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Abstract

We remove the long standing restriction that plant dynamics in extremum seeking control must be stable and provide an extension that allows
single integrators, double integrators, and moderately unstable single poles. An application of the result for single and double integrators is in
control of autonomous vehicles. Extremum seeking is used for finding a source of a signal (chemical, electromagnetic, etc.) whose strength
decays with the distance. This is achieved without the measurement of the position vector and using only the measurement of the scalar signal.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent advances in extremum seeking have been followed
by several exciting applications in non-model based control and
optimization (Banaszuk, Narayanan, & Zhang, 2003; Peterson
& Stefanopoulou, 2004; Popovic, Jankovic, Manger, & Teel,
2003; Li, Rotea, Chiu, Mongeau, & Paek, 2005; Zhang,
Dawson, Dixon, & Xian, 2004). However, extremum seeking
has so far been developed only for plants that are open loop
stable (Ariyur & Krstić, 2003), with poles that are sufficiently
well damped. In this paper we introduce a new idea how to
extend the applicability of extremum seeking to marginally
stable systems and moderately unstable systems. While the
later extension is of general interest, the former comes from
an application.

Control of autonomous vehicles is an immensely active
area. Typically autonomous agents are allowed information
sharing and are supplied with at least their position measure-
ments. In this paper we use extremum seeking to address a
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problem with complete autonomy—a vehicle, without any
position or velocity information, tracks the source of a scalar
valued “concentration”-type signal (for example, the concen-
tration of a chemical agent, or the strength of an acoustic, or an
electromagnetic signal). The concentration field is not known,
however, it is assumed to be the strongest at the source and to
decay away from it. Therefore, the non-model based extremum
seeking method is appropriate to approach this problem.

The classical extremum seeking scheme is modified for the
stated task by observing that the integrator, a key adaptation
element, is already present in vehicle models where the pri-
mary forces or moments acting on the vehicle are those that
provide thrust/propulsion, i.e., for vehicles that act primarily in
the m �̈x = F manner, where F is the motion-generating input
and �̈x is the acceleration vector. In this paper we present results
for a point mass model in the plane. An extension to 3D for a
fully actuated vehicle is trivial, except that one employs sepa-
rate probing frequencies in the ES algorithm for the individual
axes of motion. The extension to point mass models with ex-
tensive losses (due for example to drag) is straightforward by
noting that the input–output relationship drops in relative de-
gree, making the problem actually easier. Drift-inducing forces
like gravity or buoyancy are automatically accommodated by
extremum seeking which auto-tunes the input to compensate
for such constant disturbances.
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An extension to underactuated or non-holonomic vehicles is
not straightforward and is the subject of Zhang, Arnold, Ghods,
Siranosian, and Krstic (2007) another follow-up research.

The stability results we prove are local. The techniques in-
troduced by Tan, Nesic, and Mareels (2005) can be used to
achieve semi-global versions of our results.

2. A Velocity-actuated point mass (single integrators)

In the plane, an autonomous vehicle is modeled as a point
mass:

ẋ = vx, ẏ = vy , (1)

where [x, y] is the position of the point mass and vx, vy are
the velocity inputs. Our method is extended later in the paper
to the case where the inputs are forces; however, for clarity in
introducing the new concept, we consider the simplest case of
a velocity-actuated point mass first.

A block diagram of extremum seeking is shown in Fig. 1. The
nonlinear map represents the distribution of the signal being
tracked, whose strength will typically decay away from the
origin, thus we assume that the nonlinear map J =f (x, y) has
a local maximum and pursue local tracking of that maximum.
For clarity we assume that the nonlinear map is quadratic and
that its Hessian is diagonal, viz.,

J = f (x, y) = f ∗ − qx(x − x∗)2 − qy(y − y∗)2, (2)

where (x∗, y∗) is the unknown maximizer, f ∗ = f (x∗, y∗) is
the unknown maximum, and qx, qy are some unknown positive
constants. General non-quadratic maps with non-diagonal Hes-
sians are equally amenable to analysis, using the same technique
as in Ariyur and Krstić (2003) and Krstić and Wang (2000). We
show next that extremum seeking drives the autonomous vehi-
cle to (x∗, y∗) without employing any knowledge of f (x, y) or
the measurements of (x, y), only the measurement of the output
J of the nonlinear map f (x, y). This corresponds to the prob-
lem of source localization in an unknown concentration field.
The designer chooses the parameters �, �, h, cx, cy in the block
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Fig. 1. Extremum seeking for velocity-actuated point mass.

diagram (Fig. 1), whereas the extremum seeking automatically
tunes vx, vy to lead the vehicle to the peak of f (x, y).

The analysis that follows employs the averaging method. Let

e = h

s + h
[J ] − f ∗, (3)

then the signal after the washout filter can be expressed as
(s/(s + h))[J ] = J − (h/(s + h))[J ] = J − f ∗ − e. Now, let
us introduce the new coordinates

x̃ = x − x∗ − � sin(�t), (4)

ỹ = y − y∗ + � cos(�t). (5)

Then, in the time scale � = �t , we define:

� = (J − f ∗ − e)

= − [qx(x̃ + � sin �)2 + qy(ỹ − � cos �)2 + e]. (6)

So we summarize the system in Fig. 1 as

dx̃

d�
= + 1

�
cx� sin �, (7)

dỹ

d�
= − 1

�
cy� cos �, (8)

de

d�
= + h

�
�. (9)

System (7)–(9) is in the form to which the averaging method is
applicable, provided 1/� is small, i.e., provided � is large (rel-
ative to the other parameters in the extremum seeking scheme
and relative to the parameters in the nonlinear map). The aver-
age model of (7)–(9) is

dx̃avg

d�
= − 1

�
�cxqxx̃avg, (10)

dỹavg

d�
= − 1

�
�cyqyỹavg,

(11)

deavg

d�
= − 1

�
h

[
qxx̃

2
avg + qyỹ

2
avg + eavg + �2

2
(qx + qy)

]
. (12)

Then the equilibrium of the average model (10)–(12) is

x̃e
avg = 0, ỹe

avg = 0, ee
avg = −�2

2
(qx + qy). (13)

The Jacobian of (10)–(12) at (x̃e
avg, ỹ

e
avg, e

e
avg) is

Javg = 1

�

[−�cxqx 0 0
0 −�cyqy 0
0 0 −h

]
. (14)

Given the knowledge that the extremum is a maximum,
it follows that qx, qy are known to be positive, though
their actual values are unknown. Therefore, if we choose
� > 0, cx > 0, cy > 0 and h > 0, the Jacobian (14) is Hurwitz
and the equilibrium (10)–(13) of the average system (12) is
locally exponentially stable. Then according to the averaging
theorem (Khalil, 2001), we have the following result.

Theorem 1. There exists �̄ such that for all 1/� ∈ (0, 1/�̄)

the system in Fig. 1 with the nonlinear map of the form
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(2) has a unique exponentially stable periodic solution
(x̃2�/�, ỹ2�/�, e2�/�) of period 2�/� and this solution satisfies∥∥∥∥∥∥
⎡
⎣ x̃2�/�

ỹ2�/�

e2�/� + �2

2 (qx + qy)

⎤
⎦

∥∥∥∥∥∥ �O(1/�), ∀��0. (15)

Since x − x∗ = x̃ + � sin(�t)= (x̃ − x̃2�/�)+ (x̃2�/� − 0)+
� sin �, the theorem implies that the first term converges to zero,
the second term is O(1/�), and the third term is O(�). Thus
lim sup�→∞|x − x∗| = O(� + 1/�). Similarly, we can obtain
lim sup�→∞|y − y∗| = O(� + 1/�). Hence, we get

lim sup
�→∞

|f − f ∗| = O(�2 + (1/�)2), (16)

which characterizes the asymptotic performance of the ex-
tremum seeking loop in Fig. 1. Since we choose � as small and
� as large, the tracking error is very small.

Extremum seeking can be used for tracking of slowly varying
trajectories, i.e., for tracking moving signal sources. When the
trajectories are periodic our stability proof extends with very
minor modifications which we do not present here in the interest
of space. For example, consider a target motion is in the shape
of the number eight (8):

x∗ = am sin(�mt), (17)

y∗ = am cos(2�mt + �m) , (18)

where �m>�. If � and �m are commensurate, i.e., if there
exist natural numbers N and Nm such that �/�m = N/Nm,
then our proof extends, with averaging applied over a period
of 2�N in the �-time scale to account for the presence of an
additional periodic terms on the right-hand sides of (7) and
(8). If, however, � and �m are incommensurate (for example,
�=4��m or �=3

√
23�m), the technique of general averaging

for “almost periodic” systems (Khalil, 2001, Section 10.6) leads
to the same stability conclusions.

We first illustrate the simulation results of seeking a station-
ary target. The point mass model (1) and the quadratic map
(2) are used in the simulation. We set the parameters of the
target as (x∗, y∗) = (−1, −1), f ∗ = 1, qx = 1 and qy = 0.5.
The parameters of the extremum seeking loop are chosen as
�= 30, �= 0.08, cx = cy = 10 and h= 1. The starting position
of the autonomous vehicle is (x(0), y(0)) = (1, 1). As shown
in Fig. 4(b), the autonomous vehicle starts at (1, 1) by probing
around to climb the gradient of the unknown map, eventually
circling very closely around the maximizer (−1, −1), the out-
put of the unknown signal J is shown in Fig. 4(a), while the
control inputs are shown in Fig. 4 (c) and (d). Note that the sim-
ulation results given in Fig. 4 are not for parameter values that
are tuned to exhibit the best possible results. On the contrary,
they illustrate the performance one would achieve for particu-
larly poorly chosen parameter of the extremum seeking scheme.
The point of showing the “worst case” performance is because
the map being optimized is unknown, therefore it makes sense
to ask a question about the performance with poorly chosen
parameters.

For the slow time varying target (17)–(18), the simulation
results are shown in Fig. 5, where we let am = 1, �m = 0.1,
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Fig. 2. Extremum seeking for force-actuated point mass.

�m=3, f ∗=1, qx =1, qy =0.5, and �=30, �=0.05, cx =cy =
15, h = 1. The starting position of the autonomous vehicle is
still (x(0), y(0)) = (1, 1). The autonomous vehicle catches up
with the target and then follows it quite closely in its number
eight motion.

3. A force-actuated point mass (double integrators)

In this section we present a modified scheme for force
actuated point mass models, which instead of single integra-
tors include double integrators. Both the vehicle model and
the modified ES scheme are shown in Fig. 2. One can observe
the double integrators in the vehicle model and the presence of
phase lead compensators of the form G(s)=kc(s−z0)/(s−p0)

whose role is to recover some of the phase in the feedback
loop lost due to the addition of the second integrator. Four new
states are introduced due to the PD compensators wx, wy and
the additional integrators vx, vy . Again, we introduce the new
coordinates ṽx =vx −�� cos(�t), ṽy =vy −�� sin(�t). Then,
in the time scale � = �t , we summarize the system in Fig. 2 as

dx̃

d�
= 1

�
ṽx,

dỹ

d�
= 1

�
ṽy , (19)

de

d�
= h

�
�, (20)

dṽx

d�
= 1

�
wx,

dṽy

d�
= 1

�
wy , (21)

dwx

d�
= 1

�

[
pxwx − cxkxzx� sin � + cxkx�� cos �

+cxkx

d�

dt
sin �

]
, (22)

dwy

d�
= 1

�
[pywy + cykyzy� cos � + cyky�� sin �

−cyky

d�

dt
cos �

]
, (23)

where � is defined in (6), and d�/dt=−2qx(x̃+� sin(�t))(ṽx+
�� cos(�t)) − 2qy(ỹ − � cos(�t))(ṽy + �� sin(�t)) − h�.
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The average model of (19)–(23) is

dx̃avg

d�
= 1

�
ṽxavg,

dỹavg

d�
= 1

�
ṽyavg, (24)

deavg

d�
= 1

�
(−h)

[
qxx̃

2
avg + qyỹ

2
avg + eavg + �2

2
(qx + qy)

]
,

(25)

dṽxavg

d�
= 1

�
wxavg ,

dṽyavg

d�
= 1

�
wyavg , (26)

dwxavg

d�

= 1

�
[pxwxavg+�cxkxqx(zx+h)x̃avg−�cxkxqxṽxavg], (27)

dwyavg

d�

= 1

�
[pywyavg+�cykyqy(zy+h)ỹavg−�cykyqyṽyavg], (28)

and its equilibrium is

x̃e
avg = ỹe

avg = ṽx
e
avg = ṽy

e
avg = we

xavg
= we

yavg
= 0, (29)

ee
avg = −�2

2
(qx + qy). (30)

The Jacobian of (28) at the equilibrium (x̃e
avg, ṽx

e
avg, w

e
xavg

, ỹe
avg,

ṽy
e
avg, w

e
yavg

, ee
avg) is

Javg = 1

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
0 0 1 0 0 0 0

−a3 −a2 −a1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 −b3 −b2 −b1 0
0 0 0 0 0 0 −h

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(31)

where a1 = −px, a2 = �cxkxqx, a3 = −�cxkxqx(zx + h), b1 =
−py, b2=�cykyqy, b3=−�cykyqy(zy +h). Therefore the char-
acteristic function of Javg is

D(�) = (� + h)(�3 + a1�
2 + a2� + a3)(�

3 + b1�
2 + b2� + b3).

Since the sufficient and necessary condition for a third order
polynomial to have positive roots is a1, a2, a3 > 0 and a1a2 −
a3 > 0. Then, Javg will be Hurwitz if and only if the following
inequalities hold:

− px > 0, (32)

�cxkxqx > 0, (33)

− �cxkxqx(zx + h) > 0, (34)

− �cxkxpxqx + �cxkxqx(zx + h) > 0, (35)

− py > 0, (36)

�cykyqy > 0, (37)

− �cykyqy(zyx + h) > 0, (38)

− �cykypyqy + �cykyqy(zyx + h) > 0, (39)

h > 0. (40)

One possible design to satisfy those inequalities (32)–(40) of
the x loop is �, h, cx, cy, kx, ky, > 0 and zx, zy <−h, px < zx +
h, py < zy + h.

Theorem 2. Consider the system in Fig. 2, where the nonlinear
map has the form of (2). There exists �̄ such that for all 1/� ∈
(0, 1/�̄) the system has a unique exponentially stable periodic
solution (x̃2�/�, ỹ2�/�, e2�/�) of period 2�/� and this solution
satisfies∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃2�/�

ỹ2�/�

ṽx
2�/�

ṽy
2�/�

e2�/� + �2

2 (qx + qy)

w
2�/�
x

w
2�/�
y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
�O(1/�), ∀��0. (41)

Hence lim sup�→∞ |f − f ∗| = O(�2 + (1/�)2).
Simulation results for a slowly time varying target (17)–(18)

are shown in Fig. 6 for am =1, �m =0.1, �m =3, f ∗ =1, qx =
1, qy = 0.5, and � = 30, � = 0.05, cx = cy = 20, h = 1. The
parameters of the PD compensator are chosen to satisfy the
inequalities (40), where kc = 2, z0 = −2, p0 = −5. The start
position of the autonomous vehicle is (x(0), y(0)) = (1, 1). As
expected, tracking with a vehicle that has a double integrator
in its input–output relation is harder than with a vehicle with a
single integrator, but the use of a phase lead compensator helps
achieve comparable performance.

4. A plant with moderately unstable poles

In this section we present an example of an MIMO plant with
slightly unstable poles that can be stabilized, in the absence of
its output measurements, with extremum seeking. This example
is unrelated to the autonomous vehicle problem studied in the
rest of the paper. Consider the two-input-two–output system

ẋ = 	xx + vx, ẏ = 	yy + vy , (42)

where 	x, 	y > 0 are constant and vx, vy are the inputs. The ES
scheme in Fig. 3 employs phase lead compensators for achiev-
ing robustness against the destabilizing effect of 	x, 	y > 0.
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Fig. 3. Extremum seeking with unstable poles.



1836 C. Zhang et al. / Automatica 43 (2007) 1832–1839

If 	x, 	y are very small, the robustness of the extremum seek-
ing loop itself will be able to compensate their effect without
resorting to the phase lead. This simple extension of the single-
integrator result is given without a proof.

Theorem 3. Consider the system in Fig. 3 without the phase
lead compensator, where the nonlinear map has the form of
(2). There exist 	̄, �̄ such that for all 	x, 	y ∈ (0, 	̄) and for all
1/� ∈ (0, 1/�̄) the system has a unique exponentially stable
periodic solution (x̃2�/�, ỹ2�/�, e2�/�) of period 2�/� and this
solution satisfies

∥∥∥∥∥∥
⎡
⎣ x̃2�/� − x̃e

avg

ỹ2�/� − ỹe
avg

e2�/� − ee
avg

⎤
⎦

∥∥∥∥∥∥ �O(1/�), ∀��0, (43)

where

x̃e
avg = 	xx∗

�cxqx − 	x
, ỹe

avg = 	yy∗

�cyqy − 	y

and

ee
avg

= −
[
�2

2
(qx+qy)+qx

(
	xx∗

�cxqx−	x

)2

+qy

(
	yy∗

�cyqy − 	y

)2
]

.

Moreover, lim sup�→∞|f − f ∗| = O(�2 + (1/�)2 + 	2).

If, however, 	x and 	y in (42) are not very small but of
medium size, then the robustness of the extremum seeking loop
itself cannot stabilize the system, so we include a phase lead
compensator to make up the phase lag introduced by the un-
stable first order dynamics. Then, in the time scale � = �t , we
summarize the system in Fig. 3 as

dx̃

d�
= 1

�
[wx + 	x(x̃ + x∗ + � sin �)], (44)

dỹ

d�
= 1

�
[wy + 	y(ỹ + y∗ − � cos �)], (45)

de

d�
= h

�
�, (46)

dwx

d�
= 1

�

[
pxwx − cxkxzx� sin � + cxkx�� cos(�t)

+cxkx

d�

dt
sin(�t)

]
, (47)

dwy

d�
= 1

�

[
pywy + cykyzy� cos � + cyky�� sin(�t)

−cyky

d�

dt
cos(�t)

]
, (48)
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Fig. 4. Extremum seeking for velocity-actuated point mass, stationary case.
(a) Output; (b) vehicle trajectory starts from (1,1); (c) control input of x-axis;
(d) control input of y-axis.
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source trajectory starts from (0,0); (c) control input of x-axis; (d) control
input of y-axis.
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case. (a) Output; (b) vehicle trajectory starts from (1,1) and source trajectory
starts from (0,0); (c) control input of x-axis; (d) control input of y-axis.



1838 C. Zhang et al. / Automatica 43 (2007) 1832–1839

where � is defined in (6). The average model of (44)–(48) is

dx̃avg

d�
= 1

�
[	x(x̃avg + x∗) + wxavg ], (49)

dỹavg

d�
= 1

�
[	y(ỹavg + y∗) + wyavg ], (50)

deavg

d�
= 1

�
(−h)

[
qxx̃

2
avg + qyỹ

2
avg + eavg + �2

2
(qx + qy)

]
,

(51)

dwxavg

d�
= 1

�
[(px − �cxkxqx)wxavg

+ �cxkxqx(zx − 2	x + h)x̃avg − �cxkxqx	xx
∗] (52)

dwyavg

d�
= 1

�
[(py − �cykyqy)wyavg

+ �cykyqy(zy − 2	y + h)ỹavg − �cykyqy	yy
∗]. (53)

Then the equilibrium of the average model (49)–(53) is

x̃e
avg = px	xx∗

�cxkxqx(zx − 	x + h) − px	x
, (54)

ỹe
avg = py	yy∗

�cykyqy(zy − 	y + h) − py	y
, (55)

ee
avg = − �2

2
(qx + qy) − qx

(
px	xx∗

�cxkxqx(zx − 	x + h) − px	x

)2

− qy

(
py	yy∗

�cykyqy(zy − 	y + h) − py	y

)2

, (56)

we
xavg

= −�cxkxqx	x(zx − 	x + h)x∗

�cxkxqx(zx − 	x + h) − px	x
, (57)

we
yavg

= −�cykyqy	y(zy − 	y + h)y∗

�cykyqy(zy − 	y + h) − py	y
. (58)

The Jacobian of (53) at (x̃e
avg, w

e
xavg

, ỹe
avg, w

e
yavg

, ee
avg) is

Javg = 1

�

⎡
⎢⎢⎢⎣

	x 1 0 0 0
a1 a2 0 0 0
0 0 	y 1 0
0 0 b1 b2 0

−2hqxx
e
avg 0 −2hqyy

e
avg 0 −h

⎤
⎥⎥⎥⎦ , (59)

where a1 = �cxkxqx(zx − 2	x + h), a2 = (px − �cxkxqx), b1 =
�cykyqy(zy −2	y +h) and b2 =(py −�cykyqy). Therefore, Javg
will be Hurwitz if and only if the following inequalities hold:

�cxkxqx − 	x − px > 0, (60)

(�cxkxqx + px)	x − �cxkxqx(zx + h) > 0, (61)

�cykyqy − 	y − py > 0, (62)

(�cykyqy + py)	y − �cykyqy(zy + h) > 0, (63)

h > 0. (64)

These conditions also ensure that the average equilibrium
(54)–(58) is finite. If qx, qy �q and 	x, 	y � 	̄, one possible
design to satisfy the inequalities (60)–(64) is

(1) Choose � > 0 to be small, h > 0.
(2) Choose cx > 0, kx > 0 such that cxkx > 	̄/2�q.
(3) Choose px = −�cxkxq and zx < − h.
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Fig. 7. Extremum seeking for unstable poles, stationary case. (a) Output; (b)
vehicle trajectory starts from (0,0); (c) control input of x-axis; (d) control
input of y-axis.
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(4) Choose cy > 0, ky > 0 such that cyky > 	̄/2�q.
(5) Choose py = −�cykyq and zy < − h.

Theorem 4. Consider the system in Fig. 3, where the nonlinear
map has the form of (2). If the conditions (64) are satisfied by
design, then there exists �̄ such that for all 1/� ∈ (0, 1/�̄)

the system has a unique exponentially stable periodic solution
(x̃2�/�, ỹ2�/�, e2�/�) of period 2�/� and this solution satisfies

∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎣

x̃2�/� − x̃e
avg

ỹ2�/� − ỹe
avg

e2�/� − ee
avg

w
2�/�
x − we

xavg

w
2�/�
y − we

yavg

⎤
⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥
�O(1/�), ∀��0, (65)

where (x̃e
avg, ỹ

e
avg, e

e
avg, w

e
xavg

, we
yavg

) is the equilibrium of the
average model (53).

Since
x − x∗ = x̃ + � sin(�t)

= (x̃ − x̃2�/�)

+
(

x̃2�/� − px	xx∗

�cxkxqx(zx − 	x + h) − px	x

)

+ px	xx∗

�cxkxqx(zx − 	x + h) − px	x
+ � sin �,

the theorem implies that the first term converges to zero, the
second term is O(1/�), the third term is O(	̄) and the fourth
term O(�), guaranteeing lim sup�→∞|x−x∗|=O(�+1/�+	̄).
Similarly, we can obtain lim sup�→∞|y−y∗|=O(�+1/�+ 	̄).
Thus, eventually we get lim sup�→∞|f −f ∗|=O(�2+(1/�)2+
	̄2), so the residual error is proportional to the value of the
unstable poles.

The robustness of the extremum seeking loop for slightly un-
stable poles is shown in Fig. 7 for 	x = 	y = 0.05, � = 20, � =
0.05, cx =cy =10, h=1, f ∗=1, qx =1, qy =0.5, (x(0), y(0))=
(0, 0). For considerably larger unstable poles, 	x = 	y = 0.5, a
phase lead compensator is required and its use results in compa-
rable performance as for 	x = 	y =0.05 without a compensator.

The application of extremum seeking can be pursued in much
greater generality than in the present section, allowing addi-
tional stable and fast dynamics, combined with unstable poles.
This is a topic of future research.
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Ariyur, K. B., & Krstić, M. (2003). Real-time optimization by extremum-
seeking control. Hoboken, NJ: Wiley-Interscience.

Banaszuk, A., Narayanan, S., & Zhang, Y. (2003). Adaptive control of flow
separation in a planar diffuser. Paper AIAA-2003-0617. In 41st aerospace
sciences meeting and exhibit, Reno NV.

Khalil, H. K. (2001). Nonlinear systems. 3rd ed., Englewood Cliffs, NJ:
Prentice-Hall.
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