words in the CEDAR database it was found that the slant was adgc@atrected in most
cases.

2.1.4 Baseline computation

Baseline computation is another important technique in handwriting réicograselines

are used for size normalization, correcting rotation, extractiatufes etc. The baseline
detection algorithm incorporated in this research is very siraptk is similar to those
employed by other researchers in the area. It is briefly déheschielow and an illustration is
shown in Figure 2:

Step 1: Calculate the horizontal histogram row by row.

Step 2: Calculate changes between the histogram and store the relevant values.

Step 3: Find the maximum value of the histogram and its corresponding row.

Step 4: Start from the row that has the maximum histogram value, look for the bagaxje
in the histogram density or until the bottom of the image is reladree row that has
the biggest change in histogram density will be the baseline.

Step 5: Similarly repeat for the upper baseline working towards the top of the image
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Figure 2 Reference line estimation based on horizontal density histogram

2.1.5 Noise and underlineremoval

A set of rules was implemented to detect and eliminate noieeeals that were either
prominent in the original word images or that were introduced ahtheholding stage. Two
components were introduced for removing anomalies that were found torbm@nt within
the handwritten images.

The first was a technique to remove salt and pepper noise as well assagatdind
objects such as interfering strokes that intercepted the word's hguhdk. This was
achieved by first detecting all the segregated components iimtdge through connected
component analysis. The perimeters of contours belonging to each conoectgpanent
were recorded, summed and averaged. Any connected component contourseisamalier
than the calculated average were deemed to be either noise or irrelevantragyoients.

The second noise removal technique was a simple algorithm desmnmechdve
underlines from the word images. It was noted that a small numbesrdt in the database
had underlines present and it was later found that segmentation draf fundcessing was
impeded due to their presence. This prompted the implementation ofpke simderline
removal algorithm. The algorithm searched the word images horigofwathe presence of
underlines. Upon detection of a relatively long unbroken horizontal lif@ground pixels,
a potential underline had been identified. Its length was recorded, asderfigth exceeded
that of a threshold that had been calculated earlier based ondl# Hie word, then it was
marked as an underline and removed. This simple algorithm workedrf underlines but
did not perform well on some of the more difficult, erratic and skeunderlines that were



present in some word images. The remainder of undetected underlinesremsoved
manually to facilitate further processing.

2.2 Segmentation

This section describes the segmentation algorithm and sub-algoiitbarporated employed
in the handwriting recognition system. An overview of is shown instkpwise algorithm
below and also in Figure 3.

Step 1. Locate features (such as upper and lower word contours, holes, upper and low
contour minima, vertical density histograms, etc.) and over-segthentvord using the
heuristic, feature-based segmenter.

Step 2. Obtain confidence values from character and Segmentation Poidatitad (SPV)
neural networks.

Step 3. Fuse all confidence values.
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Figure 3 An Overview of the Segmentation Algorithm
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2.2.1 Over-segmentation

To assign Prospective Segmentation Points (PSPs) that couldideedathrough further
processing, a heuristic, over-segmentation algorithm was devel@gd@9]. Initially, a
number of preliminary processing steps were required prior to segitiom point assignment.
Following these steps, an algorithm was devised to propose segorem@ints based on
various handwriting features such as upper and lower word contours, holesangpewer
contour minima, vertical density histograms and confidence assignment.



2.2.1.1 Preliminary Processing

The first step of processing required connected components in the tonagedetermined.
These components represented isolated characters or sections af (@ineursive
handwriting. The larger components would be split into smaller compoinefuigher steps.
Conversely, small connected components were deemed as being "ndise"word image
and were hence removed to facilitate the segmentation process.

The next steps of processing required calculation of certain mesusethat would
assist in locating segmentation points: 1) Stroke width estma2) Word height estimation
and 3) Average character width estimation. These measuremengtsnwvaluable for serving
as threshold values when assigning segmentation points (refer to Section 2.2.1.2).

2.2.1.2 Segmentation Point Assignment

Segmentation points in each word were assigned based on confidencedaived from
examining various features located in the word image. Confidencesvébr PSPs were
increased if the particular area under examination contained minitha upper and lower
contour (i.e. possible ligatures in cursive writing) and areaseimbrd that exhibited a low
vertical pixel density. Finally, a PSP's confidence was decreaseudhi$ ibcated in an area of
the word that contained "holes" (i.e. found in such letters as "a"cdhdThe PSPs bearing
the highest confidences were retained for further examination dendant segmentation
point removal, and equally distributing segmentation points throughout thie Wence the
PSPs generated where used as input to the next phase of theemientation procedure.
The reader may refer to [30] for a detailed description of the over-segraardhgorithm.

2.2.2 Neural Confidences

Following heuristic segmentation it is necessary to discararliect” segmentation points
while preserving the "correct" points. This is achieved by cafitig a number of confidences
for each segmentation point generated by the heuristic segmemtee. feural networks are
used for this step. Firstly, a neural network is trained witltufea extracted from
segmentation areas originally located by the heuristic algarittn® neural network verifies
whether each particular area is or is not characteristicsegmentation point [28]. If an area
is positively identified as a segmentation point, the network outputs advididence (> 0.5).
Otherwise the network will output a confidence close to 0.1.

Two other neural networks trained with handwritten characters (upper case and lowe
case) are then used to confirm the first neural network's outpeh. figdwork is presented
with areas immediately centred on/adjacent to each segmenfaiioh Area width is
calculated based upon average character width. If for examplerehenamediately to the
left of the PSP proves to be a valid character, the netwotkowtput a high confidence
(LCC) for that character class. At the same time, if ttem ammediately centred on the
segmentation point provides a high confidence for the reject neuron)(@@a it is likely
that the PSP is a valid segmentation point. The "reject" outpspésifically trained to
recognise non-character patterns (ie. joined characters, hakictdrar or unintelligible
primitives). If this neuron gives a high confidence, this will usually igichat the particular
area being tested is a good candidate for a segmentation pointwiSghdf any valid
characters are given a high confidence (in the centre chaeaetg);, it is unlikely that that
particular area should be segmented.



2.3 Contour featuresfor segmented character recognition

2.3.1 Contour extraction

This section describes the proposed methodology for the extractingrttuaiicbetween the
two segmentation points. The contour between two consecutive sedarergaints is
extracted using the following few steps. In the first step discarthecpixels near the first
segmentation point; disconnect the pixels near the second segmentationFoad the
nearest distance of the first black pixel from the first ssgation point and the three
baselines. Follow the contour path across that baseline having mirdistance is closest.
Find the connecting contour. Mark it as visited once it is visifethe contour is already
visited then discard that, take the other part if any.

2.3.2 Proposed contour code based structural feature

A novel feature extraction technique is proposed to extract the debhaiween the two
contours. The values for feature extracted are structural fdabunethe contour profile. So
the feature is named as contour code feature. The rate of chasigpeolong with the point
where it is changing is extracted. With the contour slope, a fevwi@ulli values that count
number of ascenders, number of descenders, start point, end point, etakesranto
consideration to capture the structural properties of the contour profite contour code
feature vector size is taken as 25. The contour code feature is described below.

Slope: The slope of the consecutive points is estimated using liegegssion. The rate of
change of slope is used as the main feature. The feature is described below in Figure 4.

Figure 4 Contour code feature

The input to the contour code feature extraction module is the sebwiitate (X, y) of the
contour extracted from the contour extraction phase. With the coordinastoties of two

consecutive points are estimated. The slope estimation is donelinsgrgprobing. Linear
regression attempts to explain this relationship with a stréghfit to the data. The linear
regression model postulates that

Y = a+ bX (1)
The coefficientsa andb are determined by the following equations.
_2(x* % %) ~(%+ %)( 4+ )
b= 2, 2 2
20 +x)=(x+ %)

(vi+y,)=b(x+ %)
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)
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The slope is between the two points (x1, y1) and (x2, y2) is representbd pgrameter b.
The following values are calculated and stored as a contour code iteadsimgnsion vector.

Point of Change: The point with respect to the main body of the contour where the slope is
changing is taken.

Direction Change (Up/Down): The point with respect to the main body of the contour where
the direction is changing is taken. The change of direction is denothd bgritour, which is
changing the direction upwards to downward or vice versa.

Number of Ascenders: The number of point above the upper baseline is counted and stored.
Number of Descender: The number of point below the lower baseline is counted and stored.

Start Point: Start point of a character (position with respect to baseligeggtected and
stored.

End Point: End point of a character (position with respect to baselines) éctddt and
stored.

2.4. Proposed Direction based structural feature

The second technique (direction feature) sought to simplify eachctégaboundary or
thinned representation through identification of individual stroke or dimgments in the
image. Next, in order to provide a normalized input vector to the neural ketlassification
schemes, the new character representation was broken down into a o@mi@dlows of
equal size (zoning) whereby the number, length and types of linespiessach window
was determined. The line segments that would be determined in leseltter image were
categorised into four types: 1) Vertical lines, 2) Horizontaldjri® Right diagonal and 4)
Left diagonal. Aside from these four line representations, the tpohnalso located
intersection points between each type of line.

To facilitate the extraction of direction features, the follonsteps were required to
prepare the character pattern:

1. Starting point and intersection point location
2. Distinguish individual line segments

3. Labeling line segment information

4. Line type normalization

2.4.1 Starting point and inter section point location

To locate the starting point of the character, the first blaa ol the lower left hand side of
the image is found. The choice of this starting point is based orathehiat in cursive
English handwriting, many characters begin in the lower, left hadel Subsequently,
intersection points between line segments are marked (theserlgcare a component of the
final feature vector). Intersection points are determined as Heisg foreground pixels that
have more than two foreground pixel neighbours.

2.4.2 Distinguish individual line segments

As mentioned earlier, four types of line segments were to beglisthed as compromising
each character pattern. Following the step described in Section 2.glhmeing pixels
along the thinned pattern/character boundary were followed from tti@gtaoint to known
intersection points. Upon arrival at each subsequent intersectiorigtiighan conducted a



search in a clockwise direction to determine the beginning and enddiefdual line
segments. Hence, the commencement of a new line segment was located IF:

1. The previous direction was up-right or down-left AND the next direction is dov-oig
up-left OR

2. The previous direction is down-right or up-left AND the next direction is up-right or
down-left OR

3. The direction of a line segment has been changed in more than three types of direction

OR
4. The length of the previous direction type is greater than three pixels

The above rules were consulted for each set of pixels in the tdrgpattern. The thresholds
in rules 3 and 4 above were determined by manually inspecting a sifilibet character
database.

Firstly, it was noted that the object of “line type normalizati(®éction 2.4.4.) was
to normalize individual lines in a character pattern matching ongheoffour line types
described earlier; specifically pixels which did not significardeviate from one single
direction type. Hence, it was posited that a line changing in rharethree directions could
not be called a single line.

Secondly, in rule 4 above, the threshold of three was chosen asfaumasthrough
visual inspection that a suitable “minimum line length” could be @eers being one
composed of at least four pixels all marked with the same direction value.

2.4.3 Labelling line segment information

Once an individual line segment is located, the black pixels alenfghgth of this segment
are coded with a direction number as follows: Vertical line sggm2, Right diagonal line -
3, Horizontal line segment - 4 and Left diagonal line - 5. Figultu&triates the process of
marking individual line segments.

2.4.4 Linetypenormalization

Following the steps described in Sections 2.4.2 and 2.4.3, line segmentsowp@sed of
marked direction pixels (Figure 5).
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Figure 5 (a) Original line, (b) Line in binary file, (c) After distinguishing directions, (d)
After direction normalization

As line segments were marked by following either the charactendary or thinned
image pattern on a pixel-by-pixel basis, some spurious direction vatagshave been
marked in any particular line segment due to the presence of anmEkels introduced
through the thinning or boundary extraction process. Hence to "normalf@atieular line
segment (discarding spurious direction values), the number of vallmwgipg to each



direction type was tallied in a particular line. The directiolueanost frequently represented
in a particular line segment was used to replace spurious direction values @jigur

2.4.5 Formation of feature vectorsthrough zoning

As neural classifiers require vectors of a uniform size faming, a methodology was
developed for creating appropriate feature vectors. In the fept she character pattern
marked with direction information was zoned into windows of equal(fizewindow sizes
were varied during experimentation). If the image matrix wasenaglly divisible, it was
padded with extra background pixels along the length of its rows and collnrihe next
step, direction information was extracted from each individual windpecific information
such as the line segment direction, length, intersection points,e¥te expressed as floating
point values between -1 and 1.

The algorithm for extracting and storing line segment informatiist ocates the
starting point and any intersections in a particular window. It theneeds to extract the
number and lengths of line segments resulting in an input vector mogtaiine floating-
point values. Each of the values comprising the input vector wasededis follows1. The
number of horizontal line?. The total length of horizontal line8; The number of right
diagonal lines4. The total length of right diagonal lin€s; The number of vertical lines;
The total length of vertical lines, The number of left diagonal line8; The total length of
left diagonal lines anél. The number of intersection points (Figure 6).

As an example, the first floating point value represents the number of hatilioes
in a particular window. During processing, the number starts fronoI€ptesent “no line”
in the window. If the window contains a horizontal line, the input decsebged.2. The
reason a value commencing at 1.0 and decreasing by 0.2 was choseainladbecause in
preliminary experiments, it was found that the average numbeénes following a single
direction in a particular window was 5. However in some cases, theeeavaeall number of
windows that contained more than 5 lines, and hence in these cases the input vectodcontaine
some negative values. Hence values that tallied the numbeneotyipes in a particular
window were calculated as follows:

value=1- ((numberof lineg/10) x 2) (4)

For each value that tallied the number of lines present in aylartiwindow, a
corresponding input value tallying the total length of the linesalss stored. To illustrate,
the horizontal line length can be used as an example. The numbeats@ttsrepresent “no
horizontal lines” in a particular window. If a window has a horizotted, the input will
increase by the length of the line divided by the maximum windowHemgivindow height,
(depending on which one is the largest) multiplied by two. The reasofothiula is used, is
because it is assumed that the maximum length of one singlgpmésttwo times the largest
window size. As an example, if the line length is 7 pixels and thdomi size is 10 pixels by
13 pixels, then the line length will be 7 / (13 x 2) = 0.269.

numberof pixelsin aparticulardirection
length= P P (5)
(window heightor width)x 2

The operations discussed above for the encoding of horizontal line itifmmmaust
be performed for the remainder of directions. The last input vectioie wepresents the
number of intersection points in the character. It is calculatéoeisame manner as for the
number of lines present. Figure 6 illustrates the process of input vector creation.
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Figure 6: (a) Processed image, (b) Zoned windows, (c) Input vector components
2.5 Configuration of the neural classifiers

The neural classifiers chosen for the task of character reémgmiere Back-Propagation
(BP) and Radial Basis Function (RBF) networks. For experimentgiimposes, the
architectures were modified varying the number of inputs, outputs, hiddsnhidden layers
and the various learning terms.

The number of inputs to each network was associated with the sthe &ature
vector for each image. The most successful vector configuratiens of size 25 for the
contour code feature, 81 for the direction feature and 100 for the toanfgtture. For the
BAC data set (whilst testing the contour code feature), two atepaeural networks were
trained for lowercase and uppercase characters. The number of owatpsitteed for this
data set was 26 for each (characters a-z and A-Z). WithAlged@ta set, two separate neural
networks were trained for lowercase and uppercase charactesstimbi the number of
outputs considered for this data set was 27 (characters a-z afectlneuron for non-
character patterns). The non-character category was spigifisad to identify character
patterns that were smaller than approximately half a reghkmacter and those character
components that had not been correctly split i.e. multiple charaEmrshe BAC data set
(whilst testing the direction feature), a single neural networktaathie was considered with
36 outputs similar to that proposed by Singh and Hewitt [18].

2.6 Preparation of training and testing data

For neural network training it was necessary to include sarfgplesich type of character (a-
z, A-Z). In the case of the CAS data set, training and test fieeded to be manually
prepared, however character matrix patterns were determined tasbeé output of our

heuristic segmenter. To summarise the character extractionsproser technique first
proceeded to sequentially locate all non-cursive/printed character congptimengh the use
of character component analysis. Next, x-coordinates (verticahesggtions) for each

connected character component (defined by the heuristic segment@9[p8lgre used to

define the vertical boundaries of each character matrix. The h@izZootndaries of the

character matrix were deemed as the top-most and bottom-maxsirdirates of the

connected component being examined. Each extracted character wag Biewehuman

operator and was labelled manually as belonging to a particular character class

3. Experimental results

The first set of character recognition experiments tested the contour cade fesihg a back
propagation neural network. The number of characters used for traiirigsting were 1500
and 1200 respectively from the BAC dataset. The results obtainetidoacter recognition
using the contour code feature were compared to the performance of theotrdaeattire and
are shown in Table 1.

Table 2 presents top results using the CAS dataset, the BP algorithine alie:ction
and transition feature extraction techniques described in Section 2ateepgeriments were
once again conducted for lower case and upper case character pAttetasof 18655 lower
case and 7175 upper case character patterns were generated for trainifger2a40 lower
case and 939 upper case patterns were used for testing.



Finally, Table 3 presents results for the entire BAC dataseepsed by the direction
feature extraction technique using the BP network for non-resizesinmtThe BAC dataset
contained a total of 19145 characters for training and 2183 characteestiog. Resized
patterns were excluded from these experiments on the basis thatiimnary experiments
with the CAS dataset, the results suggested that on averageotheesized dataset
outperformed the resized one. The results are once again companedembtained using
the transition feature extraction technique.

Table 1 Top character recognition rates using the BP network and the BAC dataset

Recognition Rate[%)]
Lowercase | Uppercase
Contour Code 86.84 85.34

Transition 83.46 84.64

Table 2 Top character recognition rates using the BP network and the CAS dataset

Recognition Rate [%]
L owercase Upper case
Direction (resized thinned) 69.78 78.70
Direction (resized boundary) 69.73 77.32
Direction (non-resized thinned) 69.02 80.62
Direction (non-resized boundary) 67.19 79.98
Transition 67.81 79.23

Table 3 Top character recognition rates using the BP network and the BAC dataset

Recognition Rate[%]

Direction (non-resized thinned) 83.10
Direction (non-resized boundary) 83.65
Transition 82.82

4. Discussion of results
4.1 Contour vs Transition feature

The novel contour code feature extraction technique was compared with thteotrdeature
and it was found that the proposed contour code feature produced, on averdghigmeic
recognition rates.

4.2Direction vs Transition feature

Across all experiments that were performed, it was found thatdifestion feature
outperformed the transition feature in all cases. However, wisisg the BP network, small
differences in recognition rate may sometimes be attributedatiations in the starting
conditions of the network. Hence, to confirm the veracity of the rétog rates attained,
extra experiments, using the BP network configuration that providedotheesult for
direction and transition features, were conducted. For each fegpge a total of six
experiments were conducted and the average recognition rate waatedlcln each case the
direction feature outperformed the transition feature technique bp2kawercase characters
and almost 7% for uppercase characters.

4.3 Contour vs Direction feature
From the experiments, it was found that the contour feature outperfaiireetion feature.

The average recognition rate was slightly higher using the cootalgr feature at 86.09% in
comparison to 83.65% for the direction feature.



4.4 General discussion

As may be seen from the results in Table 2, the use of nondgsiterns resulted in a
comparable or slightly higher recognition rate. Whereas the eifter in character
classification rate when features were extracted from thintedacter images and the
character boundary was negligible.

4.5 Character recognition results

It is always a difficult task to compare results for handemittharacter recognition with other
researchers in the literature. The main problems that amsdifierences in experimental
methodology, experimental settings and the handwriting database usedomparisons
presented below have been chosen for two main reasons. The handwriting databagR)(C
used by the researchers is identical to the one used in this research asdlthanm some of
the most recent in the literature. Yamada and Nakano [15] presarftaddwritten word
recognition system, which was trained on segmented characterthiEddEDAR benchmark
database. They recorded recognition rates of 67.8% and 75.7% for the fenoghit
characters where upper case letters and lower case lettees distinguished and not
distinguished respectively. Therefore, if the top lower case (86.848)ipper case (85.34%)
character recognition scores in this research are averagambgmition accuracy of 86.09% is
obtained, which compares well with their results. Kimetral.[17] used neural and statistical
classifiers to recognise segmented CEDAR characters. Bersemsitive experiments, their
neural classifier produced an accuracy of 73.25%, which was compayahle lower case
and upper case average of 86.09%. Singh and Hewitt [18] employed theeghddiifigh
Transform on characters from the CEDAR. They obtained a recognétierof 67.3%, our
best result using their network configuration (83.65%) compares faguséth their top
recognition rate. Finally, the techniques proposed in this research remhfpaourably to
those presented by Camastra and Vinciarelli [20][22].

5. Conclusions and futureresearch

We have presented a novel contour code and direction feature based fadprotte
recognition of segmented handwritten characters. Both techniquescorapared to other
popular techniques in the literature. In general, the proposed technigpesfauted the
transition feature technique and were comparable to other techniqthes literature. The
contour code technique seems to be very promising producing top restutsiwrénresearch
the contour code will be integrated into an off-line handwritten word recognitionrsyste
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