Simulation of Hybrid Computer Architectures: Simulators,
Methodologies and Recommendations

Pranav Vaidya and Jaehwan John Lee
Department of Electrical and Computer Engineering
Purdue School of Engineering and Technology
Indiana University-Purdue University Indianapolis

Abstract— In the future, high performance computing systems may
consist of multiple multicore processors and reconfigural®@ logic
coprocessors. Industry trends indicate that such coprocesrs will
be socket compatible to microprocessors and will be integtad on
existing multiprocessor motherboards without any glue logc. Due to
these trends, it is likely that such hybrid computing machires will
be a breakthrough for various High Performance Computing (HPC
applications. It is essential to investigate the computer rghitecture
of such hybrid computing machines that utilize reconfiguralle logic
coprocessors as application accelerators in a HPC system.nSilation
can be used to aid this architectural research and guide degn space
exploration. In this paper, we first present a representatie architecture
for future hybrid computing machines. Next we present a surey of
existing simulators and simulation methodologies for simlation of
components of hybrid computing systems. Finally, we preseérsome of
the challenges and recommendations to encourage researah ybrid

Lilja. They define simulation methodology as a general term to de-
scribe how the simulator is constructed and simulation technique as
the approach used by the simulation designer/performer to perform
simulation such as using reduced input sets and microbenchmarks.
The design decisions associated with the simulation methodology
are usually made by the simulator designer while the design
decisions associated with the simulation techniques are usually
made by the simulation designer/performer.

The design decisions associated with the simulation methodology
have direct consequences on the speed and fidelity of simulation.
Here, fidelity of the simulation refers to the degree to which the
simulated system models the real system. Any design decision
associated with the simulation methodology should ensure that the

computing machines and their simulators.

Index Terms— Simulation, modeling of hybrid computer architec-

1
tures, simulation of multiprocessor systems, simulation bFPGAs)

I. INTRODUCTION

Two major trends are evident in the computing industry. Firstly,
physical limitations of frequency scaling has led to major micropro-
cessor manufacturers pushing for integration of multiple processo,
cores in a single chip. Secondly, novel computing fabrics such a
reconfigurable devices are prominently being used for application
acceleration. It is quite likely that these two trends will merge
and hybrid computing machines made up of several processors
and Reconfigurable Logic (RL) coprocessors will become common-
place. Commodity multiprocessor server platforms containing mul-
tiple processor cores and reconfigurable coprocessors [1]+¢3] a
indications of this trend. These machines offer high performanc?3
computation beyond the limitations of Von Neumann machines.)

It is imperative to investigate the system architectures of such
hybrid computing machines and understand any associated issues
with design of such machines. Such investigation can be undertaken
by using computer architecture simulation. Computer architects
have long utilized simulators to guide the design space exploration
and validate the efficacy of proposed architectural enhancements.
In addition to traditional challenges such as trade-offs between
simulation fidelity and speed, hybrid computing simulators face
unique challenges in the form of lack of open source architectures,
lack of open source synthesis, configuration and debugging tools.

)

simulation methodology is:

Efficient: The simulation methodology should be able to uti-
lize greatly, if not completely, the capabilities of the simulation
host. In this case, a simulation host refers to the computing
system used to perform the simulation. Dynamic binary trans-
lation and parallel simulation are some of the examples of
increasing the efficiency and the speed of simulation.
Elegant: The chosen simulation methodology should be easily
understandable and extensible. This typically involves choices
such as choosing an existing simulation language and/or a
well validated simulation kernel. Hardware designers exercise
this choice frequently where hardware designs are typically
simulated using languages such as VHDL [5] and Verilog [6].
Recently, SystemC [7] has also become a popular option in
hardware simulation.

Deterministic and Reproducible: The simulation should be
able to produce identical results given identical initial con-
ditions. Popular simulation language kernels are Sequential
Discrete Event Simulators (SDES) because it is relatively
easy to ensure determinism in SDES. Simulation kernels like
SystemC ensure determinism by modeling concurrent activi-
ties in the simulation as user-level threads managed via co-
operative multitasking. If concurrent activities are modeled as
kernel-level threads, then non-determinism is introduced into
the simulation as scheduling of kernel-level threads is seldom
available to applications such as the simulation kernels.

Furthermore, the variation in the reconfigurable logic coprocessorSimilarly, the design decisions associated with the simulation
architectures make the design space exploration of hybrid compigehniques have direct consequences on the accuracy and validity

ing architectures truly challenging.

of simulation. Accuracy and validity of simulation refers to the

Here, we first define several terms that will be used in thidegree to which the workload used during simulation reflects the

paper. We define a simulator designer as an individual respdnie

workload of the real system. Yi and Lilja [4] cite several

sible for designing the simulator. We also define a simulatissimulation techniques such as reduced input set simulation tech-

designer/performer as an individual that leverages the simulatorrtigues, truncated execution simulation techniques, processor warm-
perform simulation. Additionally, we follow the definition of simu-up approaches and sampling simulation techniques as the popular
lation techniques and methodologies as described in [4] by Yi astnulation techniques. Due to space limitation, we concentrate

more on the simulation methodology that can be useful in sim- —Tn —on
ulation of hybrid computing machines.
Hybrid computing machines consist of multiprocessors and RL P
coprocessors. Hence, it is essential to identify the simulators, Z”r”JSZ;’Zr g"r“o'j::s“;
simulation methodologies and techniques used for simulating mul-
tiprocessors and RL coprocessors. This work surveys these facets
of a hybrid computing system. The remainder of the paper is |
structured as follows. In section Il, we present a representative A
architecture of future hybrid computing machines. This enables
us to identify the main components that the simulators should -
simulate to a certain degree of fidelity. In section Ill, we present
an overview of existing simulators, simulation methodologies and
approaches that may be useful in simulating the hybrid computing Global Interconnect —>
system. Section IV presents the challenges and limitations of
current simulation methodologies, and section V presents some
recommendations for improving research in hybrid computing

System Interconnect |

architectures and simulators. Fig. 1. A Single Node In A High Performance Hybrid Computing t8ys.
Il. A REPRESENTATIVECOMPUTERARCHITECTUREFOR hard drive and one or two DRC Reconfigurable Processor Units
HYBRID COMPUTING MACHINES (RPUs). The DRC RPU provides a tightly coupled RL coprocessor

In this section, we present a representative computer architectigh direct access to DDR memory and any adjacent Opteron
for hybrid computing machines that we believe will be commoRrocessor at full HyperTransport [8] bandwidth and low latency.
in a High Performance Computing (HPC) environment. Figure he RPU is controlled via an RPU manager, which allows FPGA
shows the most likely system architecture of a single node inc@nfiguration over HyperTransport. This system is capable of
high performance hybrid computing system. hosting ccNUMA operating system namely Linux (64-bit) Ubuntu

As shown in Figure 1, a single node of the hybrid HPC systeﬁﬁ(- It is an indication of the growing trend towards integration of
will consist of several complex out-of-order issue RISC/CISE®L coprocessors with multicore processors in the industry. Other
multicore processors and Reconfigurable Logic (RL) coprocessd¢@mpetitive vendors [1], [3] offer similar platforms.

These coprocessors will be socket compatible to processors anffor the aforementioned representative architecture, it is crucial
hence will be integrated on existing motherboards without ari@ note that any simulator for such architecture should be able to
glue logic. The processors and coprocessors will be interconnectulate the following components:

through uniform chip-to-chip and board-to-board interconnects likel) Multicore processors and caches.

Hypertransport [8]. To ensure scale-up as well as speed-up, it i2) Reconfigurable logic coprocessors.

quite likely that the most prevalent memory architectures of a single8) System interconnects and global interconnects: It is crucial
node in these hybrid computing machines will be cache-coherent to model system interconnects to a certain degree of fidelity.

Non-Uniform Memory Access (ccNUMA) [9]. The machines will This is essential as any HPC involves both computation and
have multiple levels of caches and main memory sizes of several communication.
gigabytes, if not terabytes [10]. 4) Run-Time Reconfiguration (RTR) and Run-Time Partial Re-

Field Programmable Gate Arrays (FPGAs) [11]-[15] will be configuration (RTPR): A hybrid computing machine simulator
the most commonly used RL coprocessors. These FPGAs will be should be able to model RTR and RTPR to simulate the RL
made up of hundreds of thousands of simple logic blocks such as coprocessor as a shared resource.

Configurable Logic Blocks (CLBSs). It is quite likely that with better 5) Memory modules: It is quite likely that in the future, each
fabrication processes, such FPGAs will have millions of CLBs. node of a hybrid HPC system will have ccNUMA memory
Other variations of FPGAs such as coarse-grained FPGAs [16] access architecture.

may also be used to reduce configuration times. Furthermore, these

devices will support Run-Time Reconfiguration (RTR) and Run- lll. SIMULATION AND CO-SIMULATION RESEARCHWORK

Time Partial Reconfiguration (RTPR) so that the reconfigurable |, his section, we present an overview of the popular simulators

coprocessors can be used as multiplexed shared resources. 3¢ simulation methodologies that will be useful for modeling and

consider the ability of processors to configure and control the§ﬁ‘nulating the components of hybrid computing machines.
custom coprocessors as a distinguishing characteristic of these

hybrid computing machines as compared to System-on-Chip (So¢). Simulators for Chip Multiprocessors
In SoC designs, the hardware modules are pre-configured toAs can be seen in Figure 1, a node in most of the future
perform a specified function. In a hybrid computing machine, thgybrid computing systems will contain multiple multicore proces-
RL coprocessor is used as either a shared or dedicated resourceots. Hence, we only survey the popular simulators that simulate
perform several functions in hardware. multiprocessors and chip-multiprocessors. Popular uniprocessor
The DS2004 system from DRC Computer Corp. [2] is reviewesimulators such as SimpleScalar [17] are not reviewed here as they
here as an example of the suggested representative architectdioenot model such multiprocessing systems.
This system is based on a Tyan Thunder K8QSD (S4882) 4-wayl) RSIM: Rice Simulator for ILP MultiprocessorsRSIM is
motherboard with four processor sockets. It supports up to fotire Rice Simulator for ccNUMA, ILP multiprocessors. It was
AMD Opteron Model 875 dual core processors, 12GB ECC DDRieveloped and released to public in 1997 [18], [27]. Key RSIM
an Nvidia 7300GT PCI Express video card, one 160GB SATfeatures include support for out-of-order issue, register rengaming

branch prediction and nonblocking caches. RSIM also supposggstem.
user-configurable parameters such as cache sizes and latencies, $imics methodology involves simulating a multiprocessor system
size and delay, as well as instruction window size [4], [18]. RSIM}y simulating each processor in a round-robin fashion. Each
was different from most other simulators in that it modeled thgrocessor is simulated for a given number of cycles controlled
ILP features of a multiprocessor system. RSIM's research showgid a variable calledcpu-switch-time This variable allows the
that disregarding the ILP-level features of a multiprocessor systeyparseness in thread interleaving to be scaled. However, adjusting
resulted in the overestimation of the execution time by as much @su-switch-timeto large value can have significant effect when
132 percent. simulating multithreaded applications with contended locks [21].
RSIM's simulation methodology was derived from YAC-As a result, derived simulators such as VASA typically set the
SIM [19]. YACSIM is a process-oriented, discrete-event simulatofalue of this variable to one. Other simulators in the academia use
developed as part of Rice Parallel Processing Testbed. YACSHimilar round-robin simulation of each processor [22] to simulate
supported user-level multithreading to represent multiple processagnultiprocessor system. While Simics can be customized using the
Thus, each process in RSIM runs in a user-level thread and #BIs that it provides, it does not expose its simulation methodology
simulation kernel manages the scheduling of these threads. Agsait is a commercial software. On the other hand, simulators such
result, RSIM does not take advantage of multiprocessing simulatiea GXEmul [22], [23] are open source and simulate the processors
hosts. RSIM utilizes execution driven simulation techniques @t instruction set level.
simulate applications compiled and linked for Sparc/V9/Solaris. 3) Wisconsin Wind Tunnel || (WWT IDWWT Il [25] differs
RSIM uses standard Sparc compilers and linkers at all optimizatileam the above two simulators in that it is a parallel, discrete-event,
levels. However, it lacks support for 64-bit integer and quadfirect-execution simulator that can be run across a wide range of
precision floating-point operations. Furthermore, it lacks suppgstatforms, such as desktop workstations, a SUN Enterprise server, a
for standard libraries and applications that rely on conventioneluster of workstations, and a cluster of symmetric multiprocessing
Sparc traps. To overcome this limitation, RSIM provides standargdes.
C library to support applications. WWT Il simulates a parallel, ccNUMA system on various par-
2) Virtutech Simics - A Full System Simulation Environment:allel systems connected using Myrinet [26]. It uses Synchronized
Virtutech Simics is a commercial full-system simulator that cafctive Messages (SAM) to communicate between the host nodes
simulate multiprocessor systems with enough accuracy to bdet parallel simulation. Analytical modeling has been used to
unmodified operating systems [38]. Simics executes unmodifiggproximate the performance of WWT Il for a variety of system
binaries from an ISA perspective and provides a timing interfagizes. WWT I uses direct execution and parallel hosts as the
to user modules. For example, instruction fetch by the simulatorsénulation methodology to speed up the execution. Direct execution
forwarded to the cache modules to stall the execution of instructiéXecutes an instruction of a target machine by directly executing
for an arbitrary number of cycles [20], [21]. it on the host system. Only operations unavailable on the host
As of Simics 2.0, Simics supports a Micro-Architectural InterPlatform are simulated by the host platform. Direct execution
face (MAI). Using MAI, the user module can determine whefypically runs orders of magnitude faster than pure interpreted
an instruction passes through the microprocessor pipeline siféftware simulation [25]. Furthermore, WWT II performs parallel
as fetch, decode, execute and commit phases. Using the timﬁi,ﬁ\ulation by exploiting the parallelism inherent in the target
interface provided by Simics, the user module can also support dallel computer to achieve speed-ups of up to 5.8X. However, this
tailed timing modeling. Simics supports checkpointing as a usef@PProach does not allow changes in the processor models and other
simulation technique. This allows the user to run the applicatigichitectural parameters such as issue widths, speculative memory
to a specific point of interest and save the state of the simulat@@c€sses and out-of-order execution [29].
machine to disk. This technique can reduce simulation time sinceWWT Il uses SAM as its programming model for communica-
application initialization phase is run only once. This has importafien and synchronization operations. Since SAM runs only on the
consequences for commercial benchmarks where such initializat®RARC architecture, WWT Il is not portable to other architectures.
or warmup phase can require a significant amount of time, everd) Parallel Trace Driven Simulation approache®ther ap-
requiring weeks of simulation [38], [43] proaches to parallel simulation of computer architectures in-
Simics is one of the most popular simulators used in thHdude [30]-[35]. All of these approaches use parallel trace driven
academia and industry to model entire computer systems and eg&gcution to speed-up simulation of benchmarks such as SPEC
distributed computing systems. Simics toolset has been usedGRU 2000 [37]. A given benchmark application is executed
the academia to develop the Wisconsin General Execution-drivé@ncurrently on multiple instances of the simulator initialized
Multiprocessor Simulator (GEMS) [20]. GEMS leverages the fullwith different configurations. Though such an approach increases
system functional simulation infrastructure of Simics to drive Hiroughput of simulation, it does not reduce the simulation time of
set of timing simulator modules for modeling the timing of thed single simulation as demonstrated by [29].
memory system and microprocessors. Other projects which haveéd) Parallel Simulation of Chip-Multiprocessor Architectures:
used Simics are Vasa [21] and SimFlex [24]. VASA [21] is a highljResearch by Chidestet al [29] targeted the simulation of Chip
configurable multiprocessor simulation package for Simics. Vaséultiprocessors (CMP) by performing parallel simulation of tightly
includes models of multilevel caches, store buffers, interconnecgupled CMPs (which share L2 caches) on a distributed host system
memory controllers and detailed complex out-of-order SMT/CMPonsisting of commercial-off-the-shelf (COTS) workstations. These
processors. It also supports two additional, less detailed simulatiwarkstations were connected by a high-speed network.
modes which run up to 287 times faster than the detailed simulatorThe simulation methodology used by Chidest¢ral. involves
SimFlex [24] is a simulator package for Simics developed at tleycle-accurate simulation of the processors and L1 caches. They
Carnegie Mellon University that leverages the statistical samplingsed the parallel, event-driven simulation built using the Message
of the inputs to reduce the simulation time of a chip multiprocess®assing Interface (MPI) [36] to model communication between L1

cache and the shared L2 cache. Using this approach, simulati@ols such as ModelSim [40]-[42] are used to perform functional
speed-ups of up to 5X were obtained. simulation, static timing analysis and timing simulation of the
hardware designs. These simulators use the knowledge of cell and
routing primitives of the actual device to perform simulations.

1) Levels of Abstraction in modeling custom loglue to the \ost FPGA design suites assume that hardware design simu-
large complexity of hardware designs today, most simulations aeed using behavioral and timing simulation will work in actual
done at various levels of abstraction. Gajski and Cai [28] explajfhrdware as intended. However, hardware designs validated using
the various levels of abstraction used in system models. They ideffining simulation may not work on the actual device due to several
fied that system functionality/computation and communication cj}oplems. For example, third party implementation tools may have
be developed independently of one another and refined at eqffarred, places and routed the designs differently than what was
subsequent stage. specified.

As seen in Figure 2, Gajski and Cai have classified the following hege design suites also assume that the hardware design being
levels of abstraction: nthesized is the only design resident on the reconfigurable device.

. . . S
i) Model I: Model | represents an untimed system archltectur@ijch an assumption is valid for most embedded systems which

model. This model is typically used to specify the functionality,qe reconfigurable devices to implement SoC designs. However,
and c_ommur_ucatlon of t_he_ system anc_i its subsystem without 3fhese assumptions may not be valid for hybrid computing machines
attention paid to the timing of the interfaces. This model igpere the RL coprocessors may be multiplexed across multiple
used to verify the correct functioning of the system and systegyications. As a result, the RL coprocessor may be configured to
!_nterconnects. support several hardware functions. Hence partial reconfigaratio
ii) Model II: Model Il represents the Component Assembly Models 4 essential characteristic of such machines. Most of these
(CAM). The CAM is used to integrate the empirical understandingn, ators do not have support for reconfigurable design concepts
of computational time into the model. However, data transfef,cy a5 partial reconfiguration. As a result, simulation and co-
between components is still untimed. o simulation approaches using traditional hardware design flow is
iii) Model lll: Model 1l represents the Bus Arbitration Model of limited use to the simulation of hybrid computing machines.
(BAM) or transactional model. In this model, the information about 3) VTSim - A Virtex-ll Device SimulatorVTSim [44], [45]

sach cycle of the bus is accurately modeled. . was a discrete-event simulator written in Java that modeled all
iv) Model IV: Model IV represents the Bus Functional Modelt

BEM). In thi del h signal t i f the bus | del e hardware resources present in a Virtex-ll FPGA [11]. VTSim
().' n this model, each signal transition o tn€ bus 1S MOAeIgq ,\ijeq 4 virtual FPGA device which was compatible to existing
as a single event. As a result, communications are timing accur finx tools. Using VTSim, the designers could access all the
v) Model V: Model V represents the cycle accurate COmIOUtt"‘t'otft]—)source values in the virtual FPGA such as flip-flop and look-

model. However, the_tlm_lng IS appromr_nately timed. This mOdPﬂp table values or values on a routed wire. VTSim was a bitstream
emphasizes communication at transaction level. }

B. Simulators for Reconfigurable Logic

. . evel simulator that took the bitstream file (.bit extension) generated
vi) Model VI: Model VI represents the register-transfer level mode

. -) rom the Xilinx tool chain to simulate the hardware designs.
In this case, both the communication and computation are modele

. TSim was useful in reconfigurable designs as it was able to
accurately. This model closely represents the actual hardware an L))
) . . . read and modify bitstreams used to configure and reconfigure the
is typically used for automatic synthesis to gates.

virtual FPGA device. Furthermore, VTSim was integrated into the

JHDLBIts [47] design suite allowing simulation in Java Hardware

Communication Description Language (JHDL) or as a standalone tool.
Unfortunately, this simulator was never released to the public

because the permission to release this simulator was never granted

Accurately -+ by Xilinx, the vendor for Virtex Il devices.

Timed 4) VirtexDS - A Virtex Device SimulatoVirtex Device Simu-

lator (VirtexDS) [46] was a device level simulator for Virtex-ll Pro

Approximately devices [11] from Xilinx. It was released as part of the Xilinx JBits

2.8 SDK [11]. This simulator was similar to VTSim that simulated

_ Virtex FPGA devices. VirtexDS provided a software model of the
untmed T Computation/ FPGA device for the entire Virtex family of FPGAs. It supported
1 l
T T

Functionalty run-time configuration and run-time partial reconfiguration that
Untimed poproximately Accurately could be controlled through the JBits 2.8 environment. VirtexDS
Timed Timed allowed for existing tools such as the BoardScope [48] debug tool

Fig. 2. Abstraction Level Of Models. Courtesy of Cai and ®g[28] to interface directly to the simulator without any modification.

2) Traditional Simulation/Co-Simulation Approaches and Limi- Subsequently, Xilinx released JBits 3.0. However, it did not
tations: Comptonet al. provided an extensive survey of reconfigfelease a device level simulator. During our survey, we found no
urable computing systems and software [39]. However, they ditevice level FPGA simulators available in the industry or academia
not consider the ability of processors to configure and partialfpr research purposes.
reconfigure RL coprocessors as the defining characteristics of
hybrid cqmputing machines. We feel as describeq in sectiqn Il thR}. CHALLENGES AND LIMITATIONS FOR HYBRID COMPUTING
these abilities are key features of hybrid computing machines.

Typically, hardware designers have designed and validated hard-
ware models (Models I-VI) using vendor-specific tools and hard- From our survey, we found the following limitations and chal-
ware design languages such as VHDL, Verilog and Systemignges that the hybrid computing simulators and machines face:

MACHINE SIMULATORS

1) Current limitations for simulating multicore processofdost to the general public [50], [51]. Simulator designers should take
simulators in the industry and academia such as RSIM amdte of this, and research simulators using Parallel Discrete Event
Simics are built using Sequential Discrete Event Simulato&imulation (PDES) should be investigated.

(SDES). Even hardware simulation languages and kernels usés identified in the challenges, the choice of programming
SDES for functional and timing simulation. These simulatorsiodel is a key challenge for developing simulators for multicore
do not take advantage of the parallel computation facilities thaimulation hosts. It is also essential that to ensure scalability of the
are becoming available even at the desktop computing leveimulation host, such programming model should be seamlessly ex-
With the advent of multicore processors, these kernels shoukhsible to a cluster of computers. Streaming programming models
use the parallel computational facilities that current simuldased on well established process calculi such as Communicating
tion hosts offer. WWT Il and other parallel discrete evenSequential Processes [49], [53] may be the solution to this issue.
simulation approaches show that speed-ups can be obtaifdese programming models may be more flexible and faster than
from parallel simulation of computer architectures withouBAM and MPI for both multicore and other cluster simulation
compromising on the fidelity of the simulator. However, thesbosts. Such programming models can model physical processes
simulators have been built using specialized programmiras nano-threads, user-level threads and kernel-level threads, Th
models for distributed computing such as SAM and MPthe designer is flexible in choosing the appropriate granularity
While SAM is not portable, MPI suffers serious performancef threads according to the level of communication between the
degradation on multicore shared memory architectures asnbdeled components. However, we did not find any simulator that
maps each node of computation to an OS process. Henispuilt using streaming languages. Developing simulators using
one of the main challenges in simulating multicore processossch programming paradigms should be pursued.

is balancing portability of the simulator with the ease of Recommendation 2: Open FPGA Architecture and Open Source
using and extending the simulator. This challenge can Bd&GA Design Tools

solved by identifying and using a good programming moddtPGA industry is a multi-million dollar industry. Device vendors
for multicore and cluster simulation hosts. The key idehave invested greatly in their proprietary architectures and FPGA
behind such a programming model should be exploiting loceksign suites. However, it would be beneficial to both the academia
multiprocessor as well as cluster computing power. We statad industry if a consortium similar to OpenFPGA consortium [54]
such a computing model in section V. is established for the development of open source FPGA architec-
Challenges in Simulating Reconfigurable FPGA&e chal- tures and design tools for hybrid computing machines. This would
lenges in simulating reconfigurable logic devices are greatke both financially and intellectually beneficial to the industry and
than that of traditional processors. Reconfigurable devicesademia. For example, traditionally it is assumed that the RL
typically have closed architectures, closed bitstreams, and evaprocessors are dedicated for a single application. It would be ben-
more so there is a lack of open source development tookfjcial if these RL coprocessors are used as multitasking shared re-
compilation-to-gates tools, verification and synthesis toolsources. To make this happen, the detailed layout of the application
Furthermore, there are no standard APIs for configuring amh the RL coprocessor should be known beforehand. Hence, with
communicating with these reconfigurable coprocessors inogen source FPGA architectures, a detailed architectural model of
hybrid computing machine. It is reasonable to understand tihe RL coprocessor can be used to perform intelligent compilation
the industry would most likely not release open architecturesd synthesis for these shared coprocessors. Additionally, required
and tools due to the inherent financial gains associated witesearch impetus can be accelerated using open source reconfig-
such tools. In another aspect, as the granularity of FPGJ#able coprocessor architectures in HPC applications. Furthermore,
devices increases towards fine-grained architectures, it wodldch an endeavor can create the required engineers and scientists
be extremely inefficient to simulate these devices using SDE8ho are exposed to reconfigurable computing internals.
Challenges in Simulating the Hybrid Computing Systitost vVl S
simulation kernels do not support multiple models of com- i ' UMMAR,Y)
putation in the simulator. Different models of computation '" this paper, we have summarized some of the simulators
may be advantageous to model the various components of EH?ed S|mulat|on me_thodologle_s that are likely to be useful in the
hybrid computing system. For example, while Synchronm%mu_lat'on of hybrid computing m_achlnes ma_de up of multiple
Data Flow Graphs (SDFG) may be advantageous to mod@tlticore processors and_ reconfigurable Iogl_c COprocessors. It
streaming devices such as DSPs, Parallel Discrete Evdypuld be_beneflual if the simulator m_ethod_ologleS fully utilize the
Simulation (PDES) may be advantageous to model multicoFQmpUt"?‘t'()n"?" power offered by the simulation hosts. Resear.ch into
processors. Hence, research and further exploration of suigyveloping simulators built around the concept of Parallel Discrete

multi-model simulation kernels [52] should be encouraged. EVent Simulation (PDES) and/or streaming language paradigms
such as Communicating Sequential Processes (CSP) [53] should

be encouraged.
There exists an inherent trade-off between simulation speed and
Based on the aforementioned observations, we make the follogimulation accuracy. However, many simulation approaches target
ing recommendations for fostering research in the area of hybsanulation speed by compromising the fidelity of simulation. Such

2

~

3

~

V. RECOMMENDATIONS

computing systems and hybrid computing simulators. a trade-off is acceptable for development of systems software;
Recommendation 1: Use of Parallel Simulation Techniques fbowever it can result in the overestimation of execution speeds
Current Simulation Hosts in some cases. With the current industry trends towards chip

It is essential to note that as hybrid computing machines amultiprocessing, it is essential that simulators model such systems
growing more complex, the simulation hosts are also becomimgth sufficient fidelity. As a result, as part of our recommendations,
more powerful. Over the last few years, even desktop computers have suggested that further research into parallel simulation of
with two or more processors/processor cores have become availathig multiprocessors be pursued.

In addition, to foster further development into ReconfigurablR4] T. Wenisch et al, “SimFlex: Statistical Sampling of Computer
Logic (RL) coprocessors, we have suggested that both the industry Architecture Simulation,” IEEE Micro special issue on Conggut
and the academia join hands to come up with open source FP
architectures and programming tools. Currently, there exist
open source simulators that support run-time reconfiguration and ysis and Its Impact on Design, June 1997.
run-time partial reconfiguration. Research into device level FPER6] Myricom Page for Myrinet, http:/iwww.myri.com/myrinet/erview/,

simulators would be greatly useful to both academia and indus}trﬁ]
a

and thus should be pursued. We predict with high confidence t

such research will provide great impetus in developing open source
compilation and synthesis tools. This will further the integration 8]
such RL coprocessors with applications spanning from embedded
systems, general purpose computing to High Performance Comp{a

ing (HPC).

(1]
(2]
(3]

[10]

[11]
[12]
[13]
[14]
[15]

[16]

[17]

(18]

[19]

[20] M. Martin et al, "Multifacet’s general execution-driven multiproces-[so]

(51]

[21]

(22]

(23]

(30]

REFERENCES

Celoxica RCHTX System,
http://www.celoxica.com/products/rchtx/default.asisited Mar 2007.
DRC Computer Corporation,

http://lwww.drccomputer.com/, visited Mar 2007.

XtremeData Inc,

http://lwww.xtremedatainc.com/, visited Mar 2007. 13

J. Yiand D. Lilja, “Simulation of Computer ArchitectureSimulators,
Benchmarks, Methodologies, and Recommendations,” IEEE Teens
Computers, vol. 55, no. 3, pp. 268-280, Mar. 2006.

VASG: VHDL Analysis and Standardization Group,
http://lwww.eda.org/vhdI-200x/, visited Mar 2007.

IEEE Verilog Standardization Group,
http://lwww.verilog.com/IEEEVerilog.html, visited Mar 280
SystemC Community Website,

http://www.systemc.org/, visited Mar 2007.

Hypertransport Consortium,
http://www.hypertransport.org/index.cfm, visited Jar020

NUMA, HyperTransport, 64-Bit Windows, and You
http://developer.amd.com/article_print.jsp?id=8, ediDec 2006
Performance Guidelines for AMD Athlon 64 and AMD Opteron
ccNUMA Multiprocessor Systems,
http://www.amd.com/us-en/assets/content_type/white
_papers_and_tech_docs/40555.pdf, visited Dec 2006.

Xilinx Corporation, http://www.xilinx.com/, visitedan 2007.

Altera Corporation, http://www.altera.com/, visitddn 2007.

Actel Corporation, http://www.actel.com/, visitednJ2007.

Lattice Semiconductor Corporation, http://www.legsemi.com/, vis- [43]

ited Jan 2007.

QuickLogic Corporation, http://www.quicklogic.comiisited Jan
2007.

E. Mirsky and A. DeHon, “MATRIX: A reconfigurable computy
architecture with configurable instruction distributiondadeployable

resources,” IEEE Symposium on FPGAs for Custom Computinif5]

Machines, pp. 157-166, 1996

T. Austin, E. Larson and D. Ernst, “SimpleScalar: An adtructure
for computer system modeling,” Computer, vol. 35, no. 2, pp639-
2002.

V. Pai, P. Ranganathan and S. Adve. “RSIM: An Execution-
Driven Simulator for ILP-Based Shared-Memory Multiprocessand
Uniprocessors,” In Proceedings of the Third Workshop on Qaterp
Architecture Education, February 1997.

J. Jump, YACSIM Reference Manual. Rice University, i@ns2.1.1
edition, 1993, www.owlnet.rice.edu/ elec428/yacsim/ymaman.ps,
visited Mar 2007.

sor simulator (GEMS) toolset,” SIGARCH Comput. Archit. Newgp,

92-99, 2005.

D. Wallin, H. Zeffer, M. Karlsson and E. Hagersten, “VASA Simu-

lator Infrastructure with Adjustable Fidelity,” Parallahd Distributed
Computing and Systems, 2005.

P. Vaidya and J. Lee, “Design Space Exploration of Muticessor
Systems with Multicontext Reconfigurable coprocessors,”Pio-

ceedings of Engineering of Reconfigurable Systems and Algos,

ERSAO07, pp. 51-60, June 2007.

GxEmul, http://gavare.se/gxemul/, visited Jan 2007.

?J M. Chidester and A. George,

(31]

(32]

(34]
(35]

[36]
[37]
(38]

(39]

[40]
(41]

(42]

(44]

(46]

(49]

(52]

(53]

Architecture Simulation, vol. 26, no. 4, pp. 18-31, Jul/AugP8.
S. Mukherjeeet al., “Wisconsin Wind Tunnel Il: A Fast and Portable

0" Pparallel Architecture Simulator,” In Workshop on Performarmal-

visited Jan 2007.

R Covington et al, “The Rice Parallel Processing Testbed,” In
Proceedings of the 1988 ACM SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems, pp. 4-11, May 1988.
L. Cai and D. Gajski, “Transaction Level Modeling: aneoview,”
Hardware/Software Codesign and System Synthesis, pp4,12a03.
“Parallel Simulation of GChip
Multiprocessor Architectures,” ACM Trans. on Modeling aGdm-
puter Simulation, vol. 12, no. 3, pp. 176-200, July 2002.

L. Eeckhout and K. De Bosschere, “Efficient Simulation Tohce
Samples on Parallel Machines,” Parallel Computing, vol. 39, 3)

pp. 317-335, Mar. 2004.

B. Falsafi and D. Wood, “Modeling Cost/Performance of aahel
Computer Simulator,” ACM Trans. on Modeling and Computer Sim-
ulation, vol. 7, no. 1, pp. 104-130, Jan. 1997.

G. Lauterbach, “Accelerating Architectural Simulatidy Parallel
Execution of Trace Samples,” Sun Microsystems Laboratoriiieal
Report TR-93-22, 1993.

3] A. Nguyen, P. Bose, K. Ekanadham, A. Nanda and M. Michael,

“Accuracy and Speed-Up of Parallel Trace-Driven Architeat Sim-
ulation,” In Proceedings of Int'l Parallel Processing Synf®297.

D. Poulsen and P. Yew, “Execution-Driven Tools for MataSimu-
lation of Parallel Architectures and Applications,” In Bedings of
Supercomputing, pp. 860-869, 1993.

W. Wang and J. Baer, “Efficient Trace-Driven Simulatiorttfods for
Cache Performance Analysis,” ACM Trans. on Computer Systems,
vol. 9, no. 3, pp. 222-241, Aug. 1991

MPI Homepage, http://www-unix.mcs.anl.gov/mpi/, wsitMar 2007.
SPEC CPU 2000, http://www.spec.org/cpu/, visited N@07.

P. Magnussoret al.,, “Simics: A full system simulation platform,”
Computer, vol. 35, no. 2, pp. 50-58, 2002.

K. Compton and S. Hauck, “Reconfigurable computing: a eyrf
systems and software,” ACM Comput. Surv. 34, pp. 171-210, 2002
Mentor Graphics, ModelSim. http://www.mentor.com/masitel.

Mentor Graphics, Hardware/Software Co-Verificat®eamless.
http://www.mentor.com/seamless/, visited Jan 2007.

Mentor Graphiscs, Seamless FPGA,
http://www.mentor.com/products/fv/hwsw_coverificateedmless_fpga/,
visited Jan 2007.

W. Fu and K. Compton, “A Simulation Platform for Reconfigbte
Computing Research,” IEEE International Conference ondHrro-
grammable Logic and Applications, Aug. 2006.

J. Hunter, P. Athanas and C. Patterson, “VTsim: A VirteBevice
Simulator,” In Proceedings of Engineering of Reconfigura®ystems
and Algorithms, ERSA04, Jun 2004.

J. Hunter, ‘A Device-Level FPGA SimulatdrMasters Thesis, June
2004.

S. McMillan, B. Blodget and S. Guccione, “VirtexDS: ariéx device
simulator,” In Proceedings of SPIE, pp. 50-56, Oct 2000.

[47] A. Poetter, JHDLBIts: An Open-Source Model for FPGA Design

Automatiol’ Master’s Thesis, Aug 2004.

8] D. Levi and S. Guccione, “BoardScope: a debug tool farorgig-

urable systems,” In Proceedings of SPIE vol. 3526, pp. 239-Ott
1998.

W. Thies, M. Karczmarek and S. Amarasinghe, “Streamlit: A-la
guage for Streaming Applications,” In Proceedings of the 200
International Conference on Compiler Construction, Apr200

AMD Multicore Website,

http://multicore.amd.com/, visited Mar 2007.

Intel Multicore Website,

http://www.intel.com/multi-core/, visited Mar 2007.

J. Eker et al, “Taming heterogeneity—the Ptolemy approach” In
Proceedings of the IEEE Special Issue on Modeling and Design
Embedded Software, vol. 91, pp. 127-144, Jan 2003.

C. Hoare, Communicating Sequential Processd2rentice Hall In-
ternational, 1985.

[54] OpenFPGA consortium,

http://Iwww.openfpga.org/, visited Mar 2007.

