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Abstract—For dynamic spectrum allocation (DSA), distributed
game has emerged as an attractive approach that enhances radio
spectrum utilization efficiency at scalable complexity in network
size. Cognitive radios act as game players to judiciously decide
their transmission power spectrum density (TPSD) based on
channel state information (CSI), which is generally estimated
independently from the DSA games and may cause large com-
putational and communication overheads. Particularly in the
presence of doubly selective fading channels, a conventional DSA
game needs to re-train the channel estimator and re-calculate
the TPSD decisions for every transmission burst. To enable DSA
intelligence at affordable costs, this paper proposes novel adaptive
DSA algorithms based on channel tracking. Under the framework
of extended Kalman filter (EKF), both the unknown CSI and the
TPSD are modeled into a state vector that is to be tracked dynam-
ically. This approach leads to EKF-based adaptive games that
jointly track the CSI and update TPSD decisions, resulting in fast
convergence and reduced communication overhead. Simulations
are performed to testify the effectiveness of the proposed DSA
algorithms, in terms of the achieved system spectrum efficiency,
communication overhead, as well as resilience to user mobility.

Index Terms—Channel tracking, distributed game, doubly selec-
tive fading, dynamic spectrum allocation, extended Kalman filter.

I. INTRODUCTION

I N THE emerging wireless access paradigm of dynamic
spectrum allocation (DSA), spectrum-agile cognitive radios

(CRs) opportunistically gain access to temporarily unused
frequency bands in order to improve the network spectral
efficiency [1], [2]. A popular approach to DSA is via distributed
games, which yield efficient radio resource allocation at scal-
able complexity in the network size [2]. CRs are self-interested
game players, each of which optimizes its local utility function
by taking action from the action space defined by available
spectrum and allowable transmission power. DSA boils down
to determining the transmission power spectral density (TPSD)
of each CR for efficient spectrum utilization.

Recent research on the game approach to DSA has focused
on the game-theoretic and information-theoretic aspects, which
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reveal the achievable rates on spectral efficiency, and enhance-
ment strategies for designing local utility functions [3]–[5].
These works rely on perfect channel state information (CSI),
and largely ignore the communication overhead incurred by dy-
namic gaming. In practice, the distributed nature of game-based
DSA gives rise to a number of implementation challenges in
terms of communication burdens, computational complexity,
and the need for fast channel acquisition. Game players make
individual TPSD decisions, broadcast messages (e.g., TPSD
decisions and/or interference prices [4]) via a common control
channel, and may iterate the process through multiple rounds
until convergence. This process causes a heavy communication
burden on the control channel, which has been recognized as a
bottleneck in implementing DSA. This problem is particularly
aggravated in high-rate mobile systems experiencing doubly
selective fading channels. DSA iterations have to converge
within the time limitation of an invariant fading block [5]. For
practical DSA schemes, it is essential to alleviate the commu-
nication burden over the control channel.

Agile spectrum access relies on spectrum sensing to obtain
knowledge of the wireless environments. A CR needs to con-
stantly monitor the dynamics of fading channels, while making
decisions on its TPSD instantaneously. Constrained by limited
power, the CR must balance its power usage between that for
channel sensing and for data transmission, and thus cannot af-
ford much computational complexity on game-oriented CSI es-
timation in practice. Furthermore, the CSI estimation errors may
impact the game outcome [6], which has to be properly ac-
counted for in order to identify practical transmission policies
and channel estimation techniques that retain the benefits of
DSA.

To cope with the aforementioned physical-layer challenges
in DSA, this paper develops adaptive DSA schemes that ac-
count for the communication needs of dynamic sensing and
gaming at practical complexity. We consider a distributed CR
network in the presence of doubly selective fading channels.
To expedite the convergence speed of DSA games in such un-
known channels, we resort to Kalman filtering (KF) to adap-
tively track the channel dynamics and then incorporate the pre-
dicted CSI into the decision making process of DSA games. The
KF techniques have been extensively studied for channel pre-
diction and estimation of frequency selective fading channels,
working well in both time domain (TD) [7] and frequency do-
main (FD) [8]. Tailoring to the need of CR applications, our goal
here is not just to estimate and track the channel information, but
to ultimately reach distributed TPSD decisions that adapt to the
varying fading channels. To this end, we propose an extended
Kalman filter (EKF) approach that incorporates the TPSD into
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its state vector. The state-space equation with respect to the
TPSD is derived from optimal water-filling power allocation
in the frequency domain [5], which is nonlinear in nature. Two
low-complexity DSA algorithms are then designed: an EKF-as-
sisted game (EKFG) and an EKF-updated game (EKFUG). Both
DSA algorithms make adaptive TPSD decisions based on new
channel updates and past decisions, which result in fast conver-
gence and thus save communication and computational over-
head.

The rest of the paper is organized as follows. Section II out-
lines the system model and provides a primitive on game-based
DSA under known CSI. Section III derives the state-space equa-
tion and measurement equation for the joint TPSD decision
and channel tracking problem. A set of adaptive DSA algo-
rithms are proposed subsequently, including EKFG, EKFUG,
as well as some variants such as frequency-domain KF game
(FDKFG). Section IV provides simulation results to compare
the proposed DSA algorithms with both the ideal game (IG)
under perfect CSI and a non-adaptive game based on linear
MMSE (LMMSEG) channel estimation [6]. Concluding re-
marks follow in Section V.

Notation: and denote conjugate, trans-
pose, Hermitian transpose, and matrix pseudo-inverse, respec-
tively. stands for expectation. denotes complex
Gaussian distribution with mean vector and covariance ma-
trix . denotes the identity matrix of size ; and

denote an all-zero and all-one matrix, respec-
tively. denotes denotes
the th entry of a vector; denotes a vector composed by

th to th entries of a vector ; and denotes the th
entry of a matrix. denotes a matrix whose th entry
is ; The symbol denotes Kronecker product;

and denote element-by-element multiplication
and division, respectively.

II. MODELING AND PROBLEM STATEMENT

A. Multi-CR System in Doubly-Selective Fading Channels

Consider a network of spectrum-agile users sharing access to
a total of Hz in the frequency range . Depending
on the frequency locations of active legacy users, the radio spec-
trum is segmented into consecutive yet non-overlapping fre-
quency bands. The th band is located at , with center
frequency and bandwidth

.
Through medium access control, active CR users may reg-

ister through a control channel and perform DSA within each
session during which the user distribution remains unchanged.
Suppose that there are users in the session, and the ses-
sion time is much longer than the channel coherence time. Each
cognitive user corresponds to one pair of unicast transmitting
and receiving nodes. For notational convenience, the th CR
user, the th transmitter, and the th receiver are denoted as

and , respectively. Focusing on the process of
DSA, this sequel adopts the following assumptions.

• The channel delay spread is bounded by , while the
maximum Doppler frequency is on the link between

and .

• Without loss of generality, the frequency bands are
partitioned such that the PSD of the channel response is
smooth and almost flat within each band, i.e., is no
greater than the coherence bandwidth . The
bandwidths are not necessarily equal.

• The frequency boundaries are known to the CRs,
either as a priori knowledge or having been estimated via
spectral detection and classification techniques [2], [8].

• There is no central spectrum controller in the network,
mandating distributed DSA. Each cognitive receiver
estimates the received signal PSD, decides on the TPSD,
and feeds the decisions back to its dedicated transmitter

via a perfect feedback channel.
To account for high-rate transmissions and user mobility, the

propagating channels are modeled as doubly selective fading
channels. Corresponding to all the pairs, there are a
total of wireless links, of which are dedicated data chan-
nels and the rest are interference channels [2]. Reflecting fre-
quency selectivity, the channel impulse response between
and is expressed by [8], [12]

(1)

where and is an upper bound of the multipath
number (e.g., ). The channel taps , are
typically assumed to be low-pass zero-mean circular complex
Gaussian processes.

We adopt the commonly-used block fading model in which
the channel response is treated as invariant within each block.
We limit our treatment on time selectivity to block-by-block
slow fading. The block size is given by , where

is the channel coherence time. Let denote the
Fourier transform (FT) of in (1) with respect to .
Sampling at and

, the discrete frequency-domain (FD) channel
response of the link on the th band at the th time
block is given by

(2)

where and
. Defining and

, we express the
channel transfer function at the th block as

(3)

In the presence of mobility-induced Doppler shifts, the
channel dynamics can be modeled by an auto-regressive (AR)
process [10]. A th-order AR model on is given by [12]

(4)

where is an complex Gaussian noise vector obeying
. In the time domain (TD), documented experi-

ments suggest that the AR parameters and , can be
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Fig. 1. Transmission scheme of an N -CR system: nth block.

obtained by solving a standard Yule-Walker equation based on
the correlation matrices defined by [10]

(5)

where is the correlation factor of the tap gain,

, and is the zeroth-order Bessel
function of the first kind. The TD AR models in (4) and (5) form
the basis for accurately describing the physical channels in the
frequency domain.

We collect the TD channel taps over every
consecutive blocks into a state vector

. Following (4),
obeys a state-space equation in the form

(6)

where

and .

B. Transmission Scheme

In the distributed game approach to DSA, each CR makes de-
cisions on its own transmission power spectrum density (TPSD)
based on the CSI of all the channels sensed at its receiver. To
acquire such CSI, we adopt a pilot-based transmission scheme
depicted in Fig. 1. During each session, active CRs coarsely syn-
chronize through a control channel and start block transmission.
At the beginning of each block, CRs take turns to transmit pilots
one user at a time, while all other transmitters are silent. After
all users have transmitted, each of the receivers will
have acquired the CSI on all received channels. Multi-player
gaming is performed to determine the preferred TPSD of each
CR, which will be used in the ensuing information data trans-
mission within this block.

Suppose that each user transmits pilot symbols per block,
followed by zeros padded at the tail of the pilots to guard
against inter-user interference caused by multipath. It is thus
required that , where . Let us
collect the pilot symbols of at the th block by an

vector . The th pilot
symbol received at from is given by

(7)

where is the pilot transmission power and is
the observation noise. Accordingly, the received sample vector

is related to the

unknown channel state vector by

(8)

where
is the transmission matrix built on the

zero-prefixed vector ,

and is the complex

Gaussian noise obeying .

C. Preliminaries on Game-Based DSA and Problem Statement

For each , the TPSD distribution can be specified by a
vector , where
denotes the TPSD allocated to the th band at the th block.
Let and denote the total transmit
power of . Under a game framework, the action space of

is defined by allowable subject to the power con-
straint . When the FD CSI is known, each
locally maximizes the utility defined by its information-theo-
retic data rate over all bands [2]

(9)

where is the ambient noise spectrum and the SNR gap
is a scalar constant [2]. Each CR makes its own decision on

based on its own objective, but implicitly interacts with
other users via , until reaching a Nash Equilibrium, if
existent [5].

There are a variety of game types, among which we con-
sider games of complete information. This means that all the
parameters (power constraints, channel gains, etc.) are common
knowledge to all users in the system [3]. In practice, some of
these parameters have to be measured, and the corresponding
measurements must be exchanged among the CRs. In a con-
ventional one-shot game, each CR chooses its power allocation
once and for all, which incurs minimal communication over-
head, but may not attain high sum utility. In an iterative game,
CRs take turns to make individual TPSD decisions via (9) once
per user in each iteration of the game, broadcast messages/de-
cisions via a common control channel, and repeat multiple it-
erations until convergence. DSA via iterative games enhances
the system capacity over one-shot games. However, it causes a
heavy communication burden on the control channel.

The goal of this paper is to derive optimal solutions to ac-
quiring the CSI estimates needed for DSA among mutiple CRs.
In a general setup, each CR does not know the CSI a priori, but
just knows the measurements that relate to TD CSI via
(8). Particularly when an iterative game is adopted for DSA in
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the presence of slowly time-varying channels, we develop adap-
tive means for joint CSI tracking and TPSD updating via ex-
tended Kalman filtering. The proposed techniques save compu-
tational load via adaptive processing, and result in fast conver-
gence via joint updating of both CSI and TPSD, which in turn
reduces the communication overhead incurred during the tran-
sient phase of iterative games.

To facilitate the CSI estimation and TPSD decision making
process, we also suggest a general transmission structure
depicted in Fig. 1. Our focus here is to identify an enabling
transmission scheme for practical multi-CR games in a gen-
eral manner, rather than to advocate a specific pilot pattern
or a transmission format for some specific system architec-
ture such as CDMA or OFDM. Nevertheless, for a specific
system (including CDMA and OFDM), once the corresponding
pilot-pattern matrix and the observation equation (8) are
formulated, our proposed DSA algorithms directly apply.

There are some other forms of games such as simultaneous
games and repeated games, which may entail different gaming
processes and communication loads. Nevertheless, the channel
tracking scheme developed in this paper is directly applicable
to other games, whenever CSI becomes relevant as in (9).

III. EKF-BASED ADAPTIVE DSA GAMES

This section presents an extended Kalman filter (EKF) ap-
proach that jointly handles channel tracking and adaptive TPSD
decisions. Frequency-domain state equation and measurement
equation are derived to form the basis of EKF games. A de-
composition strategy is introduced to reduce the computational
load of the EKF. Based on the decomposed EKF, two low-com-
plexity game-based adaptive DSA algorithms are presented, and
their computational complexities are quantified.

A. Channel Tracking via Frequency-Domain Kalman Filter

To track time-varying fading channels, time domain Kalman
filter (TDKF) has been widely used. The TD state-space (6)
and measurement (8) together define a TDKF engine for
tracking the state vector containing TD CSI. Since
our goal here is to determine the TPSD in the frequency
domain, we want to develop an equivalent FDKF for esti-
mating FD CSI. To this end, we define an FD state vector

. Note from (3) that

is nothing but the FT of . Thus, it holds that
and . Defining

, the FD measurement equation arises
from (8) as

(10)

Multiplying on both sides of (6), we obtain the FD
state-space equation as follows:

(11)

where and
.

With (10) and (11) in place, an FD tracker for updating the FD
CSI can be derived from the standard KF. Let

and denote the predicted and updated covariance ma-

trices of the predicted and updated FD CSI vectors

and respectively, and denote the Kalman gain.
The following FDKF procedure arises.

FDKF Algorithm for Estimating FD CSI

Apparently, another approach to track the FD CSI is to

first perform TDKF for updating , followed by applying

FT in the form of . It can be shown
that these two approaches are equivalent, while the TDKF ap-
proach has computational advantages over FDKF. Nevertheless,
the intermediate steps in FDKF are useful in constructing en-
suing joint TPSD and channel tracking schemes that operate in
the frequency domain.

B. TPSD Tracking via Extended Kalman Filter

Tailoring to DSA needs, we next expand the FDKF struc-
ture to incorporate the TPSD vector into the state
vector. By doing so, CRs will be able to make TPSD de-
cisions adaptively by tracking the expanded state vector
via KF. As we will show later, the state equation for
turns out to be nonlinear in FD CSI, which motivates EKF.
Since EKF involves state-vector derivatives defined only for
real-valued variables, we would partition the channel state
vector into real and imaginary parts. Adopting the operator

, we define for each an
expanded joint state vector ,

where collects all the
FD CSI vectors related to . Similarly, we collect all
the measurements received by into a composite vector

. In mathematical ab-

straction, we denote the mapping from state to state

and the mapping from to measurements as

(12)

respectively, where and

.
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The closed-form expressions for the mapping functions
and in (12) will be presented in Section III.C. Assuming
they are known and noting the nonlinear nature of , an EKF
can be directly applied to not only update all the FD CSI esti-
mates tracked by , but also predict the TPSD

to be used by . Let and
denote the covariance matrices of the stacked noise vec-

tors and , respectively. A TPSD tracker is given by
the following standard EKF steps.

EKF Algorithm for Jointly Tracking TPSD and CSI

(13a)

(13b)

(13c)

(13d)

(13e)

(13f)

(13g)

(13h)

(13i)

C. Adaptive DSA Algorithms

The EKF algorithm in (13a)–(13i) offers a framework for
adaptively updating the DSA decisions on the TPSD vector

. The remaining issues are to define the mapping functions
and , and to solve the gradient steps in (13a)–(13i).

From Section III-A, we know that the CSI-related state-vector
element and the measurements are independent of

; hence, the corresponding state-space functions mapping
from to and the measurement function mapping

from to can be derived straightforwardly from (10)
and (11), both being linear. To define the mapping function for
the remaining state-vector element , we re-visit the utility

function in (9). Evidently, the optimal solution to is deter-
mined by all the FD CSI related to as well as the TPSD vec-
tors of all other users. Let denote the function expressing
the optimal in (9), which is given by water-filling [5]

(14)

where
is the effective power limit, and

is a scalar loading factor chosen to satisfy the power constraint.
The operator ensures that the TPSD allocation does not
assign negative power density to any bands. When all the ele-
ments in are positive, that is, there is no zero point in

will transmit power over all bands.
Our adaptive DSA problem boils down to the following re-

maining question: how to solve the unknown predicted joint
state , the state-related matrices and , and

the measurement-related matrices , using the water-filling
solution so that the EKF Algorithm can track the TPSD? In an-
other words, how to solve (13a)–(13c), (13e) based on (14)?

Appendix A answers this question and derives the detailed
steps in the EKF (13a)–(13i). Accordingly, we design two game-
based DSA algorithms: EKF-assisted game (EKFG) and EKF-
updated game (EKFUG). Each algorithm involves a DSA game
that starts from and goes through all CRs without loss of
generality. The following Lemma 1 is useful in developing these
algorithms (proof omitted for space limit).

Lemma 1: If there is no zero point in the updated TPSD
, then the power constraint is guar-

anteed automatically.
Our proposed EKFG and EKFUG algorithms using Lemma 1

are described by the following steps.
Step 1) At the beginning of the th block, set to let

start.
Step 2) employs the EKF in (13a)–(13i) to

update the TPSD . In the prediction

step (13a), the predicted TPSD is
computed from the function in (14)
using . Here,

are the updated TPSD vectors of the th

block, while the rest terms
are the previous TPSD from the th block.

Step 3) If there is no zero point in the TPSD , the

power constraint is satisfied auto-
matically, which is guaranteed by Lemma 1. When
zero points exist in , for power constraint
guarantee, a small water-level adjustment is im-
posed by solving a standard water-filling equation
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and then setting

. The broadcasts its updated
TPSD on the control channel.

Step 4) Set . If , go back to Step
2). Otherwise, one game round has completed; for
EKFUG, go to Step 6); for EKFG, go to Step 5).

Step 5) After the first-round EKF, the users resume to
perform an iterative game and go through multiple
iterations. During iterations, CRs take turns to com-
pute the TPSD from the standard water-filling re-
sponse in (14), using the FD CSI estimated from the
first-round iteration completed in Step 4). After con-
vergence, go to Step 6).

Step 6) Each CR uses the estimated TPSD for transmitting
information data until the th block ends. Set

and go to Step 1) to start tracking and trans-
mission in the next block.

The difference between the EKFG and EKFUG procedures
lies in the additional Step 5) that EKFG performs. An iterative
game in Step 5) offers the EKFG with better spectral efficiency
at the expense of higher communication overhead, as we will
demonstrate via simulations in Section IV.

Some remarks are due on the communication overhead in-
curred over the control channel. Corresponding to Fig. 1, during
the training phase when users take turns to transmit pilots,
they need to send signaling messages over the control channel
to indicate the conclusion of their pilot transmission so that the
next CR can start transmitting. During the gaming phase, in
Steps 4) and 5), each user needs to broadcasts its tentative TPSD
decision (and interference price when applicable) over the con-
trol channel. Such overhead is inherent in sequential games and
iterative games with perfect information, in exchange for better
achieved utility than one-shot games that do not involve infor-
mation exchanges.

D. Efficient Implementation of EKFG and EKFUG

The EKF offers a natural framework for designing adaptive
games. On the other hand, it incurs considerable computational
complexity because of the matrix inversion. The joint state
vector is of length , which can be large when

is large. To reduce the complexity of EKF, it is desired
to decompose the joint state vector into smaller segments and
track each segment via a small-size EKF in a parallel manner.
Lemma 2 demonstrate the feasibility of such a decomposition.

Lemma 2: Under the game framework, the EKF in
Section III.B can be decomposed into an equivalent archi-
tecture consisting of a small-scale EKF for tracking the TPSD
(EKF-TPSD) via (15a)–(15e), parallel FDKFs for tracking
the FD CSI, complex-to-real KF mapping (C/R-KFM)
modules and a composition KF mapping (KFM) module.

Proof: See Appendix B for the proof.
Let denote the updated covariance matrix of

(which stacks all the -related FD CSI) at the th block,
denote the residual covariance matrix of , and

denote the Kalman gain for updating only the TPSD. The EKF-
TPSD algorithm is given in (15) [see Appendix B for details].

In the EKF-TPSD algorithm, each CR first makes a predicted
game-decision on the TPSD as in (15a). Essentially,

makes a predicted action in response to other CRs based
on the state transition equations of all -tracked FD CSI.
Then, the predicted TPSD is updated by Kalman gain and mea-
surement residual in (15e) to yield the final TPSD. This is a
step that modifies its predicted action based on measure-
ments of all -tracked FD CSI. Meanwhile, the FD CSI of
each of users is tracked by a small-scale FDKF as shown in
Appendix B. With such decomposition, the EKF steps can be
implemented in the proposed adaptive DSA algorithms EKFG
and EKFUG at much lower complexity.

EKF-TPSD Algorithm for Tracking TPSD

(15a)

(15b)

(15c)

(15d)

(15e)

So far, we have presented a couple of game-based DSA al-
gorithms including EKFG and EKFUG, all implemented by the
low-complexity EKF-TPSD algorithm. Furthermore, the FDKF
algorithm for CSI tracking can also be expanded into a DSA
game, which we term as FDKFG. In FDKFG, small-scale
FDKF is performed to track the decomposed CSI at the begin-
ning of each block as in Section III-A, followed by a standard
game as in (9) and (14) of Section II-C to compute the TPSD.
The tracking procedures of all these KF-related adaptive DSA
algorithms are summarized in Fig. 2, which shows the decom-
position of EKF based on Lemma 2.

E. Comparison of Computational Complexity

It is of interest to compare the proposed adaptive DSA al-
gorithms with reference to the non-adaptive DSA counterpart.
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Fig. 2. Block diagrams of EKFG, EKFUG and FDKFG for CR .

TABLE I
COMPUTATIONAL COMPLEXITY PER CR

In [6], a cognitive receiver uses an LMMSE estimator to ob-
tain the necessary TD CSI, which is then used in (9) to en-
able the standard game described in Section II-C. This proce-
dure is performed block by block, without adaptation across
blocks. We term this DSA algorithm as the LMMSE-assisted
game (LMMSEG) and use it as a reference for comparison.

We first evaluate the comparative computational complexity.
For Kalman-type filters, the filtering complexity is dominated
by the matrix-inversion operation, compared to multiplication
and addition operations. Suppose that a standard inversion tech-
nique is used which costs operations for an ma-
trix. The complexities of FDKFG, EKFG and EKFUG are listed
in Table I, along with that of LMMSEG. It is shown that EKFG
and EKFUG cost almost the same complexity as FDKFG and
LMMSEG, since they all have the same complexity of matrix
inversion. Compared with LMMSEG, the EKFG and EKFUG
algorithms do incur a slight increase in complexity from their
multiplications and additions, but the increase is trivial since a
small is sufficient for accurate AR modeling. It is worth em-
phasizing that the computational load of EKFG and EKFUG is
made to be comparably small to that of LMMSEG through the
decomposition steps that we introduce in Lemma 2. As such,
the performance advantage of joint tracking of TPSD and CSI
in our adaptive DSA comes at little complexity overhead com-
pared with the separate processing in LMMSEG.

IV. SIMULATIONS

A. System Setup

Simulation examples are performed on a two-user CR net-
work operating over the frequency range of MHz,
where MHz is allocated to licensed mobile communi-
cation system as regulated by US FCC and MHz be-
longs to license-free amateur radios. The MHz range
is divided into four bands each of 2 MHz bandwidth. Thus,

MHz and MHz. The sampling
interval is s.

In all simulations, is employed, which has been shown
to lead to effective tracking algorithms [10], [11]. The multipath
channel adopted has two taps with un-correlated tap gains, i.e.,

and , which has been extensively used [13]. In
the channel covariance matrix, the direct-channel gain is 3 dB
stronger than the cross-channel gain.

The channel Doppler spread is caused by the two receivers
moving at 30 km/h for and 50 km/h for , which are
typical speeds specified in ITU Veh-A. The channel coherence
time is ms to yield channel time-correlation

, which falls within the permissible range for KF-based
tracking to work. The block size is , and
the pilot arrangement is [8].

The observation noise is assumed to be white, i.e., is
in the form of . The measurement SNR of the pilots
is given by ,
and the data-transmission SNR is

. To
initialize the EKF, is generated randomly from

, and .
The KFs are trained for blocks after initialization to
avoid possible unstable states [8]. Simulation results after the

th block are collected to assess the performance metrics of
interest, including the data rate loss, the communication burden
and the TPSD estimation errors. Each test case generates 1000
channel realizations.

B. System Performance Versus

The total system-rate of the game at the th block is de-
fined as the summation of all the CRs’ data rates at the th
block. This quantity is indicative of the spectrum utiliza-
tion efficiency, which is the motivating factor for DSA. The
baseline for comparison is the total system-rate of the
ideal game (IG), which relies on the perfect CSI to make
decisions on the TPSD. The system-rate of the EKFG is de-
noted by , while the system-rate loss is defined as

. The mean system-rate loss is

defined as . At an
outage probability , the outage system-rate loss is defined
as . Similarly,

and are
defined for LMMSEG and EKFUG, respectively.

Fig. 3 depicts the mean and outage system-rate losses versus
the observation SNR for all the proposed DSA algo-
rithms. For various values, the mean loss of EKFUG
is better than LMMSEG and worse than EKFG. For example,
EKFUG’s mean system-rate loss over the ideal game is about
1.1%, falling between EKFG’s 0.7% and LMMSEG’s 1.9% at

dB. Its outage loss shows a similar trend, showing
2.6% at dB while whose those of EKFG and
LMMSEG are 2.1% and 3.7%, respectively. An interesting ob-
servation is that FDKFG performs worse than EKFUG, in terms
of the outage system-rate loss. Their outage difference is small
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Fig. 3. Mean and outage system-rate losses versus observation SNR, SNR =

5 dB, v = 30 km/h, v = 50 km/h.

at low SNRs and becomes large at high SNRs, and their mean
difference shows a larger gap than their outage difference.

Another point of interest is the communication load of the
proposed DSA algorithms. We suppose that the communication
load for one user to announce its TPSD once is bits. In
an -CR game, one iteration is defined as one round in which
every CR takes action once in a sequential manner. Thus, if the
game needs iterations to converge, the average commu-
nication burden of the game on the control channel is given by

bits/s, since each user broadcasts its up-
dated TPSD once per iteration on the control channel. Appar-
ently, the communication burdens of these DSA games are re-
flected in the number of iterations performed.

Fig. 4 compares the communication burdens (on the control
channel) of various algorithms normalized by that of IG. The
number of iterations is determined by how fast the estimated
TPSD approaches that of the IG, indicated by the system mean
square error (MSE) defined for EKFG as

(16)

The system MSEs of EKFUG and LMMSEG are similarly
defined. An iterative game stops when the corresponding

is less than . It is shown in Fig. 4 that the
EKFUG algorithm has the lowest normalized burden at around
19% for various , whereas EKFG incurs a burden of
about 75% and FDKF about 95% close to that of LMMSEG.

Overall, EFKUG has much less communication overhead,
while its performance is quite close to that of IG and better than
LMMSEG. Therefore, EFKUG is competitive for applications
constrained by low-rate control channels. As for EKFG, it has
the best system-rate performance while saving about 35% com-
munication burden over the infeasible IG. Practically, EKFG at-
tains the highest data-transmission rate, and hence the best spec-
trum efficiency, among all the DSA algorithms. Thus, EKFG is

Fig. 4. Normalized communication burden versus observation SNR, SNR =

5 dB, v = 30 km/h, v = 50 km/h.

Fig. 5. Normalized MSE of TPSD versus observation SNR, SNR = 5 dB,
v = 30 km/h, v = 50 km/h.

suitable for high data-rate applications that tolerate some mod-
erate rate burden on the control channel.

Fig. 5 illustrates how close the proposed DSA schemes reach
the ideal TPSD decisions. As in (16), the system MSE of a game
is defined as the summation over the normalized MSEs of all the

TPSD decisions with reference to IG. As verified by Fig. 5,
the greater the observation SNR is, the less the estimation error
is, and thus the less the capacity loss of EKFG and EKFUG is. It
can be observed that the system MSE performance of EKFUG
lies in between that of LMMSEG and EKFG, consistent with
the trend in their comparative system-rate loss performances.

The EKFUG algorithm makes decisions in only one itera-
tion, while the rest games repeat multiple iterations until con-
vergence. Therefore, the EKFUG is most economical in terms
of saving communication burdens, compared with LMMSEG,
FDKFG, and EKFG.
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Fig. 6. Normalized communication burden versus data-transmission SNR,
SNR = 5; 10 dB, v = 30 km/h, v = 50 km/h.

The proposed EKFG algorithm, being an iterative game,
also entails less communication burden than LMMSEG and
FDKFG. This is because it converges faster to the steady
state, thanks to the KF-based channel tracking mechanism that
memorizes history of past blocks. The FDKFG algorithm can
be shown to converge to the same TPSD decisions as EFKG
and thus yield the same data dates, but EKFG causes less
communication burden than FDKFG by faster convergence.

C. Communication Burden Versus

Fixing used during the training phase, Fig. 6 depicts
the communication burden versus data-transmission SNR

. For the practical SNRs, EKFUG incurs the least
communication burden while maintaining a moderately small
system-rate loss over IG.

D. System Performance Versus Mobility

Fig. 7 evaluates the impact of CR speed on the performance.
For convenience it is assumed that both CRs have the same
speed varying from 10 km/h to 50km/h. For
dB and dB, the system-rate loss and the commu-
nication burden are depicted in Fig. 7. At various speeds, sim-
ulations show that EKFUG suffers from smaller system-rate
loss than LMMSEG. For example, the outage loss of EKFUG
is merely 0.15% greater than that of EKFG, while LMMSEG
has the highest loss of 1.4%, for a moderate speed 30 km/h,

dB and dB. On the other hand, EKFUG
enjoys the lowest communication burden, being only 19.6%
of EKFG and 12.7% of LMMSEG. These results confirm that
EKFUG is a low-complexity competitive DSA algorithm with
the lowest communication burden, whereas EKFG offers the
highest data rate at comparably low complexity and a moderate
communication burden.

V. CONCLUSION

To enable practical DSA in CR networks, this paper presents
Kalman filter solutions for tracking channel state informa-

Fig. 7. Outage system-rate loss and communication burden versus CR speed,
SNR = 5; 10 dB, SNR = 5 dB.

tion in doubly selective fading channels. Coupling with the
channel tracking procedure, adaptive DSA algorithms are
developed using EKF-based games, which lead to improved
network spectrum utilization efficiency. The DSA decisions
on the TPSD are incorporated into the state vector of an EKF,
and the state-space equation is derived from the nonlinear
water-filling power allocation function. The proposed EKF
games, including EKFG and EKFUG, are able to jointly track
the channel dynamics and update the TPSD decisions based on
predicted channel information. Such a joint adaptive processing
leads to improved convergence rate for iterative games, which
in turn reduces the communication and computational over-
heads incurred by game-based DSA. The EFKUG algorithm
has low communication burden and is particularly suited for
applications with low-rate control channels, while the EKFG
algorithm offers high spectrum utilization efficiency and is
thus recommended for high-data-rate applications tolerating
moderate communication overhead.

APPENDIX A
DERIVATIONS OF THE EKF ALGORITHM (13A)–(13C), (13E)

Using (14) into (13a), we can compute (13a). To solve
(13c), (13e), we define a sign vector as , if

; otherwise, .

Define . From (13c), we can

obtain:

(17a)

(17b)
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where

, and

are derived from
(10) and (11).

To completely determine (17a)–(17b), the expressions for
and are needed, which we

derive as follows:

(18a)

(18b)

By defining and , the TPSD
can be solved from (14) as

(19)

Taking the first-order derivative on (19), it follows
that (see (20) at the bottom of the page). The term

in (18a) can be obtained as

(21a)

(21b)

where

, and

.

Equations (18a), (20) and (21a)–(21b) solve
. Meanwhile, for , we

have

(22a)

(20)
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(22b)

Equations (22a)–(22b) and (18) solve .
Putting all the above equations together, the EKF algorithm

in (13a)–(13i) can be performed.

APPENDIX B
DECOMPOSITION OF EXTENDED KALMAN FILTER

To complete the decomposition, there are two steps.
The first step is to decompose the EKF into a small-scale
EKF and a standard KF based on . In the EKF Al-

gorithm, we can rewrite as

, where and

are the updated covariance matrices of

and , respectively. Similarly, we rewrite as

.

Based on (17a)–(17b) in Appendix A, we can obtain the
following predictions on covariance matrices: Plugging (23)
(shown at the bottom of the page) into (13a)–(13i), we can
obtain

(24a)

(24b)

(24c)

(24d)

where

and

.

Based on (23) and (24a)–(24d), and letting , it

can be verified that ,

and form a standard linear KF in

term of the state vector that only consists of -tracked
CSIs.

Summarizing, the EKF having as the state vector (cf.
Section III-B) has been decomposed into two parts: a standard
linear KF based on for channel tracking (similar to that
in Section III-A) and a nonlinear EKF that updates the TPSD
allocation according to (15a)–(15e) in Section III-D.

It is worth pointing out that used in updating
has already been computed inherently within the KF for up-
dating . Therefore, the EKF for TPSD does not involve
any matrix inversion, and thus costs much lower computational
complexity than a general EKF with a same-size state vector.

The second step is to decompose the KF for into

FDKFs. Note that is formed by independent real-value

state vectors . According to KF theory, it can

be decomposed into real-value KFs, each having as
its state vector, . The composition KF mapping
(KFM) from real-valued KFs to the KF for is given by
the first equation at the top of the next page. Conversely, the com-
plex-to-real KF mapping (C/R-KFM) from the complex-valued
FDKF Algorithm to real-valued KFs for can be derived
as shown in the second equation at the top of the next page.

In all, the EKF in the game for jointly tracking CSI and TPSD,
is equivalent to a EKF for TPSD, a composition KFM, C/R-
KFMs, and FDKFs.

(23)
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