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ABSTRACT 
 
In this paper we introduce a novel feature extraction 
method based on Nonnegative Matrix Factorization 
(NMF) for hyperspectral image processing. Given the 
large size of the hyperspectral imagery, feature extraction 
plays an important role in producing fast and accurate 
results. Traditional approaches such as Principal 
Component Analysis and Independent Component 
Analysis generate the features as a linear combination of 
the hyperspectral bands emphasizing on the decorrelation 
or independence of the features. Compared to this, NMF 
offers a decomposition solution that is less restrictive 
requiring only the positivity of the features and the 
associated linear transform. Such scenario has a natural 
meaning in hyperspectral imagery where each pixel 
observation is thought to be formed as a linear positive 
mixture of reflectance values of the materials in the scene 
(endmembers) covered by the pixel. With hyperspectral 
imagery spatial resolution ranging from millimeters to 
kilometers, it likely that the data observed are formed as a 
mixture. In this case, the linear transform used to generate 
the features would be associated to the endmembers and 
the resulting features would be associated to the 
abundance of each endmember in the pixels. 
We present our results on using NMF for feature 
extraction by performing experiments with hyperspectral 
digital imagery collection experiment (HYDICE) data as 
well as in-house imagery collected with a SOC 700 
hyperspectral camera. The experiments suggest that NMF 
outperforms PCA in feature and endmember extraction. 
 

1. INTRODUCTION 
 
Remote sensing is generally described as the 
measurement, from a distance, of spectral features of the 
Earth’s surface and atmosphere [1] and has developed in 
parallel with airspace technology. Starting with the first 
successful flights, scientists have realized the advantage of 
aerial over ground observations in terms of cost, accuracy 
and ability to observe inaccessible areas. Applications in 
agriculture, forestry, mining, military surveillance and 
resource and emergency management were soon 

developed further supporting the rapid development of 
remote sensing techniques [2]. Originally based on 
humans, aerial reconnaissance soon shifted to photography 
and video recordings providing considerable amounts of 
information to be analyzed.  
Following these beginnings, advances in optics and 
imaging have revealed that different materials expose 
different properties when analyzed under various light 
wavelength intervals [3]. A classic example is vegetation 
that provides higher reflectance values for near infrared 
wavelengths compared with certain visible wavelengths. In 
contrast, bare soil or man made materials have relatively 
the same reflectance for both of these wavelength ranges. 
Using a simple formula (NDVI – Normalized Digital 
Vegetation Index) [4] that combines the material 
reflectance in near-infrared and imaging sensors capable 
of recording data in both ranges, one can easily build a 
general detection tool for vegetation. 
Hyperspectral imagery takes this idea further. The data are 
collected as hundreds of images (spectral images or 
spectral bands), with each image corresponding to narrow 
contiguous wavelength intervals (Fig. 1a). Hyperspectral 
sensors cover wavelengths from the visible range (0.4�m-
0.7�m) to the middle infrared range (2.4�m) [5].  
In hyperspectral data, it is a common practice to define 
pixel vectors (or spectra) as the vectors formed of pixel 
intensities from the same location, across the bands (Fig. 
1b) [6]. Each pixel corresponds to a certain region of the 
scene surveyed and will represent the spectral information 
for that region.  
 
 
 
 
 
 
 

 
 a)    b) 

Figure 1 – a) Examples of spectral bands for visible (green, 
blue and red) and near infrared wavelength intervals b) 

Formation of pixel vectors or spectra.  



Due to the narrow bandwidth and the abundance of 
observations, the pixel vector for each pixel location 
resembles a continuous function of wavelengths. This 
function describes the reflectance of the material for 
wavelengths within the frequency interval covered by the 
sensor. Figure 2 shows the spectra for a leaf and a rock 
collected using a hyperspectral camera over 120 bands 
ranging from 0.4�m to 0.7�m. Note the significant 
difference in reflectance values for the near-infrared 
bands. 
Due to its richness in information, hyperspectral imagery 
allows for detection of targets covering areas smaller than 
a pixel or separation of objects and shapes otherwise 
undistinguishable in regular images. Most of the 
hyperspectral image processing techniques have 
complexity that depends directly on the number of spectral 
bands in the acquired data. Since this is usually large, it is 
of interest to find methods that transform the data cube 
into one with reduced dimensionality while, at the same 
time, maintaining as much information content as possible. 
These techniques are known under the general name of 
feature extraction [7]. 
In this paper we provide a new direction for feature 
extraction in hyperspectral data by relaxing the conditions 
imposed on features by traditional techniques. Our paper 
is organized as follows. In the next section we provide a 
brief introduction to feature extraction and discuss the 
techniques available for unsupervised feature extraction. 
In Section 3 we present a new approach for feature 
extraction based on Nonnegative Matrix Factorization. In 
Section 4 we discuss our experimental results followed by 
Future Work (Section 5), Conclusions and References.  
 

2. FEATURE EXTRACTION 
 
Feature extraction is generally defined as the process of 
reducing the data to a lower dimension without significant 
information loss. In hyperspectral imagery, this is done by 
either selecting certain bands of by using a transform that 
produces the features as combinations of bands (Fig. 3). 
The algorithms focus on the increase of the separation 
between classes within each feature. The separation is 
measured using class information such as distance between 
means, distance between probabilities, etc. Supervised 
extraction is employed when prior class information is 
available (such as training pixel vectors), and 
unsupervised extraction is used when a priori information 
is lacking. In the unsupervised case the statistics and 
distance measures between classes cannot be computed or 
estimated. Instead, the main goal becomes the reduction of 
the data redundancy. The narrow bandwidth associated 
with the spectral bands leads to correlation between the 
adjacent bands yielding a relatively high level of 
redundancy in the data [7].  

 
 
 
 
 
 
 

Figure 2 – Sample spectra for a) vegetation and b) rock  
 
 
 
 
 
 
 

Figure 3. Feature Extraction reduces the data dimensionality 
 
Based on this observation, one can simply proceed to 
perform feature selection by analyzing the correlation 
matrix and selecting only a few from each group of highly 
correlated bands. A better approach is to transform the 
data such that the resulting features are decorrelated. The 
variance of the individual frames is considered to be an 
indicator of information content; large values suggest high 
levels of information and low values indicate the presence 
of mostly noise. Based on this, only the features with high 
variance are selected for further processing. 
The traditional choice for decorrelation is Principal 
Component Analysis (PCA). For the multidimensional 
random vector x, PCA finds a linear transform W such 
that the obtained components are uncorrelated [8]: 

Y=Wx   (1) 
The transform is obtained as: 

W= Ax
T   (2) 

Where Ax is the matrix formed of the normalized 
eigenvectors for the covariance matrix �x[9]. 
The components of y are called principal components and 
the eigenvector matrix Ax is called the principal 
component transform (PCT). The eigenvalues of the 
covariance matrix for x correspond to the variances of the 
principal components. When these eigenvalues are sorted 
in decreasing order (along with the corresponding 
permutation of the eigenvectors), we get the components 
of y sorted in the decreasing order of their variance, the 
approach suggested above for feature extraction. 
Decorrelation based feature extraction has been observed 
to be less efficient when dealing with small classes in the 
image. These classes tend to have little influence on the 
band variance leading to the possibility of being discarded 
in the lower variance frames. In the context of target 
detection, losing information regarding small targets (that 
correspond to small classes in the image) affects the 
accuracy of the algorithms. 
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An alternative approach is provided by Independent 
Component Analysis (ICA). Here, given a random vector 
s, and a matrix A the problem is to recover this pair (s, A) 
from the available observations x defined as [10]: 

x=As    (3) 
knowing that the vector s is formed of independent non-
Gaussian components [10]: 
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where p(.) refers to the probability density function and si 
refers to the components of the vector s. 
Previous studies have shown that a solution to equation (3) 
exists. The components of s are called independent 
components. Algorithms solving ICA are derived from 
either minimizing the mutual information [11]: 
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or by maximizing the non-Gaussianity of the components 
while keeping them decorrelated. In all the cases, the 
algorithms use gradient based optimization that often 
produce local optima. 
Compared to PCA, ICA imposes a stronger condition on 
the resulting features. While both methods: try to minimize 
the dependencies between the components of the data, in 
PCA dependence minimization is achieved when the 
covariance between the components is zero while in ICA it 
is achieved through the components’ independence. When 
the data are Gaussian, decorrelation is equivalent to 
independence, and PCA can be considered to be 
equivalent to ICA. When the data are not Gaussian, ICA 
becomes stronger than PCA. Here dependence in the data 
needs to be characterized through third and fourth order 
statistical measures, not present in PCA [11]. 
While feature extraction can be construed as a general 
method for any multidimensional data processing, in 
hyperspectral imagery it is strongly linked to the unmixing 
problem. Due to the spatial resolution, it is often the case 
that a pixel covers an area that contains more than one 
material and the measured value is the result of mixing the 
reflectance values of different materials. If the materials 
are physically placed adjacent to each other and the 
scattering of light radiation is dominated at any point by a 
single material, then the observed values can be 
considered to be a linear mixture of the reflectances of the 
materials in the corresponding pixel.  
The linear mixing model (LMM) can be described in the 
following manner. Each n-dimensional observed pixel 
vector x present in the image cube can be expressed as 
[12]: 
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where S is the nxm matrix of spectra (s1, .., sm) of the 
individual composing materials (also called endmembers), 
a is an m-dimensional vector describing the fractional 
abundances of the endmembers in the mixture (abundance 
vector) and w is the additive noise vector. The elements of 
the abundance vector are assumed to be positive and with 
unit sum [12]: 
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Identifying various materials in the image means finding 
the endmembers and their abundances. The endmember 
linear unmixing problem plays an important role in 
hyperspectral image analysis [13]. 
Feature extraction can be seen as performing unmixing. 
The abundance determination is done at the same time 
with endmember selection. In this case, the endmembers 
and abundances are assumed deterministic and unknown 
and a maximum likelihood estimation approach is 
employed to determine them. Assuming this, any further 
processing of the feature extracted data will be efficient 
since the produced bands correspond to the endember 
contributions to each pixel. 
The unmixing cannot be however directly obtained from 
feature extraction techniques we presented above. First, 
one must determine the number of endmembers present in 
the image. In PCA this is done by computing the sum of 
the eigenvalues and considering components that make up 
to certain percentage (ranging from 90 to 99%). In ICA, 
one can consider the most non-Gaussian components 
(according to their kurtosis) as associated to endmember 
abundances and discarding the rest [11]. 
A second problem is related to the relationship among the 
endmembers. In PCA and ICA, the endmembers 
correspond to rows in the linear transform and are 
orthogonal. This may be a condition too strict for 
endmember extraction where the base materials may be 
only slightly different from each other. 
Finally, the biggest hurdle comes when we analyze the 
abundance images. The feature extraction methods we 
discuss do not ensure that equations (7) and (8) will hold. 
 

3. NONNEGATIVE MATRIX 
FACTORIZATION (NMF) FOR FEATURE 

EXTRACTION 
 
Given the observed data x, the goal of NMF is to find s 
and a linear mixing transform W both positively defined 
such that [14]: 

x=Ws   (9) 
This approach can be understood as factorizing a data 
matrix subject to positive constraints. Solutions to NMF 
are based on constraining positivity and the gradient  
optimization (minimizing the distance between x and 



iterations of Ws). The optimization is done by repeatedly 
updating W and s using [14] 

( )f∂= −
∂
W,sW W
W

  (10) 

( )f∂= −
∂
W,ss s
s

   (11) 

where: 
2

( )
F

f =W,s x - Ws   (12) 

and .
F

 designates the Frobenius (or Euclidean) norm. At 

each step we also ensure that W and s are positive and s is 
normalized. 
An algorithm including the positivity restrictions is 
presented in [14] and was used to separate a limited 
number of hyperspectral spectra in [15]. In Fig. 4 we 
present a similar approach. We note that steps 4-6 will be 
repeated until a convergence criterion is satisfied. This can 
be based on a stability measure (such as change in the 
values for W and/or s) or on the convergence of f(W,s). In 
each iteration, steps 4 and 5 are applied to each 
component of s and W respectively. 
Compared with NMF algorithms described in the literature 
our change is to enforce the restrictions on s such that they 
will satisfy equation (8). We note that since the two 
matrices were initialized to positive values and since the 
update step maintains the positivity, equation (7) will hold 
for the results. The value of ε is relatively small and is 
mainly used to limit the effect of the local optima. The 
convergence criterion is based on equation (12). When 
f(W,s) reaches a value close to 0 (convergence condition), 
or no significant change is noticed (stability condition), the 
algorithm will stop. 
We also note that the current version of the algorithm 
needs to have the number of features predetermined 
apriori. Since the purpose of the study was to investigate 
the value of NMF for feature extraction, we considered the 
number of features to be equal to the number of original 
spectral bands. 
 

4. EXPERIMENTAL RESULTS 
 
The algorithm was implemented in Matlab 6.5 and run a 
on a Dell Workstation with dual Intel Xeon 2.39GHz 
processors and 2GB of RAM. The dual processor 
technology, while not directly used in the code run 
allowed us to test the execution speed. For the first 
experiment we used a hyperspectral image from the 
Hyperspectral Digital Imagery Collection Experiment 
(HYDICE). It corresponds to a foliage scene taken from 
with a spatial resolution of 1.5m at wavelengths between 
400nm and 2.5 micron. The wavelength interval assures 
that mostly the reflective energy of the objects is recorded  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Nonnegative Matrix Factorization algorithm 
 
(the emissive energy of the objects can be ignored). The 
data set uses 16 bit pixel calibrated sub-scenes provided 
by the Spectral Information Technology Application 
Center.  
The scene (Fig. 5) contains panels made of 8 different 
materials (from top row down): dark olive parachute, light 
olive parachute, nomex kevlar (woodland), green tenting, 
cotton/nylon (green woodland), nylon (green woodland), 
cotton (green), and desert BDU. For each of the material, 
there were 3 panels of sizes 1 by 1, 2 by 2 and 3 by 3 
meters. A small forest patch is also present in the image. 
A subset of 85 bands uniformly extracted from the data 
was used as input to the NMF algorithm with an epsilon 
value of 0.05. We ran the algorithm for 300 runs although 
the stability criterion was satisfied after approximately 150 
runs. The average iteration execution time was 2.3s. Fig. 6 
displays the graph of the error value for all the iterations. 
Fig. 7 displays the abundance values for the 10 most 
representative elements in the image a)-h) panels in the 
rows 1 through 8 respectively (top to bottom), i) 
vegetation and j) the ground. The graphs associated to 
panels were produced by manually selecting a pixel from 
the center of the first row (the largest). The vegetation 
abundance spectra was obtained from the center of the 
vegetation patch (lower left corner in Fig 5) and the 
exposed ground graph is based on a generic pixel. 
The graphs suggest that NMF accurately separates the 
materials and associates them to distinct endmembers. The 
panels in row 1,2, 6 and 8, while composed of different 
colored materials all share a common predominant 
endmember in band 27 and vary in other less significant 
endmembers. We suggest that this is associated to the 
nylon that was used in all four cases. Similarly, the fifth 
and seventh row panels share two endmembers, although 
with different abundance levels. This is probably to cotton 
being used in both cases. The third (nomex Kevlar) and 
fourth row (nomex-kevlar) are the most distinct. The 
vegetation is clearly separated in a single endmember  

1. Randomly initialize W and s to positive values 
2. Scale the columns of s to sum up to one 
3. Repeat: 
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while non convergence 
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Figure 5. Hydice data scene with the panels highlighted. 

 
 
 
 
 
 
 
 
 

 
Figure 6. Plot of the error value for NMF on the Hydice data for 

300 iterations 
 
(Fig 7i) while the exposed ground does not correspond to 
any predominant endmember. This can be explained by 
the complexity of the ground as well as the presence of 
high noise levels in the data. 
The second experiment uses data produced using a SOC 
700 hyperspectral sensor currently available in our lab. 
The camera, pictured in Fig. 8 is able to produce 640x640 
pixel images on 120 bands equally spaced within the 
400nm and 900nm (i.e. visible to near-infrared range). 
Forty bands uniformly extracted from the image cube were 
used for the experiment. Fig. 9 shows the selected image. 
The set-up is formed of an artificial plant arranged in a 
light brown ceramic pot. Several real leaves (shown in 
enhanced green in the picture) were placed between the 
artificial leaves (left side, top and lower right side of the 
green area). To benefit from full spectrum illumination, 
the arrangement was placed outside on a large rock 
formation. The background is formed of a brick wall. 
Fig. 10 displays the error graph for the NMF algorithm run 
on 300 iterations. We note that stability was achieved after 
approximately 100 rounds with minor changes after that. 
The average iteration execution time was 4.8s. Fig. 11 
shows the abundance graph for four of the elements 
present in the image. While regular imaging was unable to 
distinguish among the real and artificial vegetation, this is 
easily differentiable when the NMF results are analyzed. 

 
 
 
 
 
 
 

a)    b) 
 
 
 
 
 
 
 

c)    d) 
 
 
 
 
 
 
 

e)    f) 
 
 
 
 
 
 
 

g)    h) 
 
 
 
 
 
 
 

i)    j) 
Figure 7. Abundance graphs for ten different materials present in 
the Hydice scene after the stability was achieved. a) – h) panels 
in rows 1-8 (top down), i) vegetation patch, j) exposed ground 

 
 
 
 
 
 
 
 
 

Figure 8. Experimental setup using SOC 700 hyperspectral 
camera 
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Figure 9. SOC 700 image used in the experiments 
 
 
 
 
 
 
 
 
 
Figure 10. Plot of the error value for NMF on the SOC700 data 

for 300 iterations 
 
The real vegetation exposes one endmember with 
significant abundance in band 30 and several other 
endmembers with limited contributions. Compared to that, 
the artificial plant information is characterized by two 
significant endmember contributions, associated to bands 
23 and 31. The ceramic pot is characterized by two 
endmembers while the rock present in the image does not 
provide any distinct endmembers and seems to be formed 
as combination of various endmembers. 
The rock behavior is similar to the one of the exposed 
ground in the Hydice image. We conjecture that this is due 
to the inadequacy of the linear model for this type of 
material. In the case of the exposed ground, the various 
materials forming it are no longer distinct when sensed at 
the current Hydice spatial resolution. Similarly, the rock in 
the SOC700 image was heavily speckled by various 
minerals that make distinct separation using linear 
unmixing unfeasible. Overall, however, NMF is able to 
accurately separate the materials composing the ground 
elements whenever distinct separation is possible. This is a 
significant step forward in unsupervised endmember 
extraction and nonlinear unmixing. Compared to it, neither 
PCA nor ICA can be employed. 
 

5. FUTURE WORK 
 
While the results using the NMF algorithm are 
encouraging, several research questions remain. 
First, a significant factor affecting the processing accuracy 
is the number of features to be extracted. Our choice (the 
same as the number of original bands) while providing 

accurate results is prone to introduce errors. We intend to 
investigate possible estimation of the number of NMF 
components. 
Second, the risk of local optima remains. Our runs, while 
reaching stable point have most likely also not reached the 
global optima. To counter this, we intend to use the value 
of ε in Fig. 4 as a variable parameter in a modified NMF 
based on simulated annealing. Whenever a stability point 
is achieved, ε will be modified to force a move away from 
the local optima. 
Third, the size of the original data ranged from 10 to 80 
MB. This prompted our decision to uniformly sample the 
bands. While this is acceptable for many instances, it is 
also likely that slight spectral differences among the 
materials present in the scene were no longer present in the 
sampled image. Our future research plans to redevelop the 
NMF algorithm such that a distributed processing is 
possible, allowing for increased data size, without adding 
significant execution time. Changes in the programming 
language from Matlab to C or Java are likely. 
Finally, we intend to couple the development of NMF 
feature extraction with the design of a real time unmixing 
tool. Here, the currently available SOC700 camera will be 
connected to either a computer cluster or a multiprocessor 
machine (such as a currently available Sun v40z 8-way 
server) to provide a significant speedup. We have already 
modified the camera drivers to allow for partial data 
extraction and processing. 
 

6. CONCLUSION 
 
Feature extraction remains an attractive approach in 
processing hyperspectral images. The current techniques 
are focused on strong restrictions on the separability of the 
resulting bands and do not have a natural interpretation for 
the nature of hyperspectral data. Compared to them, NMF 
provides an elegant approach that simply assumes that the 
features must be separable and positively defined. When 
adding the condition that the features must also sum up to 
one pixelwise we discover that NMF also provides a 
solution to the classical linear unmixing problem. 
Based on these initial considerations we employed a 
modification of the classic NMF algorithm to extract 
endmembers and abundances (and thus features) from two 
hyperspectral data sets, however without a reduction of 
data size. In both cases, the results suggest that NMF 
reaches optimal solutions that clearly separate endmember 
information for the data. Several open questions persist, 
including the ability of the algorithm to reach the global 
optima or what modifications are necessary for the 
extraction to yield a data reduction. This initial 
investigation prompts us to search for solutions to the 
questions and encourages us to consider NMF as a viable 
approach for feature extraction. 
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a)    b) 
 
 
 
 
 
 
 

c)    d) 
Figure 11. Abundance graphs for ten different materials present 

in the SOC700 scene after the stability was achieved. a) 
vegetation, b) artificial plant, c) ceramic pot, d) base rock 
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