
Simulation of Hybrid Computer Architectures: Simulators,
Methodologies and Recommendations

Pranav Vaidya and Jaehwan John Lee
Department of Electrical and Computer Engineering

Purdue School of Engineering and Technology
Indiana University-Purdue University Indianapolis

Abstract— In the future, high performance computing systems may
consist of multiple multicore processors and reconfigurable logic
coprocessors. Industry trends indicate that such coprocessors will
be socket compatible to microprocessors and will be integrated on
existing multiprocessor motherboards without any glue logic. Due to
these trends, it is likely that such hybrid computing machines will
be a breakthrough for various High Performance Computing (HPC)
applications. It is essential to investigate the computer architecture
of such hybrid computing machines that utilize reconfigurable logic
coprocessors as application accelerators in a HPC system. Simulation
can be used to aid this architectural research and guide design space
exploration. In this paper, we first present a representative architecture
for future hybrid computing machines. Next we present a survey of
existing simulators and simulation methodologies for simulation of
components of hybrid computing systems. Finally, we present some of
the challenges and recommendations to encourage research in hybrid
computing machines and their simulators.

Index Terms— Simulation, modeling of hybrid computer architec-
tures, simulation of multiprocessor systems, simulation of FPGAs

I. I NTRODUCTION

Two major trends are evident in the computing industry. Firstly,
physical limitations of frequency scaling has led to major micropro-
cessor manufacturers pushing for integration of multiple processor
cores in a single chip. Secondly, novel computing fabrics such as
reconfigurable devices are prominently being used for application
acceleration. It is quite likely that these two trends will merge
and hybrid computing machines made up of several processors
and Reconfigurable Logic (RL) coprocessors will become common-
place. Commodity multiprocessor server platforms containing mul-
tiple processor cores and reconfigurable coprocessors [1]–[3] are
indications of this trend. These machines offer high performance
computation beyond the limitations of Von Neumann machines.

It is imperative to investigate the system architectures of such
hybrid computing machines and understand any associated issues
with design of such machines. Such investigation can be undertaken
by using computer architecture simulation. Computer architects
have long utilized simulators to guide the design space exploration
and validate the efficacy of proposed architectural enhancements.
In addition to traditional challenges such as trade-offs between
simulation fidelity and speed, hybrid computing simulators face
unique challenges in the form of lack of open source architectures,
lack of open source synthesis, configuration and debugging tools.
Furthermore, the variation in the reconfigurable logic coprocessor
architectures make the design space exploration of hybrid comput-
ing architectures truly challenging.

Here, we first define several terms that will be used in this
paper. We define a simulator designer as an individual respon-
sible for designing the simulator. We also define a simulation
designer/performer as an individual that leverages the simulator to
perform simulation. Additionally, we follow the definition of simu-
lation techniques and methodologies as described in [4] by Yi and

Lilja. They define simulation methodology as a general term to de-
scribe how the simulator is constructed and simulation technique as
the approach used by the simulation designer/performer to perform
simulation such as using reduced input sets and microbenchmarks.
The design decisions associated with the simulation methodology
are usually made by the simulator designer while the design
decisions associated with the simulation techniques are usually
made by the simulation designer/performer.

The design decisions associated with the simulation methodology
have direct consequences on the speed and fidelity of simulation.
Here, fidelity of the simulation refers to the degree to which the
simulated system models the real system. Any design decision
associated with the simulation methodology should ensure that the
simulation methodology is:

1) Efficient: The simulation methodology should be able to uti-
lize greatly, if not completely, the capabilities of the simulation
host. In this case, a simulation host refers to the computing
system used to perform the simulation. Dynamic binary trans-
lation and parallel simulation are some of the examples of
increasing the efficiency and the speed of simulation.

2) Elegant: The chosen simulation methodology should be easily
understandable and extensible. This typically involves choices
such as choosing an existing simulation language and/or a
well validated simulation kernel. Hardware designers exercise
this choice frequently where hardware designs are typically
simulated using languages such as VHDL [5] and Verilog [6].
Recently, SystemC [7] has also become a popular option in
hardware simulation.

3) Deterministic and Reproducible: The simulation should be
able to produce identical results given identical initial con-
ditions. Popular simulation language kernels are Sequential
Discrete Event Simulators (SDES) because it is relatively
easy to ensure determinism in SDES. Simulation kernels like
SystemC ensure determinism by modeling concurrent activi-
ties in the simulation as user-level threads managed via co-
operative multitasking. If concurrent activities are modeled as
kernel-level threads, then non-determinism is introduced into
the simulation as scheduling of kernel-level threads is seldom
available to applications such as the simulation kernels.

Similarly, the design decisions associated with the simulation
techniques have direct consequences on the accuracy and validity
of simulation. Accuracy and validity of simulation refers to the
degree to which the workload used during simulation reflects the
true workload of the real system. Yi and Lilja [4] cite several
simulation techniques such as reduced input set simulation tech-
niques, truncated execution simulation techniques, processor warm-
up approaches and sampling simulation techniques as the popular
simulation techniques. Due to space limitation, we concentrate

more on the simulation methodology that can be useful in sim-
ulation of hybrid computing machines.

Hybrid computing machines consist of multiprocessors and RL
coprocessors. Hence, it is essential to identify the simulators,
simulation methodologies and techniques used for simulating mul-
tiprocessors and RL coprocessors. This work surveys these facets
of a hybrid computing system. The remainder of the paper is
structured as follows. In section II, we present a representative
architecture of future hybrid computing machines. This enables
us to identify the main components that the simulators should
simulate to a certain degree of fidelity. In section III, we present
an overview of existing simulators, simulation methodologies and
approaches that may be useful in simulating the hybrid computing
system. Section IV presents the challenges and limitations of
current simulation methodologies, and section V presents some
recommendations for improving research in hybrid computing
architectures and simulators.

II. A R EPRESENTATIVECOMPUTERARCHITECTUREFOR

HYBRID COMPUTING MACHINES

In this section, we present a representative computer architecture
for hybrid computing machines that we believe will be common
in a High Performance Computing (HPC) environment. Figure 1
shows the most likely system architecture of a single node in a
high performance hybrid computing system.

As shown in Figure 1, a single node of the hybrid HPC system
will consist of several complex out-of-order issue RISC/CISC
multicore processors and Reconfigurable Logic (RL) coprocessors.
These coprocessors will be socket compatible to processors and
hence will be integrated on existing motherboards without any
glue logic. The processors and coprocessors will be interconnected
through uniform chip-to-chip and board-to-board interconnects like
Hypertransport [8]. To ensure scale-up as well as speed-up, it is
quite likely that the most prevalent memory architectures of a single
node in these hybrid computing machines will be cache-coherent
Non-Uniform Memory Access (ccNUMA) [9]. The machines will
have multiple levels of caches and main memory sizes of several
gigabytes, if not terabytes [10].

Field Programmable Gate Arrays (FPGAs) [11]–[15] will be
the most commonly used RL coprocessors. These FPGAs will be
made up of hundreds of thousands of simple logic blocks such as
Configurable Logic Blocks (CLBs). It is quite likely that with better
fabrication processes, such FPGAs will have millions of CLBs.
Other variations of FPGAs such as coarse-grained FPGAs [16]
may also be used to reduce configuration times. Furthermore, these
devices will support Run-Time Reconfiguration (RTR) and Run-
Time Partial Reconfiguration (RTPR) so that the reconfigurable
coprocessors can be used as multiplexed shared resources. We
consider the ability of processors to configure and control these
custom coprocessors as a distinguishing characteristic of these
hybrid computing machines as compared to System-on-Chip (SoC).
In SoC designs, the hardware modules are pre-configured to
perform a specified function. In a hybrid computing machine, the
RL coprocessor is used as either a shared or dedicated resource to
perform several functions in hardware.

The DS2004 system from DRC Computer Corp. [2] is reviewed
here as an example of the suggested representative architecture.
This system is based on a Tyan Thunder K8QSD (S4882) 4-way
motherboard with four processor sockets. It supports up to four
AMD Opteron Model 875 dual core processors, 12GB ECC DDR,
an Nvidia 7300GT PCI Express video card, one 160GB SATA

Multicore
Processor

Multicore
Processor

 System Interconnect

FPGA
 .. FPGA

Global Interconnect

ccNUMA
-Memory

ccNUMA
-Memory

Fig. 1. A Single Node In A High Performance Hybrid Computing System.

hard drive and one or two DRC Reconfigurable Processor Units
(RPUs). The DRC RPU provides a tightly coupled RL coprocessor
with direct access to DDR memory and any adjacent Opteron
processor at full HyperTransport [8] bandwidth and low latency.
The RPU is controlled via an RPU manager, which allows FPGA
configuration over HyperTransport. This system is capable of
hosting ccNUMA operating system namely Linux (64-bit) Ubuntu
6.x. It is an indication of the growing trend towards integration of
RL coprocessors with multicore processors in the industry. Other
competitive vendors [1], [3] offer similar platforms.

For the aforementioned representative architecture, it is crucial
to note that any simulator for such architecture should be able to
simulate the following components:

1) Multicore processors and caches.
2) Reconfigurable logic coprocessors.
3) System interconnects and global interconnects: It is crucial

to model system interconnects to a certain degree of fidelity.
This is essential as any HPC involves both computation and
communication.

4) Run-Time Reconfiguration (RTR) and Run-Time Partial Re-
configuration (RTPR): A hybrid computing machine simulator
should be able to model RTR and RTPR to simulate the RL
coprocessor as a shared resource.

5) Memory modules: It is quite likely that in the future, each
node of a hybrid HPC system will have ccNUMA memory
access architecture.

III. S IMULATION AND CO-SIMULATION RESEARCHWORK

In this section, we present an overview of the popular simulators
and simulation methodologies that will be useful for modeling and
simulating the components of hybrid computing machines.

A. Simulators for Chip Multiprocessors

As can be seen in Figure 1, a node in most of the future
hybrid computing systems will contain multiple multicore proces-
sors. Hence, we only survey the popular simulators that simulate
multiprocessors and chip-multiprocessors. Popular uniprocessor
simulators such as SimpleScalar [17] are not reviewed here as they
do not model such multiprocessing systems.

1) RSIM: Rice Simulator for ILP Multiprocessors:RSIM is
the Rice Simulator for ccNUMA, ILP multiprocessors. It was
developed and released to public in 1997 [18], [27]. Key RSIM
features include support for out-of-order issue, register renaming,

branch prediction and nonblocking caches. RSIM also supports
user-configurable parameters such as cache sizes and latencies, flit
size and delay, as well as instruction window size [4], [18]. RSIM
was different from most other simulators in that it modeled the
ILP features of a multiprocessor system. RSIM’s research showed
that disregarding the ILP-level features of a multiprocessor system
resulted in the overestimation of the execution time by as much as
132 percent.

RSIM’s simulation methodology was derived from YAC-
SIM [19]. YACSIM is a process-oriented, discrete-event simulator
developed as part of Rice Parallel Processing Testbed. YACSIM
supported user-level multithreading to represent multiple processes.
Thus, each process in RSIM runs in a user-level thread and the
simulation kernel manages the scheduling of these threads. As a
result, RSIM does not take advantage of multiprocessing simulation
hosts. RSIM utilizes execution driven simulation techniques to
simulate applications compiled and linked for Sparc/V9/Solaris.
RSIM uses standard Sparc compilers and linkers at all optimization
levels. However, it lacks support for 64-bit integer and quad-
precision floating-point operations. Furthermore, it lacks support
for standard libraries and applications that rely on conventional
Sparc traps. To overcome this limitation, RSIM provides standard
C library to support applications.

2) Virtutech Simics - A Full System Simulation Environment:
Virtutech Simics is a commercial full-system simulator that can
simulate multiprocessor systems with enough accuracy to boot
unmodified operating systems [38]. Simics executes unmodified
binaries from an ISA perspective and provides a timing interface
to user modules. For example, instruction fetch by the simulator is
forwarded to the cache modules to stall the execution of instruction
for an arbitrary number of cycles [20], [21].

As of Simics 2.0, Simics supports a Micro-Architectural Inter-
face (MAI). Using MAI, the user module can determine when
an instruction passes through the microprocessor pipeline such
as fetch, decode, execute and commit phases. Using the timing
interface provided by Simics, the user module can also support de-
tailed timing modeling. Simics supports checkpointing as a useful
simulation technique. This allows the user to run the application
to a specific point of interest and save the state of the simulated
machine to disk. This technique can reduce simulation time since
application initialization phase is run only once. This has important
consequences for commercial benchmarks where such initialization
or warmup phase can require a significant amount of time, even
requiring weeks of simulation [38], [43]

Simics is one of the most popular simulators used in the
academia and industry to model entire computer systems and even
distributed computing systems. Simics toolset has been used in
the academia to develop the Wisconsin General Execution-driven
Multiprocessor Simulator (GEMS) [20]. GEMS leverages the full-
system functional simulation infrastructure of Simics to drive a
set of timing simulator modules for modeling the timing of the
memory system and microprocessors. Other projects which have
used Simics are Vasa [21] and SimFlex [24]. VASA [21] is a highly
configurable multiprocessor simulation package for Simics. Vasa
includes models of multilevel caches, store buffers, interconnects,
memory controllers and detailed complex out-of-order SMT/CMP
processors. It also supports two additional, less detailed simulation
modes which run up to 287 times faster than the detailed simulator.
SimFlex [24] is a simulator package for Simics developed at the
Carnegie Mellon University that leverages the statistical sampling
of the inputs to reduce the simulation time of a chip multiprocessor

system.
Simics methodology involves simulating a multiprocessor system

by simulating each processor in a round-robin fashion. Each
processor is simulated for a given number of cycles controlled
via a variable calledcpu-switch-time. This variable allows the
coarseness in thread interleaving to be scaled. However, adjusting
cpu-switch-timeto large value can have significant effect when
simulating multithreaded applications with contended locks [21].
As a result, derived simulators such as VASA typically set the
value of this variable to one. Other simulators in the academia use
a similar round-robin simulation of each processor [22] to simulate
a multiprocessor system. While Simics can be customized using the
APIs that it provides, it does not expose its simulation methodology
as it is a commercial software. On the other hand, simulators such
as GxEmul [22], [23] are open source and simulate the processors
at instruction set level.

3) Wisconsin Wind Tunnel II (WWT II):WWT II [25] differs
from the above two simulators in that it is a parallel, discrete-event,
direct-execution simulator that can be run across a wide range of
platforms, such as desktop workstations, a SUN Enterprise server, a
cluster of workstations, and a cluster of symmetric multiprocessing
nodes.

WWT II simulates a parallel, ccNUMA system on various par-
allel systems connected using Myrinet [26]. It uses Synchronized
Active Messages (SAM) to communicate between the host nodes
for parallel simulation. Analytical modeling has been used to
approximate the performance of WWT II for a variety of system
sizes. WWT II uses direct execution and parallel hosts as the
simulation methodology to speed up the execution. Direct execution
executes an instruction of a target machine by directly executing
it on the host system. Only operations unavailable on the host
platform are simulated by the host platform. Direct execution
typically runs orders of magnitude faster than pure interpreted
software simulation [25]. Furthermore, WWT II performs parallel
simulation by exploiting the parallelism inherent in the target
parallel computer to achieve speed-ups of up to 5.8X. However, this
approach does not allow changes in the processor models and other
architectural parameters such as issue widths, speculative memory
accesses and out-of-order execution [29].

WWT II uses SAM as its programming model for communica-
tion and synchronization operations. Since SAM runs only on the
SPARC architecture, WWT II is not portable to other architectures.

4) Parallel Trace Driven Simulation approaches:Other ap-
proaches to parallel simulation of computer architectures in-
clude [30]–[35]. All of these approaches use parallel trace driven
execution to speed-up simulation of benchmarks such as SPEC
CPU 2000 [37]. A given benchmark application is executed
concurrently on multiple instances of the simulator initialized
with different configurations. Though such an approach increases
throughput of simulation, it does not reduce the simulation time of
a single simulation as demonstrated by [29].

5) Parallel Simulation of Chip-Multiprocessor Architectures:
Research by Chidesteret al. [29] targeted the simulation of Chip
Multiprocessors (CMP) by performing parallel simulation of tightly
coupled CMPs (which share L2 caches) on a distributed host system
consisting of commercial-off-the-shelf (COTS) workstations. These
workstations were connected by a high-speed network.

The simulation methodology used by Chidesteret al. involves
cycle-accurate simulation of the processors and L1 caches. They
used the parallel, event-driven simulation built using the Message
Passing Interface (MPI) [36] to model communication between L1

cache and the shared L2 cache. Using this approach, simulation
speed-ups of up to 5X were obtained.

B. Simulators for Reconfigurable Logic

1) Levels of Abstraction in modeling custom logic:Due to the
large complexity of hardware designs today, most simulations are
done at various levels of abstraction. Gajski and Cai [28] explain
the various levels of abstraction used in system models. They identi-
fied that system functionality/computation and communication can
be developed independently of one another and refined at each
subsequent stage.

As seen in Figure 2, Gajski and Cai have classified the following
levels of abstraction:
i) Model I: Model I represents an untimed system architectural
model. This model is typically used to specify the functionality
and communication of the system and its subsystem without any
attention paid to the timing of the interfaces. This model is
used to verify the correct functioning of the system and system
interconnects.
ii) Model II: Model II represents the Component Assembly Model
(CAM). The CAM is used to integrate the empirical understanding
of computational time into the model. However, data transfer
between components is still untimed.
iii) Model III: Model III represents the Bus Arbitration Model
(BAM) or transactional model. In this model, the information about
each cycle of the bus is accurately modeled.
iv) Model IV: Model IV represents the Bus Functional Model
(BFM). In this model, each signal transition of the bus is modeled
as a single event. As a result, communications are timing accurate.
v) Model V: Model V represents the cycle accurate computation
model. However, the timing is approximately timed. This model
emphasizes communication at transaction level.
vi) Model VI: Model VI represents the register-transfer level model.
In this case, both the communication and computation are modeled
accurately. This model closely represents the actual hardware and
is typically used for automatic synthesis to gates.

Model I
Computation/
 Functionality

Untimed Approximately
Timed

Accurately
Timed

Communication

Untimed

Approximately
Timed

Accurately
Timed

Model II

Model III

Model IV

Model V

Model VI

Fig. 2. Abstraction Level Of Models. Courtesy of Cai and Gajski [28]

2) Traditional Simulation/Co-Simulation Approaches and Limi-
tations: Comptonet al. provided an extensive survey of reconfig-
urable computing systems and software [39]. However, they did
not consider the ability of processors to configure and partially
reconfigure RL coprocessors as the defining characteristics of
hybrid computing machines. We feel as described in section II that
these abilities are key features of hybrid computing machines.

Typically, hardware designers have designed and validated hard-
ware models (Models I-VI) using vendor-specific tools and hard-
ware design languages such as VHDL, Verilog and SystemC.

Tools such as ModelSim [40]–[42] are used to perform functional
simulation, static timing analysis and timing simulation of the
hardware designs. These simulators use the knowledge of cell and
routing primitives of the actual device to perform simulations.

Most FPGA design suites assume that hardware design simu-
lated using behavioral and timing simulation will work in actual
hardware as intended. However, hardware designs validated using
timing simulation may not work on the actual device due to several
problems. For example, third party implementation tools may have
inferred, places and routed the designs differently than what was
specified.

These design suites also assume that the hardware design being
synthesized is the only design resident on the reconfigurable device.
Such an assumption is valid for most embedded systems which
use reconfigurable devices to implement SoC designs. However,
these assumptions may not be valid for hybrid computing machines
where the RL coprocessors may be multiplexed across multiple
applications. As a result, the RL coprocessor may be configured to
support several hardware functions. Hence partial reconfiguration
is an essential characteristic of such machines. Most of these
simulators do not have support for reconfigurable design concepts
such as partial reconfiguration. As a result, simulation and co-
simulation approaches using traditional hardware design flow is
of limited use to the simulation of hybrid computing machines.

3) VTSim - A Virtex-II Device Simulator:VTSim [44], [45]
was a discrete-event simulator written in Java that modeled all
the hardware resources present in a Virtex-II FPGA [11]. VTSim
provided a virtual FPGA device which was compatible to existing
Xilinx tools. Using VTSim, the designers could access all the
resource values in the virtual FPGA such as flip-flop and look-
up table values or values on a routed wire. VTSim was a bitstream
level simulator that took the bitstream file (.bit extension) generated
from the Xilinx tool chain to simulate the hardware designs.

VTSim was useful in reconfigurable designs as it was able to
read and modify bitstreams used to configure and reconfigure the
virtual FPGA device. Furthermore, VTSim was integrated into the
JHDLBits [47] design suite allowing simulation in Java Hardware
Description Language (JHDL) or as a standalone tool.

Unfortunately, this simulator was never released to the public
because the permission to release this simulator was never granted
by Xilinx, the vendor for Virtex II devices.

4) VirtexDS - A Virtex Device Simulator:Virtex Device Simu-
lator (VirtexDS) [46] was a device level simulator for Virtex-II Pro
devices [11] from Xilinx. It was released as part of the Xilinx JBits
2.8 SDK [11]. This simulator was similar to VTSim that simulated
Virtex FPGA devices. VirtexDS provided a software model of the
FPGA device for the entire Virtex family of FPGAs. It supported
run-time configuration and run-time partial reconfiguration that
could be controlled through the JBits 2.8 environment. VirtexDS
allowed for existing tools such as the BoardScope [48] debug tool
to interface directly to the simulator without any modification.

Subsequently, Xilinx released JBits 3.0. However, it did not
release a device level simulator. During our survey, we found no
device level FPGA simulators available in the industry or academia
for research purposes.

IV. CHALLENGES AND L IMITATIONS FOR HYBRID COMPUTING

MACHINE SIMULATORS

From our survey, we found the following limitations and chal-
lenges that the hybrid computing simulators and machines face:

1) Current limitations for simulating multicore processors: Most
simulators in the industry and academia such as RSIM and
Simics are built using Sequential Discrete Event Simulators
(SDES). Even hardware simulation languages and kernels use
SDES for functional and timing simulation. These simulators
do not take advantage of the parallel computation facilities that
are becoming available even at the desktop computing level.
With the advent of multicore processors, these kernels should
use the parallel computational facilities that current simula-
tion hosts offer. WWT II and other parallel discrete event
simulation approaches show that speed-ups can be obtained
from parallel simulation of computer architectures without
compromising on the fidelity of the simulator. However, these
simulators have been built using specialized programming
models for distributed computing such as SAM and MPI.
While SAM is not portable, MPI suffers serious performance
degradation on multicore shared memory architectures as it
maps each node of computation to an OS process. Hence,
one of the main challenges in simulating multicore processors
is balancing portability of the simulator with the ease of
using and extending the simulator. This challenge can be
solved by identifying and using a good programming model
for multicore and cluster simulation hosts. The key idea
behind such a programming model should be exploiting local
multiprocessor as well as cluster computing power. We state
such a computing model in section V.

2) Challenges in Simulating Reconfigurable FPGAs: The chal-
lenges in simulating reconfigurable logic devices are greater
than that of traditional processors. Reconfigurable devices
typically have closed architectures, closed bitstreams, and even
more so there is a lack of open source development tools,
compilation-to-gates tools, verification and synthesis tools.
Furthermore, there are no standard APIs for configuring and
communicating with these reconfigurable coprocessors in a
hybrid computing machine. It is reasonable to understand that
the industry would most likely not release open architectures
and tools due to the inherent financial gains associated with
such tools. In another aspect, as the granularity of FPGA
devices increases towards fine-grained architectures, it would
be extremely inefficient to simulate these devices using SDES.

3) Challenges in Simulating the Hybrid Computing System: Most
simulation kernels do not support multiple models of com-
putation in the simulator. Different models of computation
may be advantageous to model the various components of the
hybrid computing system. For example, while Synchronous
Data Flow Graphs (SDFG) may be advantageous to model
streaming devices such as DSPs, Parallel Discrete Event
Simulation (PDES) may be advantageous to model multicore
processors. Hence, research and further exploration of such
multi-model simulation kernels [52] should be encouraged.

V. RECOMMENDATIONS

Based on the aforementioned observations, we make the follow-
ing recommendations for fostering research in the area of hybrid
computing systems and hybrid computing simulators.
Recommendation 1: Use of Parallel Simulation Techniques for
Current Simulation Hosts
It is essential to note that as hybrid computing machines are
growing more complex, the simulation hosts are also becoming
more powerful. Over the last few years, even desktop computers
with two or more processors/processor cores have become available

to the general public [50], [51]. Simulator designers should take
note of this, and research simulators using Parallel Discrete Event
Simulation (PDES) should be investigated.

As identified in the challenges, the choice of programming
model is a key challenge for developing simulators for multicore
simulation hosts. It is also essential that to ensure scalability of the
simulation host, such programming model should be seamlessly ex-
tensible to a cluster of computers. Streaming programming models
based on well established process calculi such as Communicating
Sequential Processes [49], [53] may be the solution to this issue.
These programming models may be more flexible and faster than
SAM and MPI for both multicore and other cluster simulation
hosts. Such programming models can model physical processes
as nano-threads, user-level threads and kernel-level threads. Thus,
the designer is flexible in choosing the appropriate granularity
of threads according to the level of communication between the
modeled components. However, we did not find any simulator that
is built using streaming languages. Developing simulators using
such programming paradigms should be pursued.

Recommendation 2: Open FPGA Architecture and Open Source
FPGA Design Tools
FPGA industry is a multi-million dollar industry. Device vendors
have invested greatly in their proprietary architectures and FPGA
design suites. However, it would be beneficial to both the academia
and industry if a consortium similar to OpenFPGA consortium [54]
is established for the development of open source FPGA architec-
tures and design tools for hybrid computing machines. This would
be both financially and intellectually beneficial to the industry and
academia. For example, traditionally it is assumed that the RL
coprocessors are dedicated for a single application. It would be ben-
eficial if these RL coprocessors are used as multitasking shared re-
sources. To make this happen, the detailed layout of the application
on the RL coprocessor should be known beforehand. Hence, with
open source FPGA architectures, a detailed architectural model of
the RL coprocessor can be used to perform intelligent compilation
and synthesis for these shared coprocessors. Additionally, required
research impetus can be accelerated using open source reconfig-
urable coprocessor architectures in HPC applications. Furthermore,
such an endeavor can create the required engineers and scientists
who are exposed to reconfigurable computing internals.

VI. SUMMARY

In this paper, we have summarized some of the simulators
and simulation methodologies that are likely to be useful in the
simulation of hybrid computing machines made up of multiple
multicore processors and reconfigurable logic coprocessors. It
would be beneficial if the simulator methodologies fully utilize the
computational power offered by the simulation hosts. Research into
developing simulators built around the concept of Parallel Discrete
Event Simulation (PDES) and/or streaming language paradigms
such as Communicating Sequential Processes (CSP) [53] should
be encouraged.

There exists an inherent trade-off between simulation speed and
simulation accuracy. However, many simulation approaches target
simulation speed by compromising the fidelity of simulation. Such
a trade-off is acceptable for development of systems software;
however it can result in the overestimation of execution speeds
in some cases. With the current industry trends towards chip
multiprocessing, it is essential that simulators model such systems
with sufficient fidelity. As a result, as part of our recommendations,
we have suggested that further research into parallel simulation of
chip multiprocessors be pursued.

In addition, to foster further development into Reconfigurable
Logic (RL) coprocessors, we have suggested that both the industry
and the academia join hands to come up with open source FPGA
architectures and programming tools. Currently, there exist no
open source simulators that support run-time reconfiguration and
run-time partial reconfiguration. Research into device level FPGA
simulators would be greatly useful to both academia and industry
and thus should be pursued. We predict with high confidence that
such research will provide great impetus in developing open source
compilation and synthesis tools. This will further the integration of
such RL coprocessors with applications spanning from embedded
systems, general purpose computing to High Performance Comput-
ing (HPC).

REFERENCES

[1] Celoxica RCHTX System,
http://www.celoxica.com/products/rchtx/default.asp, visited Mar 2007.

[2] DRC Computer Corporation,
http://www.drccomputer.com/, visited Mar 2007.

[3] XtremeData Inc,
http://www.xtremedatainc.com/, visited Mar 2007.

[4] J. Yi and D. Lilja, “Simulation of Computer Architectures:Simulators,
Benchmarks, Methodologies, and Recommendations,” IEEE Trans. on
Computers, vol. 55, no. 3, pp. 268-280, Mar. 2006.

[5] VASG: VHDL Analysis and Standardization Group,
http://www.eda.org/vhdl-200x/, visited Mar 2007.

[6] IEEE Verilog Standardization Group,
http://www.verilog.com/IEEEVerilog.html, visited Mar 2007.

[7] SystemC Community Website,
http://www.systemc.org/, visited Mar 2007.

[8] Hypertransport Consortium,
http://www.hypertransport.org/index.cfm, visited Jan 2007.

[9] NUMA, HyperTransport, 64-Bit Windows, and You
http://developer.amd.com/article_print.jsp?id=8, visited Dec 2006

[10] Performance Guidelines for AMD Athlon 64 and AMD Opteron
ccNUMA Multiprocessor Systems,
http://www.amd.com/us-en/assets/content_type/white
_papers_and_tech_docs/40555.pdf, visited Dec 2006.

[11] Xilinx Corporation, http://www.xilinx.com/, visitedJan 2007.
[12] Altera Corporation, http://www.altera.com/, visitedJan 2007.
[13] Actel Corporation, http://www.actel.com/, visited Jan 2007.
[14] Lattice Semiconductor Corporation, http://www.latticesemi.com/, vis-

ited Jan 2007.
[15] QuickLogic Corporation, http://www.quicklogic.com/, visited Jan

2007.
[16] E. Mirsky and A. DeHon, “MATRIX: A reconfigurable computing

architecture with configurable instruction distribution and deployable
resources,” IEEE Symposium on FPGAs for Custom Computing
Machines, pp. 157-166, 1996

[17] T. Austin, E. Larson and D. Ernst, “SimpleScalar: An infrastructure
for computer system modeling,” Computer, vol. 35, no. 2, pp. 59-67,
2002.

[18] V. Pai, P. Ranganathan and S. Adve. “RSIM: An Execution-
Driven Simulator for ILP-Based Shared-Memory Multiprocessors and
Uniprocessors,” In Proceedings of the Third Workshop on Computer
Architecture Education, February 1997.

[19] J. Jump, YACSIM Reference Manual. Rice University, version 2.1.1
edition, 1993, www.owlnet.rice.edu/ elec428/yacsim/yacsim.man.ps,
visited Mar 2007.

[20] M. Martin et al., ”Multifacet’s general execution-driven multiproces-
sor simulator (GEMS) toolset,” SIGARCH Comput. Archit. News,pp.
92-99, 2005.

[21] D. Wallin, H. Zeffer, M. Karlsson and E. Hagersten, “VASA: A Simu-
lator Infrastructure with Adjustable Fidelity,” Paralleland Distributed
Computing and Systems, 2005.

[22] P. Vaidya and J. Lee, “Design Space Exploration of Multiprocessor
Systems with Multicontext Reconfigurable coprocessors,” InPro-
ceedings of Engineering of Reconfigurable Systems and Algorithms,
ERSA’07, pp. 51-60, June 2007.

[23] GxEmul, http://gavare.se/gxemul/, visited Jan 2007.

[24] T. Wenisch et al., “SimFlex: Statistical Sampling of Computer
Architecture Simulation,” IEEE Micro special issue on Computer
Architecture Simulation, vol. 26, no. 4, pp. 18-31, Jul/Aug 2006.

[25] S. Mukherjeeet al., “Wisconsin Wind Tunnel II: A Fast and Portable
Parallel Architecture Simulator,” In Workshop on Performance Anal-
ysis and Its Impact on Design, June 1997.

[26] Myricom Page for Myrinet, http://www.myri.com/myrinet/overview/,
visited Jan 2007.

[27] R Covington et al., “The Rice Parallel Processing Testbed,” In
Proceedings of the 1988 ACM SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems, pp. 4-11, May 1988.

[28] L. Cai and D. Gajski, “Transaction Level Modeling: an overview,”
Hardware/Software Codesign and System Synthesis, pp. 19-24, 2003.

[29] M. Chidester and A. George, “Parallel Simulation of Chip-
Multiprocessor Architectures,” ACM Trans. on Modeling andCom-
puter Simulation, vol. 12, no. 3, pp. 176-200, July 2002.

[30] L. Eeckhout and K. De Bosschere, “Efficient Simulation ofTrace
Samples on Parallel Machines,” Parallel Computing, vol. 30, no. 3,
pp. 317-335, Mar. 2004.

[31] B. Falsafi and D. Wood, “Modeling Cost/Performance of a Parallel
Computer Simulator,” ACM Trans. on Modeling and Computer Sim-
ulation, vol. 7, no. 1, pp. 104-130, Jan. 1997.

[32] G. Lauterbach, “Accelerating Architectural Simulation by Parallel
Execution of Trace Samples,” Sun Microsystems Laboratory Technical
Report TR-93-22, 1993.

[33] A. Nguyen, P. Bose, K. Ekanadham, A. Nanda and M. Michael,
“Accuracy and Speed-Up of Parallel Trace-Driven Architectural Sim-
ulation,” In Proceedings of Int’l Parallel Processing Symp., 1997.

[34] D. Poulsen and P. Yew, “Execution-Driven Tools for Parallel Simu-
lation of Parallel Architectures and Applications,” In Proceedings of
Supercomputing, pp. 860-869, 1993.

[35] W. Wang and J. Baer, “Efficient Trace-Driven Simulation Methods for
Cache Performance Analysis,” ACM Trans. on Computer Systems,
vol. 9, no. 3, pp. 222-241, Aug. 1991

[36] MPI Homepage, http://www-unix.mcs.anl.gov/mpi/, visited Mar 2007.
[37] SPEC CPU 2000, http://www.spec.org/cpu/, visited Mar2007.
[38] P. Magnussonet al., “Simics: A full system simulation platform,”

Computer, vol. 35, no. 2, pp. 50-58, 2002.
[39] K. Compton and S. Hauck, “Reconfigurable computing: a survey of

systems and software,” ACM Comput. Surv. 34, pp. 171-210, 2002.
[40] Mentor Graphics, ModelSim. http://www.mentor.com/modelsim.
[41] Mentor Graphics, Hardware/Software Co-Verification:Seamless.

http://www.mentor.com/seamless/, visited Jan 2007.
[42] Mentor Graphiscs, Seamless FPGA,

http://www.mentor.com/products/fv/hwsw_coverification/seamless_fpga/,
visited Jan 2007.

[43] W. Fu and K. Compton, “A Simulation Platform for Reconfigurable
Computing Research,” IEEE International Conference on Field Pro-
grammable Logic and Applications, Aug. 2006.

[44] J. Hunter, P. Athanas and C. Patterson, “VTsim: A Virtex-II Device
Simulator,” In Proceedings of Engineering of ReconfigurableSystems
and Algorithms, ERSA’04, Jun 2004.

[45] J. Hunter, “A Device-Level FPGA Simulator,” Masters Thesis, June
2004.

[46] S. McMillan, B. Blodget and S. Guccione, “VirtexDS: a Virtex device
simulator,” In Proceedings of SPIE, pp. 50-56, Oct 2000.

[47] A. Poetter, “JHDLBits: An Open-Source Model for FPGA Design
Automation,” Master’s Thesis, Aug 2004.

[48] D. Levi and S. Guccione, “BoardScope: a debug tool for reconfig-
urable systems,” In Proceedings of SPIE vol. 3526, pp. 239-246, Oct
1998.

[49] W. Thies, M. Karczmarek and S. Amarasinghe, “StreamIt: A Lan-
guage for Streaming Applications,” In Proceedings of the 2002
International Conference on Compiler Construction, Apr 2002.

[50] AMD Multicore Website,
http://multicore.amd.com/, visited Mar 2007.

[51] Intel Multicore Website,
http://www.intel.com/multi-core/, visited Mar 2007.

[52] J. Eker et al., “Taming heterogeneity–the Ptolemy approach” In
Proceedings of the IEEE Special Issue on Modeling and Designof
Embedded Software, vol. 91, pp. 127-144, Jan 2003.

[53] C. Hoare, “Communicating Sequential Processes,” Prentice Hall In-
ternational, 1985.

[54] OpenFPGA consortium,
http://www.openfpga.org/, visited Mar 2007.

