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Abstract. The creation of a pattern classifier requires choosing or cre-
ating a model, collecting training data and verifying or “truthing” this
data, and then training and testing the classifier. In practice, individual
steps in this sequence must be repeated a number of times before the clas-
sifier achieves acceptable performance. The majority of the research in
computational learning theory addresses the issues associated with train-
ing the classifier (learnability, convergence times, generalization bounds,
etc.). While there has been modest research effort on topics such as cost-
based collection of data in the context of a particular classifier model,
there remain numerous unsolved problems of practical importance asso-
ciated with the collection and truthing of data. Many of these can be
addressed with the formal methods of computational learning theory. A
number of these issues, as well as new ones — such as the identification
of “hostile” contributors and their data — are brought to light by the
Open Mind Initiative, where data is openly contributed over the World
Wide Web by non-experts of varying reliabilities. This paper states gen-
eralizations of formal results on the relative value of labeled and unlabeled
data to the realistic case where a labeler is not a foolproof oracle but is
instead somewhat unreliable and error-prone. It also summarizes formal
results on strategies for presenting data to labelers of known reliability in
order to obtain best estimates of model parameters. It concludes with a
call for a rich, powerful and practical computational theory of data ac-
quisition and truthing, built upon the concepts and techniques developed
for studying general learning systems.
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1 Introduction

In broad outline, the creation of many practical systems to classify real-world
patterns — such as acoustic speech, handwritten or omnifont optical characters,
human faces, fingerprints, gestures, sonar images, and so on — involves the
following steps:



select a model Select or design a computational model, specify its features,
parameters and constraints or prior information about the unknown param-
eters

collect and verify training data Collect training data, verify or “truth” this
data, and remove outliers and faulty data

train Train the model with this data, possibly employing regularization meth-
ods such as pruning, integrating multiple classifiers, or resampling methods
such as boosting, and so on

test Test or estimate the performance of the classifier, either in the field, or more
frequently in the lab using independent test data, to see if the classification
performance is adequate for the application

These steps are not always followed in the sequence listed above (for instance,
we may first collect our data before selecting a model), and in practice the steps
are often repeated a number of times in an irregular order until the estimated
performance of the classifier is acceptable.

The bulk of the research effort in computational learning theory, statistical
learning theory and related discliplines has focused on model selection and train-
ing, and this has led to a wealth of powerful methods, including classifiers such
as the nearest-neighbor method, neural nets, Support Vector Machines, and de-
cision trees, regularization methods such as weight decay and pruning, general
techniques such as multiclassifier integration and resampling, and theoretical re-
sults on learnability and convergence criteria, performance bounds, and much
more [15].

But consider the databases of millions of labeled handwritten characters cre-
ated by the National Institute of Standards and Technology (NIST), the im-
mense volume of truthed postal data such as handwritten addresses and zip
codes created by the Center for Excellence in Document Analysis and Recog-
nition (CEDAR), or the transcriptions of tens of thousands of hours of speech
created by the Linguistic Data Consortium (LDC), to mention but a few exam-
ples. These resources are invaluable to numerous groups developing classifiers
and other intelligent software. The development of these databases requires a
great deal of time, cost and effort, and relies on dozens of knowledge workers
of varying expertise transcribing, checking, and cross-checking data in a model-
and use-independent way.

Up to now, computational learning theory has contributed little to this vital
process. In fact, most data acquisition teams rely on heuristics and trial and
error, for instance in choosing the number of knowledge engineers that should
truth a given dataset, how to monitor the reliability of individual engineers, and
so on. Remarkably little of this information is published or otherwise shared. The
goal of this paper is to begin to rectify this situation, by highlighting the need for
large corpora of training data, describing some of the problems confronted in the
creation of such datasets, suggesting results and techniques from computational
learning theory that could be brought to bear, and providing some initial steps
in the development of such a theory of data acquisition and truthing.



Section 2 reviews the need for data, or more specifically, the proposition that
progress in classifier design will rely increasingly on larger and larger datasets and
less and less on minor alterations to existing powerful learning techniques. This,
then, underscores the need for theoretical effort on making more efficient the
collection of high-quality datasets. Section 3 outlines some practical background
and trends relevant to data acquisition and truthing. It describes in some detail a
novel method of open data collection over the World Wide Web employed by the
Open Mind Initiative. Section 4 illustrates several data collection and truthing
scenarios and attendant practical problems ammenable to analysis through the
tools of statistical and computational learning theory.

Section 5 reports two theoretical results relevant to data acquisition. The
first is a generalization of the measure of the value of labeled and unlabeled data
to the more realistic case when the labeler, rather than being a perfect oracle,
instead has a probability of making a random labeling mistake. The second is
a strategy for requesting labels from imperfect labelers that, under a number of
natural conditions, optimizes an information criterion related to the quality of
the resulting dataset. Conclusions and future directions are presented in Sect. 6.

2 The need for large datasets

Nearly all software projects in pattern classification and artificial intelligence
— such as search engines and computer vision systems — require large sets
of training data. For instance, state-of-the-art speech recognition systems are
trained with hundreds or thousands of hours of speech sounds transcribed or
“labeled” by knowledge engineers; leading optical character recognition systems
are trained with pixel images of several million characters along with their tran-
scriptions; one commercial effort at building a knowledge base of common sense
information has required 500 person-years of effort over 17 years so far, most of
this in data entry [14].

There is theoretical and experimental evidence that given sufficiently large
sets of training data a broad range of classifier methods yield similar high per-
formance. From a probabilistic viewpoint, we know from Bayesian estimation
theory that given a classifier model general enough to represent the true under-
lying class-conditional probability distributions, sufficiently large training sets
can dominate or “swamp” poor prior information, thereby yielding accurate
classifiers [1, 7]. Moreover, just as the limitations imposed by the bias-variance
dilemma in regression can be overcome with larger and larger data sets, so too
the only way to overcome the analogous limitation imposed by the (boundary)
bias-variance dilemma in classification is to increase the amount of training data
[10]. Under reasonable conditions, virtually all sufficiently power training meth-
ods give improved estimates and classifiers as the amount of high-quality training
data is increased.

Experimental evidence of the value of large data sets comes from numer-
ous classification competitions, where systems trained with the largest data sets
generally excel, and from corporations, which often expend more effort and re-



sources on data collection and truthing than on classifier design and subtleties oftraining algorithms [3]. In particularly illuminating work, Ho and Baird trainedeach of three standard non-Bayesian classifiers with a very large dataset of iso-
lated handwritten characters. They found that all three classifiers attained very
nearly the same high accuracy and that the trained classifiers exhibited nearly
the same pattern of misclassification errors [11]. They concluded, in short, that
the information in sufficiently large training sets swamped biases and priors in
their classifier models, and the implication is that this is a general result which
holds so long as the fundamental classifier model is sufficiently general (low bias).

The above discussion is, of course, not an argument against efforts to find
good models when building a classifier. Instead, it is a suggestion that builders of
classifiers and AI systems should turn their attention to algorithms and theory
that support the collection of large sets of accurately labeled data [12]. While
computational learning theory may tell us how many patterns are needed for
a given expect generalization error for example, such theory has provided little
guidance on how to efficiently collect such data in a classifier- or use-independent
way.

2.1 An example

We now turn to an extreme illustration of poor generalization resulting from
training parameterized model that is too impoverished to accurately approx-
imate the true underlying distributions [7, pages 142–143]. While admittedly
hardly a proof, this surprising example illustrates that even when we use a prin-
cipled estimation method such as maximum-likelihood, we can get terrible re-
sults. Specifically, even though our model space contains a classifier that would
yield near perfect results (error = 0%), our estimation procedure produces a
classifier with the worst possible generation (error = 100%).

Consider a one-dimensional, two-category classification problem with equal
priors P (ω1) = P (ω2) = 0.5, and the following class-conditional densities:

p(x|ω1) = (1 − k)δ(x− 1) + kδ(x + X) (1)

p(x|ω2) = (1 − k)δ(x + 1) + kδ(x−X)

where δ(·) is the familiar Dirac delta function, which vanishes when its argument
is non-zero and integrates to 1.0, as shown in Fig. 1. The scalar k (where 0 <
k < 0.5) is small, and will shrink toward zero in our construction; further, X is
a distance from the origin, which will grow in our construction. Note that these
two class-conditional densities are interchanged under the reflection symmetry
operation x ↔ −x.

Suppose we model these distributions by Gaussians parameterized by a mean
and variance, that is, p(x|ωi) ∼ N(µi, σ

2
i ). This is admittedly a poor model in this

case, nevertheless such a model is often used when there is little or no information
about the underlying distributions. The maximum-likelihood estimate of the
mean µ1 is merely the mean of the data in ω1 [7], that is, µ̂1 = (k+1)−kX, and



Fig. 1. A simple one-dimensional two-category classification problem in which a
model’s parameters are trained by maximum-likelihood methods on an infinitely large
training set yields the worst possible classification (error = 100%), even though the
model space contains the best possible classifier (error = 0%). The true or target (nor-
malized) distribution for category ω1 consists of a Dirac delta function at x = +1 of
height 1 − k, and a delta function at x = −X of height k. The true distribution for
category ω2 is spatially symmetric to that of category ω1, i.e., the one obtained under
the interchange x ↔ −x, as given in Eq. 1 and shown in gray. The (poor) model for
each distribution is a Gaussian, whose mean is estimated using an infinite amount of
data sampled from p(x|ωi) for i = 1, 2. For sufficiently large X, the estimated means
obey µ̂1 < µ̂2, leading to an error of 1−k. If k is reduced and X increased accordingly,
the training and generalization errors can be arbitrarily close to 100%.

analogously for µ̂2. By the symmetry of the problem and estimation procedure,
the (single) decision boundary will always be at x∗ = 0.

For an arbitrary positive k, the estimated mean µ̂1 is less than zero if
X > (k − 1)/k. Under equivalent conditions, the mean µ̂2 is greater than zero.
Informally speaking, in such a case the means have “switched positions” that
is, µ̂2 > µ̂1. Thus the decision boundary is at x∗ = 0 but the decision region
for ω1, i.e., R1, corresponds to all negative values of x, and R2 to all positive
values of x. The error under this classification rule is clearly 1 − k, which can
be made arbitrarily close to 100% by letting k → 0 and X → (k − 1)/k + ε
where ε is an arbitrarily small positive number. Note that an infinite continuum
of values of the parameters will yield a classifier with error = 0%, specifically
any for which µ̂2 > µ̂1 and |µ̂2| = |µ̂1|. (In fact, there are yet other values of
the means that yield classifiers with error = 0%, such as any that have equal
variances, σ2

1 = σ2
2, and µ̂1 > µ̂2 with the intersection of the Gaussian densities

lying between x = −1 and x = +1.)

This surprisingly poor classification performance is not an artifact of using
limited training data or training to a poor local minimum in the likelihood
function — in fact, neither of these are the case. Note too that even if the
variances were parameters estimated from the data, because of the symmetry
of the problem the decision boundary would remain at x∗ = 0 and the error
would be 100%. The informal lesson here is that even a well-founded estimation



method such as maximum-likelihood can give poor classifiers if our model space
is poorly matched to the problem (high bias). In such cases we should expand the
expressiveness of the models; this generally requires that we train using larger
data sets.

3 The practice of collecting and truthing data

Given the manifest need for large data sets, we naturally ask: What are some
of the sources of such vital data? Optical character recognition companies em-
ploy knowledge engineers whose sole task is to optically scan printed pages and
then transcribe and truth the identities of words or characters [3]. Likewise, the
Linguistic Data Consortium has dozens of knowledge engineers who transcribe
recorded speech in a variety of languages on a wide variety of topics. Entering
data by hand this way is often expensive and slow, however. An alternative ap-
proach, traditional data mining [8], is inadequate for many problem domains in
part because data mining provides unlabeled data or because the data is simply
not in an appropriate form. For instance the web lacks pixel images of hand-
written characters and explicit common sense data and thus such information
cannot be extracted by data mining. Moreover, accurately labeled data can be
used in powerful supervised learning algorithms, while if the data is unlabeled
only less-powerful unsupervised learning algorithms can be used. For this reason,
we naturally seek inexpensive methods for collecting labeled data. Such a goal
is virtually identical to that for transcribing audiotapes and videotapes.

As we shall see below, the internet can be used in a new way to gather needed
labeled data: facilitating the collection of information contributed by humans.

3.1 Trends in open software and collaboration

Before we consider new methods for collecting and truthing data, we shall review
some important trends. There are several compelling lessons from collaborative
software projects that have major implications for systems supporting the col-
lection of data. Consider the open source software movement, in which many
programmers contribute software that is peer-reviewed and incorporated into
large programs, such as the Linux operating system. Two specific trends must
be noted. The first is that the average number of collaborators per project has
increased over the past quarter century. For instance, in the late 1970s, most
open collaborative software projects such as emacs involved several hundred
programmers at most, while by the 1990s projects such as Linux involve over
100,000 software engineers. The second trend is that the average technical skill
demanded of contributors has decreased over that same period. The program-
mers who contributed to gcc in the 1980s were experts in machine-level program-
ming; the contributors to Linux know about file formats and device drivers; the
contributors to the Newhoo collaborative open web directory need little if any
technical background beyond an acquaintance with HTML.



3.2 The Open Mind Initiative

Let us review the following general facts and trends:

– pattern classifiers and intelligent software are improved with large sets of
high-quality data

– open source software development techniques are applied increasingly to
lower skilled collaborators

– open source development, and general collaborative projects, are expanding
to larger groups as a result of the World Wide Web

– the internet can be used as an infrastructure for collecting data

These trends, and particularly the emergence of the World Wide Web, sug-
gest that collaborative efforts can be extended to an extremely large pool of
contributors (potentially anyone on the web), whose technical expertise can be
low (merely the ability to point and click). These ideas were the inspiration un-
derlying the creation of the Open Mind Initiative, the approach we now explore.

The central goal of the Open Mind Initiative (www.OpenMind.org) is to sup-
port non-expert web users contributing “informal” data needed for artificial in-
telligence and pattern recognition projects, as well as closely related tasks such as
transcribing audio or video data. The Initiative thus extends the trends in open
source software development to larger and larger groups of collaborators, allow-
ing lower and lower levels of technical expertise. Moreover, the Initiative broad-
ens the output of collaborative projects: while traditional open-source projects
release software, the Initiative releases both software and data [17, 18].

A prototypical open data collection project in the Initiative is illustrated in
skeleton form in Fig. 2. The project site contains a large database of isolated
handwritten characters, scanned from documents, but whose character identities
are not known. Individual segmented characters from this database are presented
on standard web browsers of contributors who then identify or “label” the pat-
tern by clicking buttons on a simple interface. These labelings are automatically
sent to the project site, where they are collected and used to train software that
classifies handwritten digits.

Some data acquisition projects in the Initiative could employ novel human-
machine interfaces based on games. For instance, imagine an Open Mind Initia-
tive chatbot project in which data is collected while contributors play a modified
version of Dungeons and Dragons. In this new game, players read short texts
— which discuss potions to drink, swords to brandish, rooms to enter, tasks
to accomplish — generated by automated text generation programs. As part
of the game, players must indicate how “natural” these texts are. This valu-
able feedback, collected at the project site, provides information for adjusting
the parameters in the text generation programs, thereby yielding more natural
generated text. In such game-based projects, contributors download the game
software (presumably written in Java) from the project site. The data captured
on the contributor’s machine is stored locally and sent to the project site at the
end of a game session.



Fig. 2. This simplified, skeleton architecture shows the general approach in an open
data collection project on isolated handwritten digit recognition. The unlabeled pixel
images are presented on the browsers of non-expert web users, who indicate their
judged category memberships by means of a button interface. Occasionally, the same
pattern is presented to two or more independently selected contributors, to see if they
agree; in this way, the reliability of contributors is monitored semi-automatically, and
the quality of the data can be kept high.

While in most of the Initiative’s projects contributors provide data through
standard web browsers, in other projects contributors will require a more so-
phisticated human interface. For instance, in projects using a game interface,
contributors will download the presentation and local cacheing software resident
from the project site, and install it on their local machine. Data is collected while
the contributor plays the game and is sent to the project home site at the end
of a game session.

There are a number of incentives for people to contribute to Open Mind
Initiative projects. Contributors seek benefit from the software (as in a text-
to-speech generator); they enjoy game interfaces (as in online versions of Dun-
geons and Dragons); they seek public recognition for their contributions (as in
SETI@home); they are interested in furthering the scientific goals of the project
(as do amateur ornithologists through annual bird counts for the Audubon So-
ciety); they seek financial incentives such as lotteries, discounts, e-coupons or
frequent-flier awards provided by third-party corporations [16].

The Open Mind Initiative differs from the Free Software Foundation and tra-
ditional open-source development in a number of ways. First, while open-source
development relies on a hacker culture (e.g., roughly 105 programmers contribut-
ing to Linux), the Open Mind Initiative is instead based on a non-expert web
user and business culture (e.g., 109 web users). While most of the work in open-
source projects is directly on the final software to be released (e.g., source code),
in the Initiative most of the effort is directed toward the tools, infrastructure
and data gathering. Final decisions in open source are arbitrated by an expert
or core group; in the Initiative contributed data is accepted or rejected auto-
matically by software that is sensitive to anomalies or outliers. In some cases,
data can be rejected semi-automatically, for instance by having data checked by
two or more independently chosen contributors. Such “self-policing” not only
helps to eliminate questionable or faulty data, it also helps to identify unreliable
contributors, whose subsequent contributions can be monitored more closely or



blocked altogether, as we shall mention below. It must be emphasized that the
Open Mind Initiative’s approach also differs significantly from traditional data
mining. In particular, in data mining a fixed amount of unlabeled information is
extracted from an existing database (such as the web), whereas in the Initiative
a possibly boundless amount of labeled data is contributed.

The Open Mind Initiative has four projects in progress: handwriting recogni-
tion, speech recognition and a small, demonstration AI project, Animals. These
have been tested on intranets and are being debugged and load tested for full
web deployment. The fourth project site, Open Mind common sense, is open
and accepting contributed data over the web. As of May 2001, it has collected
400,000 common sense facts from 7000 separate contributors through a range of
“activities,” such as describe a picture and relate two words. To date,
data monitoring in this project has been semi-automatic whereby contributors
“self-police” the contributions of each other.

4 Challenges and applications of a theory of data
acquisition and truthing

Below are several scenarios and problems in data acquisition and truthing that
are ammenable to computational theory, several are motivated by the challenges
faced by the Open Mind Initiative. At base, many of these problems can be cast
as learning the properties of the population of n labelers while simultaneously
learning properties of the dataset.

– For open contributions of labels for handwritten characters, find the minimal
conditions required to prove learnability of the character identities. This
problem bears similarities to the approach of boosting, which will improve
classification of weak learners [9]. Does the reliability of the contributors,
weighted by the number of labels each provides, have to be greater than
that of pure chance? Are there weaker conditions that nevertheless ensure
learnability?

– A simple algorithm for improving the quality of contributed labels is “data
voting,” (or more generally “self-policing”), that is, presenting the same
pattern to nv labelers and accepting their majority vote. (This is related
to the approach of collaborative filtering [4].) For a given total number of
presentations of patterns to be labeled, if nv is large, we collect a small
amount of accurate data; conversely, if nv is small, we get a large amount of
less-accurate data. How do we set nv to get a dataset that will lead to the
most accurate classifiers? How does nv change as the classifier is trained?

– How can we estimate the reliabilities of individual contributors while col-
lecting data? How do we most efficiently identify “hostile” contributors, who
seem to know the proper category identities, but deliberately submit false
labels? (We assume that we can always associate a distinct identity with
each contributor.)



– Given an estimate of such reliabilities and other properties of all n contribu-
tors, and given a set of unlabeled data and a partially trained classifier, how
do we choose the single point from the data and a particular candidate labeler
such that the returned label is expected to improve the classifier the most?
This problem is more subtle than traditional active learning, which typically
presumes the labeler is an omniscient oracle [6, 19] (and see Sect. 5.2).

– How can we find the contributors who are “complementary,” that is, where
the weaknesses of one match the strengths of the other. For instance, in
truthing handwritten OCR, one contributor might be very accurate on nu-
merals, another on text letters. Clearly it would be most efficient to pair
these contributors on a large text, than to use two who are both strong on
numerals alone or on text alone.

– Optimal strategies for storing data and delaying decisions on whether to use
it. A contributed point may seem like an outlier or hostile earlier in the data
collection process, but no so, later in the context of more data.

– Consider the problem of transcribing a videotape by a number n of tran-
scribers, each with a possibly different (estimated) accuracy and expertise.
Suppose we have some measure of the n× (n− 1) correlations between their
labelings on representative texts. How do we find the smallest subset of la-
belers that will yield some criterion accuracy, say 99.5%?

At first consideration it appears that data collection such as in the Open Mind
Initiative’s handwriting project is an example of stochastic game theory. After
all, we treat the contributors as random processes, with variable reliabilities,
and the host seeks to minimize a cost. In fact, though, stochastic game theory
addresses games in which opponents form strategies that must take into account
random processes, such as the roll of dice in backgammon or sequence of cards
dealt in poker [2]. There seems to be little or no work on computing optimal
strategies in arrangments such as the Open Mind framework.

Collectively, questions of this sort are not properly data mining either, where
there is a large fixed data set without human intervention. While closely related
to cost-based training (where there is a cost for collecting data given a particular
classifier or learning algorithm), in many cases we are building a dataset or
transcribing a text and do not know which classification algorithm will later be
applied.

5 Two results in the theory of labeling

We now summarize two results, derived and explored more fully elsewhere, in
the theory of data labelling [13].

5.1 The Fisher information of samples labeled by an unreliable
labeler

Recall first the statistical score, V , a random variable defined by

V =
∂

∂θ
lnp(D; θ), (2)



where the data set D is sampled from the density p(x; θ) where θ is a scalar
parameter. The Fisher information J(θ) is then the variance of the score, that
is,

J(θ) = Eθ

[
∂

∂θ
lnp(D; θ)

]2

. (3)

The Cramér-Rao inequality states that the mean-squared error of an unbiased
estimator F (D) of the parameter θ is bounded from below by the reciprocal of
the Fisher information, that is,

Var[F ] ≥ 1

J(θ)
. (4)

Informally, we can view the Fisher information as the information about θ that
is present in the sample D. The Fisher information gives a lower bound on the
error when we estimate θ from the data, though there is no guarantee that there
must always exist an estimator that achieves this bound.

The Fisher information of the prior probability P (ω1) ≡ P1 chosen from a
density p(x|ω1) was shown by Castelli and Cover [5] in the labeled and unlabled
cases to be

J(P1) =
1

P1(1− P1)
(5)

J(P1) =

∫
(p1(x)− p2(x))2

P1p1(x) + (1− P1)p2(x)
dx (6)

respectively. Lam and Stork [13] have generalized these results to the more re-
alistic case where labelers are unreliable. We model such unreliability as if the
labeler had perfect information and employed Bayes decision rule but then, with
probability α (where 0 ≤ α ≤ 1), reported a different label. Under these condi-
tions, the Fisher information is:

J(P1) =

∫ [
(αp1(x)− (1− α)p2(x))2

αP1p1(x) + (1− α)(1− P1)p2(x)

+
((1− α)p1(x) − αp2(x))2

(1− α)P1p1(x) + α(1 − P1)p2(x)

]
dx. (7)

The case α = 0 is equivalent to the labeled case above. The case α = 1 corre-
sponds to a “hostile contributor” who always willfully provides the wrong label.
In the two-category case, however, the hostile contributor is in fact very helpful.
All we need is a single, reliable bit of information, provided by a trusted expert
for instance, to identify the true labels from the hostile data.

5.2 An optimal strategy for requesting labels

A general labeling strategy is an algorithm for deciding which unlabeled data
points are to be presented to which of a set of n labelers given some information



about the labelers and the data in order to optimize some criterion. Consider the
following specific case. Suppose we have two independent labelers, each known
or assumed to have the same unreliability α. Suppose too that we have a set of
unlabeled data in which each point is to be assigned one of two categories, ω1

or ω2. We have two unlabeled points, x1 and x2. Suppose we can exploit just
two (total) labeling decisions from labelers, and our goal is to learn “as much
as possible” under these conditions. Which pattern should be assigned to which
labeler?

In this case, the natural measure of information to be learned is

I = I(ω|x1) + I(ω|x2)

= −
2∑

j=1

P (ωj |x1)log2P (ωj |x1)−
2∑

j=1

P (ωj |x2)log2P (ωj |x2), (8)

where I(ω|xi) is the information about the categories given a label on pattern
xi and the P (ωj|xi) are probability estimates given by the current state of the
classifier. The optimal strategy depends upon α and these estimated category
memberships. Figure 3 summarizes the optimal strategy.

Fig. 3. The optimal data labeling strategy for two points x1 and x2 is illustrated for
various levels of the contributor unreliability, described by α, and P (ω1|xi) as given
by a classifier. In the limit of small α, this strategy is to present one pattern to labeler
1 and one pattern to labeler 2. In the large-α case, the strategy is to present the most
uncertain point (i.e., the one with P (ω1|xi) ' 0.5) to both labelers.

Examine the α = 0.1 case. In this low-noise case, the labelers are reliable,
and for most values of P (ω|xi) the optimal strategy is to request a label for x1

and for x2. However, if P (ω1|x2) is very small (e.g., 0.05), then providing a label
for x2 will not provide much information or refine our estimate of P (ω1|x2). As
such, our strategy in that case is to request both labelers to label x1, as shown
by the light gray region.



In the high noise case, α = 0.4, the range of values of estimated probabilities
where we request separate points to be labeled separately is small. This is because
we can gain more information by having two labels of a single point. In an
extreme case α = 0.499, not shown, then the labels are essentially the result of
a coin toss, and provide no information. It is best, then, to apply both to the
same point.

6 Future work

There remains much work to be done on the computational theory of data acqui-
sition and truthing. No doubt, there are formal similarities between subcases of
the data acquisition and truthing problem and cases in more traditional compu-
tational learning. We should explore and exploit such formal similarities. Never-
theless, the manifest importance of collecting high-quality data sets in a number
of application environments provides great opportunities for developing useful
theory leading to improved real-world systems.
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