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Abstract: In the production of clean steels the occurrence of imperfections — so-called inclusions — is
unavoidable. Furthermore, the strength of a clean steel block is largely dependent on the size of the largest
imperfection it contains, so inference on extreme inclusion size forms an important part of quality control.
Sampling is generally done by measuring imperfections on planar slices, leading to an extreme value version of
a standard stereological problem: how to make inference on large inclusions using only the sliced observations.
Under the assumption that inclusions are spherical, this problem has previously been tackled using a combina-
tion of extreme value models, stereological calculations, a Bayesian hierarchical model and standard Markov
chain Monte Carlo (MCMC) techniques. Our objectives in this article are two-fold: to assess the robustness of
such inferences with respect to the assumption of spherical inclusions, and to develop an inference procedure
that is valid for non-spherical inclusions. We investigate both of these aspects by extending the spherical family
for inclusion shapes to a family of ellipsoids. The issue of robustness is then addressed by assessing the perfor-
mance of the spherical model when fitted to measurements obtained from a simulation of ellipsoidal inclusions.
The issue of inference is more difficult, since likelihood calculation is not feasible for the ellipsoidal model. To
handle this aspect we propose a modification to a recently developed likelihood-free MCMC algorithm. After
verifying the viability and accuracy of the proposed algorithm through a simulation study, we analyze a real
inclusion dataset, comparing the inference obtained under the ellipsoidal inclusion model with that previously
obtained assuming spherical inclusions.

Keywords: Approximate Bayesian computation; Extreme value theory; Markov chain Monte Carlo;
Simulated tempering; Steel inclusion; Stereology.
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1 Introduction

A canonical problem in statistical stereology is the inference on a population of objects in
three-dimensional space on the basis of a sample observed on a planar intersection. Applica-
tions are typically medical or biological – in which the objects might be cells observed on a
slice of tissue – or industrial, where the objects might be imperfections in a volume of prod-
uct. In the inferential process, stereological considerations are needed to allow for the biasing
effect of the sampling procedure: for example, the larger objects are more likely to be sampled
in this procedure than the smaller ones.

Our study here focuses on an industrial application, the production of clean steels, though the
issues and techniques should carry over to a broader range of stereological applications. Ideally,
clean steels should be free of imperfections. In practice, the occurrence of microscopically small
particles — so-called inclusions — is unavoidable in the production process. Metallurgical
considerations suggest that the strength of a block of clean steel is strongly affected by the
size of the largest inclusion contained within the block, so inference on the largest inclusion size
is important. Typically, sampling of inclusions is carried out by planar slicing and microscopic
determination of the cross-sectional size of each observed inclusion on the planar slice. This
leads then to a stereological variant of an extreme value problem: deducing the distribution
of the largest inclusion in the block given the cross-sectional sample information. Similar
considerations also arise in medical applications for which the largest size of a certain cell-
type may be indicative of a particular infection or disease.

The problem of drawing inferences on stereological observations was first tackled by Wick-
sell (1925). The more specific task of making inference on the extremes of objects that are
observed only stereologically has only been considered much more recently. Direct extreme
value analysis without explicit reference to stereological aspects of the problem has been con-
sidered by Shi et al. (1999a, 1999b) and Anderson et al. (2000). Taking account of the
stereology that generates the data, and assuming spherical inclusions, Drees and Reiss (1992)
derived from first principles asymptotic families for the distributions of observed diameters.
This work was recently generalized by Hlubinka (2003) to the case of spheroidal inclusions.
Takahashi and Sibuya (1996, 1998, 2002) consider inference under the assumption of a gener-
alized gamma distribution for the sizes of spherical inclusions. Similar considerations from a
more conventional extreme value viewpoint were made by Murakami (1994) and Beretta and
Murakami (1998), who assumed a Gumbel distribution for the inclusion diameters. Most re-
cently, Anderson and Coles (2002) proposed a fully Bayesian analysis of the problem, enabling
a quantification of estimation precision through the posterior distribution. In their approach
the diameter of spherical inclusions is treated as a latent variable whose tail distribution is
modelled via a standard family of extreme value models, and the classical calculations of
Wicksell (1925) are exploited directly in the formulation of an MCMC algorithm to perform
the inference.

Our objectives in this paper are two-fold: first, to assess the sensitivity of inferences made
under the modelling procedure of Anderson and Coles (2002) to the assumption of spherical
inclusions; and second, to develop an inference procedure that is valid for ellipsoidal inclusions.
In Section 2 we detail the spherical inclusion model, and propose an alternative model based
on a broader class of ellipsoidal inclusions. We also undertake a simulation study to assess the
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robustness of the spherical model analysis to non-spherical inclusions. In Section 3 we discuss
inference for the ellipsoidal inclusion model, developing a new algorithm based on a likelihood-
free version of the standard MCMC algorithm. In Section 4 we compare analyses of real
inclusion data based on the assumptions of spherical and ellipsoidal inclusions respectively.
We conclude with some comments in Section 5.

2 Stereological Models for Inclusions

2.1 A Model for Spherical Inclusions

Combining earlier work in the metallurgical literature with some reasonable assumptions that
derive from extreme value theory, Anderson and Coles (2002) proposed the following model
for inclusions:

1. Inclusions are spherical;

2. Inclusion centres follow a homogeneous Poisson process in the space corresponding to a
volume of steel;

3. Inclusion diameters are mutually independent and independent of inclusion location;

4. The distribution of inclusion diameters, V , conditional on exceeding a threshold v0, falls
within the parametric family

G(v) = Pr(V ≤ v | V > v0) = 1 −

{

1 +
ξ(v − v0)

σ

}

−1/ξ

+

, v > v0, (1)

where σ > 0, ξ ∈ R and a+ = max(a, 0).

Assumptions 2 and 3 are thought to be plausible from a metallurgical point of view. Assump-
tion 1 is bound to be wrong, but it is believed to be a reasonable approximation and hoped
not to lead to misleading results. The model in assumption 4 is the generalized Pareto distri-
bution. This distribution is derived from a standard argument in extreme value theory based
on exceedances of an asymptotically rising threshold. The special case ξ = 0 is interpreted
by taking the limit ξ → 0, leading to a translated exponential distribution (Coles, 2001, for
example).

In standard extreme value applications, model (1) is fitted to observed threshold exceedances,
typically by maximum likelihood. In the stereological setting this approach is not immediately
available, as the diameters are unobserved. What is observed is a set of 2-dimensional cross-
sectional diameters, S1, . . . , Sn say, corresponding to all inclusions that intersect the sampling
plane with a cross-sectional diameter greater than some measurement threshold us. Associated
with each Si is an unobserved random variable Vi, which is the spherical diameter of the
inclusion. The Vi do not have the same distribution as a randomly selected inclusion diameter,
however, as a consequence of the size-biased sampling procedure. The problem then is making
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inference on the assumed tail model of spherical diameters on the basis of the observed
variables S1, . . . , Sn, in which n is also a random variable.

Without the extreme value twist to the application, this problem is the classical corpuscle
problem first considered by Wicksell (1925), who derived the distribution of the observed
two-dimensional diameters in terms of the distribution of the unobserved three-dimensional
diameters. Expressed in slightly non-standard terms to account for the thresholding aspect
of the extreme value problem, this result can be stated as

Pr(S ≤ s | S > v0) = 1 −

∫

∞

s (v2 − s2)1/2g(v)
∫

∞

v0
(v2 − v2

0)
1/2g(v)

, s ≥ v0, (2)

where g(.) is the generalised Pareto density function obtained from (1). This result follows
from the Poisson assumptions combined with the spherical geometry of the model. Assump-
tions 2 and 3 also guarantee that the process of inclusions with diameter greater than v0

is Poisson with a rate that we denote by λ. This observation, together with equation (2),
enables a likelihood for the parameters λ, σ and ξ to be developed on the basis of observed
planar diameters s1, . . . , sn, but the complexity of (2) means that inferences beyond numerical
evaluation of the maximum likelihood estimates are not really feasible (Anderson and Coles,
2002).

To resolve this computational difficulty, Anderson and Coles (2002) propose a Bayesian hier-
archical formulation of the model, in which the unobserved Vi are treated as latent variables.
With this structure and the use of equation (2) the authors develop a simple MCMC scheme
for inference on model parameters. They also present an example, that we discuss ourselves
in Section 4, which demonstrates the efficacy of the procedure.

2.2 A Model for Non-Spherical Inclusions

Since inclusions are microscopically small, and they are measured only stereologically, it is
impossible to know how reasonable the assumption of spherical inclusions is. This raises two
questions. Firstly, how sensitive are the inferences made under the assumption of spherical
inclusions if, in fact, the inclusions are not spherical? Secondly, if a non-spherical class of
inclusions is assumed, how can inferences be performed?

We investigate both of these aspects by substituting the family of spheres with a family of
ellipsoids for the inclusion shapes. This seems the most natural generalization, but compared
with the spherical class, a more detailed specification is necessary to determine both shape
and orientation of an ellipsoidal object. There are limitless possibilities. Again, we opt for
the simplest version and assume that the two smaller principal diameters are random uni-
form multiples of the largest principal diameter, that the inclusions are randomly orientated
in space and that the surface measurement is the largest principal diameter of the ellipse
generated by the planar intersection. More precisely,

1. Inclusions are ellipsoidal, randomly oriented in space, with principal diameters (V1, V2, V3).
Without loss of generality assume V3 = max(V1, V2, V3);
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2. Inclusion centres follow a homogeneous Poisson process in the space corresponding to a
volume of steel;

3. The vectors of diameters are mutually independent between inclusions and independent
of inclusion location;

4. The conditional threshold exceedance distribution of V3 falls within the generalized
Pareto family (1) for sufficiently large threshold v0.

5. Vj = UjV3, j = 1, 2, where U1 and U2 are independent uniform U [0, 1] variables.

6. The planar measurement Si is assumed to be the largest principal diameter of the ellipse
generated by the planar section of an inclusion.

Note that point 6 is now necessary to avoid ambiguity as the planar intersection generates
ellipses rather than circles as in the spherical inclusion case.

2.3 Robustness of Spherical Inclusion Model

Simulation of the ellipsoidal inclusion model is trivial, and it requires only elementary geome-
try to calculate the planar measurements generated by a configuration of simulated ellipsoids.
This provides us with a method to assess the robustness of the spherical inclusion model to
shape mis-specification: we simulate data from the ellipsoidal model, fit the spherical model
via the MCMC algorithm of Anderson and Coles (2002) using posterior means to estimate
parameters, and repeat many times to get empirical estimates of bias. To obtain results
that are essentially objective, in all subsequent analyses we use prior distributions that have
large marginal variances and that are independent across variables. Checks were carried out
throughout to ensure that results are not sensitive to changes within this vague prior specifi-
cation.

Our simulations across a range of parameter configurations suggest that the biases for σ and
ξ are relatively small, and negative and positive in sign respectively, while λ is substantially
underestimated. The large bias in λ is not surprising: the overall dimensions of an ellipsoid
are smaller than a sphere whose diameter is the same as the largest principal diameter of
the ellipsoid. Hence, given the observed planar intersections, a smaller rate of inclusion is
predicted under the spherical inclusion model than under the ellipsoidal inclusion model. The
biases in σ and ξ are less easily understood. The precise magnitudes of the biases depend in

True value Bias
λ σ ξ

ξ = −0.2 -71.93 -0.31 0.076
ξ = 0 -69.94 -0.236 0.035

ξ = 0.2 -66.96 -0.063 0.0042

TABLE 1. Bias in the posterior means of λ, σ and ξ when the spherical inclusion model is fitted to data
simulated from the ellipsoidal inclusion model with λ = 100, σ = 1.5 and ξ = −0.2, 0 and 0.2 respectively.
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a rather complex way on the true parameter configuration; for illustration, Table 1 gives the
biases for fixed values of λ and σ across a range of values for ξ. The general pattern here of
diminishing bias for both σ and ξ with increasing values of ξ was found to hold also for other
values of λ and σ.

In applications, inference on quantities that involve combinations of parameter values is likely
to be more relevant. For example, a standard unit of measurement in the quality control of
metals is the characteristic size, vC , defined so that the expected number of inclusions in
a block of volume C with diameter greater than vC is exactly one. By the various model
assumptions

vC = v0 −
σ

ξ

{

1 − (λC)ξ
}

.

When inclusions are ellipsoidal and the spherical model is fitted, the posterior mean of vC ,
denoted by v̂C , underestimates the true value for small C, due to the negative bias on λ,
but overestimates for large C, due to the positive bias on ξ. The magnitude of such effects
depends on all parameter values, but the pattern of variation is most strongly dependent on
the value of ξ. To illustrate, Figure 1 shows the graph of vC against C for various choices
of ξ. Also shown on these graphs are the empirical means, and 2.5% and 97.5% quantiles of
v̂C , again as a function of C. When ξ = −0.2 the sampling distribution of v̂C is substantially
biased, both for small and large values of C. For ξ = 0 the same conclusions hold, but the
effects are less exaggerated. For ξ = 0.2 the spherical model appears to make near perfect
inferences on vC .

In summary, the poor estimation of λ is influential on v̂C only for small values of C. For larger
values of C, discrepancies between v̂C and the true value are due to the errors in estimating
σ and ξ. These errors tend to be compensatory, except for very large values of C, when ξ
becomes the dominant term. When ξ is moderately positive, corresponding to a reasonably
heavy-tailed diameter distribution, even these errors are negligible in practice.

We stress, moreover, that the robustness argument cuts both ways. Fitting the ellipsoidal
model to data generated from spherical inclusions - using the technique discussed in the
following section - results in errors of a similar order of magnitude, but in the reverse direction.
Again, the dominant error is in the inclusion rates, which are substantially over-estimated
with the false ellipsoidal assumption. Furthermore, changing assumption 5 on the relative
magnitudes of ellipsoidal diameters can lead to models that are even less similar to the
spherical model, so the magnitude of errors arising from model misspecification could be even
greater. We stress that our aim is not to choose between shape models - as information on
shape is unavailable within the stereological observations - but to assess the robustness of the
spherical model and to develop a procedure for inference when a non-spherical shape form for
inclusions is proposed.

3 Likelihood-Free MCMC

3.1 MCMC Inference on the Inclusion Model

As observed in the previous section, the mis-specification of inclusion shapes can lead to
inferences that are biased, possibly severely so. Consequently, if inclusions were known to be
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non-spherical, more accurate inference could be obtained, at least in principle, by working
with the true family of inclusion shapes. But there is a difficulty: Wicksell’s formula and the
related equations linking the three-dimensional inclusion process and the two-dimensional
observations process, which enabled the likelihood-based Bayesian analysis of Anderson and
Coles (2002), are valid only in the spherical case. Some generalizations have been developed,
most notably by Wicksell himself in Wicksell (1926) to classes of ellipsoids with fixed shape
and by Hlubinka (2003) to the class of spheroids. The difficulty in extending results to more
general families, including our ellipsoid family, is discussed by Baddeley and Jensen (2004).
Hence there appears to be no simple way to perform the likelihood calculations that would
be an integral part of an MCMC algorithm or any other standard likelihood-based inference
procedure. Consequently, we turn to a family of stochastic simulation algorithms, termed
‘approximate Bayesian computation’ techniques (Beaumont et al. , 2002). These have been
recently developed in the field of statistical genetics to enable inference on models that have
a simple parametric structure, but an analytically or computationally intractable likelihood.
Broadly, such techniques substitute likelihood evaluation with model simulation, and are
therefore useful only if model simulation is both feasible and inexpensive. Fortunately, this is
the case for the ellipsoidal inclusion model.

3.2 A Likelihood-Free MCMC Algorithm

Our starting point is the approximate MCMC algorithm developed by Marjoram et al. (2003),
but see also Plagnol and Tavaré (2003). Let f(y | θ) denote the probability (density) function
of a random (vector) variable Y parameterized by θ ∈ Θ, and suppose y0 is the observed value
of Y . Denote the prior distribution on θ by π(θ). Departing temporarily from the case of the
inclusion model, we deal first with the situation where Y is discrete. In this case, Marjoram
et al. (2003) demonstrate that, like a standard MCMC algorithm, the following algorithm
generates a Markov chain with stationary distribution equal to the posterior distribution
f(θ | y0):

Algorithm LF (Likelihood Free MCMC)

LF1 Initialise θ0; i = 0.

LF2 Propose θ∗ according to a transition kernel q(θi → θ∗).

LF3 Generate y∗ ∼ f(y | θ∗).

LF4 With probability

α = min

{

1,
π(θ∗)q(θ∗ → θi)

π(θi)q(θi → θ∗)
1(y∗ = y0)

}

set θi+1 = θ∗; otherwise θi+1 = θi.

LF5 Set i = i + 1 and go to LF2.

In step LF4, 1(·) is the indicator function. In effect, having made a proposal θ∗ via a standard
MCMC procedure, a value y∗ is simulated from the model with parameter θ∗. If y∗ differs



P. Bortot, S. G. Coles and S. A. Sisson 8

from the true data value y0, θ∗ is immediately rejected (in favour of the current value θi).
If y∗ = y0, then θ∗ is accepted or rejected according to a probability that is the standard
MCMC acceptance probability without the likelihood ratio term. Consequently, simulation
replaces likelihood evaluation. The proof that f(θ | y0) is the stationary distribution relies on
reversibility arguments like those used for the standard Metropolis-Hastings algorithm.

Despite the guaranteed convergence of Algorithm LF, its speed of convergence may be very
slow. Like the standard Metropolis-Hastings algorithm, this speed is affected by the choice of q.
However, Algorithm LF is likely to have much slower mixing than the standard Metropolis-
Hastings algorithm as α = 0 unless y∗ = y0, so updates of θ are static unless a random
simulation from the model f(y | θ∗) coincides exactly with the data y0. Except in artificially
simple cases, f(y0 | θ∗) is likely to be very small – especially in problems that are high
dimensional, highly structured or have many data components – leading to a small acceptance
rate and a mixing of the chain that is therefore unacceptably slow. To address this difficulty
Marjoram et al. (2003) propose two modifications to the basic algorithm. First, in step LF4,
the term 1(y∗ = y0) is substituted with 1(S(y∗) = S(y0)), where S(.) is a function that maps
y to a vector of summary statistics. In other words, summary statistics of simulated data are
required to match those of the original data. The gain in efficiency then derives from the fact
that Pr(S(Y ) = S(y0) | θ∗) could be very much greater than Pr(Y = y0 | θ∗). When S(y) is
exactly sufficient for θ in f(y | θ), the algorithm is still exact, in the sense of having stationary
distribution f(θ | y0). As an example, for both the spherical and ellipsoidal inclusion models,
the elements of the vector of surface diameters y = (s1, . . . , sn) are exchangeable, so that
S(y) = (s(1), . . . , s(n)), the vector of order statistics, is sufficient. However, slow mixing is still
likely if n is large, and in this case, or for models of greater complexity, it is necessary to seek
mappings S(.) to lower dimensional spaces which, although not exactly sufficient, contain
most of the data information on θ. In this case, the algorithm no longer provides an exact
posterior inference, and its accuracy will depend on precisely how much information is lost in
the mapping S.

The second modification suggested by Marjoram et al. (2003) is further replacement of the
term 1(S(y∗) = S(y0)) with 1(ρ(S(y∗), S(y0)) < ε) for some metric ρ and ε > 0. In other
words, exact matching of summary statistics for a random draw from f(· | θ∗) and original
data y0 is replaced with near matching as a pre-requisite for an update in the chain. This
modification also permits the transition from discrete to continuous Y . The induced chain then
converges to the stationary distribution f(θ | ρ(S(Y ), S(y0)) < ε). Care is needed however,
since this distribution may be quite different from the the target f(θ | y0) when ε is not
sufficiently small (Tanaka et al. , 2006, for example). On the other hand, imposing a value of
ε that is too small may leave the acceptance rate of the algorithm unworkably low.

3.3 A Likelihood-Free MCMC Algorithm with State Space Augmentation

For inferences on the model f(y | θ) when the sample space of Y is continuous, as with
the inclusion model, the basic algorithm LF is invalid, not least because Pr(Y = y0 | θ) = 0.
However, the modified version that accept points within an ε-neighbourhood of y0 may provide
a viable approximation, with the choice of ε again providing a compromise between accuracy
and precision of the consequent inference.
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To address this issue, we propose a modification to Algorithm LF based on an augmentation
technique. The idea is analogous, though not equivalent, to the procedure of simulated tem-
pering that is sometimes used to overcome mixing difficulties in standard MCMC algorithms
(Geyer and Thompson, 1995; Stolovitzky and Berne, 2000; Brooks et al. , 2003). Typically,
simulated tempering comprises simulation via standard stochastic methods from a model
f(θ, τ |y0) ∝ f(θ|y0)

1/τ , defined over an augmented state space Θ×N , leading to a generated
series (θi, τi). The target distribution is f(θ|y0) = f(θ|y0, τ = 1). Subsetting the output to
obtain {θi : τi = 1} results in a series whose stationary distribution is the target distribution,
but with potentially better mixing properties. This is because f(θ|y0)

1/τ is flat relative to
f(θ|y0) when τ is large, so that proposals made when τ is large have a greater acceptance
probability. By analogy, in Algorithm LF our proposal is to augment the parameter space of
f(y | θ) with ε, which is now treated as a model parameter. We then apply Algorithm LF
to the enlarged space, updating both ε and the components of θ. This results in a Markov
chain on the pairs (θ, ε) ∈ Θ×R+. In loose terms, values of θ that have been generated with
small values of ε are reliable in the sense of having conditional distribution close to the target
f(θ|y0). Simulated θ’s corresponding to large values of ε are less reliable, but the transition to
such values enables a quality of mixing of the θ component that is unattainable with ε fixed
at a small value.

In more detail, we assume that a suitable mapping S(.) has been identified that exploits exact
or near sufficiency of the model structure, together with a metric ρ in the space of S(y). We
also assume that a pseudo-prior for ε, π(ε) on R+, has been specified. Then, the new algorithm
is

Algorithm LFA (Likelihood Free with Augmentation MCMC)

LFA1 Initialise (θ0, ε0); i = 0.

LFA2 Propose (θ∗, ε∗) according to a transition kernel q ((θi, εi) → (θ∗, ε∗)).

LFA3 Generate y∗ ∼ f(y | θ∗).

LFA4 With probability

α = min

{

1,
π (θ∗) π (ε∗) q ((θ∗, ε∗) → (θi, εi))

π (θi)π (εi) q ((θi, εi) → (θ∗, ε∗))
1(ρ(S(y∗), S(y0)) < ε∗)

}

set (θi+1, εi+1) = (θ∗, ε∗); otherwise (θi+1, εi+1) = (θi, εi).

LFA5 Set i = i + 1 and go to LFA2.

In essence, this is Algorithm LF applied to the augmented (θ, ε) vector. It follows that Algo-
rithm LFA produces a Markov chain on the state space Θ×R+ having stationary distribution

f(θ, ε | ρ(S(Y ), S(y0)) < ε) ∝ π(θ)π(ε)Pr(ρ(S(Y ), S(y0)) < ε | θ, ε).

Recall that our real target is f(θ | y0) and that this can be approximated by Algorithm
LF to any degree of accuracy through choice of a sufficiently small ε. This suggests running
Algorithm LFA with a pseudo-prior π(ε) (c.f. Geyer and Thompson, 1995) that favours small
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values. The occasional generation of large values of ε enables the problems of poor mixing
that would be encountered with a small fixed ε to be avoided. The potential for bias induced
by the simulation of large values of ε can be limited by filtering the series {(θi, εi)} to obtain
{θi : εi < εT } for some threshold value εT . The fact that the value of εT can be chosen
retrospectively, in light of the generated chain, is an important feature of our approach,
which we will discuss further in Section 3.4. The stationary distribution of the filtered series
is proportional to

∫ εT

0
π(θ)π(ε)Pr(ρ(S(Y ), S(y0)) < ε | θ, ε)dε. (3)

For applications where Y is discrete, and the prior for ε puts mass on 0, the chain obtained
with εT = 0 has stationary distribution equal to f(θ | y0). In this case, the algorithm is
an exact analogue of simulated tempering. In the continuous case, expression (3) shows that
f(θ | y0) is approximated by a weighted average of f(θ | ρ(S(Y ), S(y0)) < ε) over the range
0 < ε < εT , with weights given by π(ε).

3.4 Application to Simulated Data

Since an exact MCMC inference is available, the spherical inclusion model provides us with
a test-bed to judge the accuracy and viability of Algorithm LFA. We set parameters similar
to those inferred from the data analysis of Anderson and Coles (2002): v0 = 5, σ = 1.5, ξ =
−0.05, λ = 30. A single realisation of this model led to n0 = 113 inclusions intersecting the
plane with a diameter greater than v0. In both analyses we set the priors on σ and ξ to be
proper but non-informative: log σ ∼ Ga(0.001, 0.001), ξ ∼ N(0, 1002). For Algorithm LFA we
specified additionally log λ ∼ N(0, 1002), while the standard MCMC algorithm benefits from
a reparameterization of λ to exploit conjugacy (see Anderson and Coles, 2002). For both
algorithms our transition proposals for all parameters are based on simple componentwise
random walks.

Algorithm LFA also requires additional specifications. First, it is necessary to specify a prior
on ε. Recall that a compromise is necessary between precision, which is maximized by having
a prior on ε that places all mass close to zero; and quality of mixing, which requires relatively
large values of ε to have non-negligible probability. Our analyses here are based on ε ∼
Exp(τ) with τ = 1/10. The choice of an exponential model is made to satisfy the requirement
of favouring small values of ε, supporting the precision requirement, while also generating
occasional large values to assist mixing. The choice of τ is arbitrary, but was selected after
informal observation of several short runs with different candidate values, again with the
balance of precision and mixing in mind. Further post hoc support for the choice is discussed
in the context of Table 2 below.

As noted previously, we can also exploit sufficiency in the order statistics of the observed
data by setting S(y) = (s(1), . . . , s(n)), the vector of order statistics. A suitable metric on
this space is complicated by the fact that the data consists of both discrete and continuous
components, the number of inclusions on the surface and their diameters respectively. We
therefore considered a general class of metrics, allowing for vectors of different length, of the
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form

ρ(S(y), S(y0)) =

n0
∑

i=1

(s(i) − s0(i))
2 + κ(ny − n0)

2, (4)

where ny is the length of y, s0(i) is the i-th smallest of the observed cross-sectional diameters,
s(i) is the 100i/n0-th quantile of y and κ > 0 is a parameter to be specified. When ny = n0,
ρ is simply the squared Euclidean distance, but otherwise it includes a second term that
measures distance in cardinality. Recall that a proposal will be rejected in the algorithm
whenever a simulated data realisation y∗ and the true data are not close, or more precisely if
ρ(S(y∗), S(y0)) > ε. It could be argued that if a simulated dataset does not provide exactly
n0 surface intersections, it is not much like the original data. In this case, we should set
κ → ∞ in (4). However, this degree of stringency is likely to impose unhelpfully slow mixing
on the chain, particularly during burn-in. Hence, after some experimentation, we settled on
κ = 20. With this value, after burn-in, we found 99.9% of accepted data realisations to have
cardinality within one of n0.

Both the standard and the new algorithms were run long enough to ensure convergence
and a reasonable coverage of the posterior distribution. Specifically, following Anderson and
Coles (2002), a chain of length 25000 was simulated with the standard MCMC, discarding
the first 5000 iterations as burn-in. For the new algorithm, to add convergence assessment,
five independent chains were generated, each of length 10 million. For each chain, the first 3
million iterations were discarded as burn-in, and the remaining process was thinned at every
100th iteration, leaving a total of 350000 iterations. Little is lost in this filtering, which helps
to resolve storage issues raised by the length of the runs, due to the very strong dependence
in the sample chains The necessity for such long simulation runs is the price to be paid in
any algorithm that avoids likelihood evaluation by simulation. The additional requirement to
further filter series to derive sequences {θi : εi < εT } makes additional demands on length
of runs. Some gain in computational efficiency could be obtained by using cruder summary
statistics S of the data, such as sample moments, but only at the additional cost of a less
accurate inference.

Based on Algorithm LFA, Figure 2 illustrates marginal means of the approximate posterior
distribution (3), together with plausible ranges based on means plus or minus two standard
deviations, for a range of εT ∈ [0, 25]. At each value of εT , the calculated values provide
an approximation to the corresponding true posterior values. For small εT we anticipate
high sampling variability, for large εT we anticipate bias. The figure appears to confirm this.
The plots seem reasonably smooth down to εT ≈ 3.3, which we therefore believe provides
the most reliable inference in this analysis. The variability for smaller values of εT suggests
the corresponding estimates are unreliable. Also shown on Figure 2 are the corresponding
inferences obtained from a standard MCMC analysis. At the value εT = 3.3 the agreement
between the two analyses is near perfect.

In Figure 3 we examine the marginal bias of the posteriors of σ, ξ and λ based on εT =
100, 50, 10 and 3.3 respectively. Specifically, we show quantile-quantile plots of the standard
MCMC output against the likelihood-free version. As expected, larger εT makes for larger
biases, which are still evident for εT = 10. The bias for εT = 3.3 seems minimal, confirming
that Algorithm LFA can provide accurate inference at the expense of a heavier computational
burden than standard MCMC.



P. Bortot, S. G. Coles and S. A. Sisson 12

An extended simulation study suggests further that Algorithm LFA is superior to algorithm
LF in this analysis. Accepting εT = 3.3 as an optimal choice, samples with εT < 3.3 can be
generated as above with the LFA algorithm, or by application of the LF algorithm with any
fixed value of ε >= 3.3, followed by sub-selection of iterations satisfying ε < 3.3. Given that
in both the LF and LFA algorithms, sample chains are filtered to leave only those iterations
with ε < 3.3, the issue of mixing quality reduces essentially to that of acceptance rates. A
comparison of relative rates is given in Table 2. The final column, in particular, gives the rate
of iterations accepted with ε < 3.3 in the LF algorithm for various choices of ε and in the LFA
algorithm. The optimal choice for the LF algorithm is with ε = 3.3, suggesting that adopting
a higher value of ε and then filtering results in a reduced efficiency. Of course, in practice, it
would not be clear a priori that ε = 3.3 was the best choice for ε, so that running with a larger
value would be unavoidable, leading to a sub-optimal acceptance rate. Notwithstanding this
argument, an overall improvement in the rate of samples with ε < 3.3 is obtained by direct
application of the LFA algorithm, which requires only much weaker specification via a prior
distribution on ε. This supports the view that the LFA algorithm can avoid mixing difficulties
encountered by the LF algorithm. Note also that the strong preference for setting ε ≤ 10
in the LF algorithm provides additional support for the prior choice on ε made in the LFA
algorithm.

4 Data Analysis

We conclude with an analysis of the steel inclusion diameters considered by Anderson and
Coles (2002). The data comprise cross-sectional diameters of inclusions from the planar slice
of a steel block. There are 112 such diameters recorded above a measurement threshold of
5µm, which is chosen as the model threshold v0. We refer to the original paper for details of
the standard MCMC analysis based on the spherical inclusion model. Our analysis here uses
Algorithm LFA to fit the ellipsoidal model described in Section 2.2. The prior distributions
and MCMC chain specifications are identical to those used in the simulation study of Section
3.4.

The results are summarized in Figure 4, which has a similar format to Figure 2. In this case
there is an apparent smoothness in the Figures down to around εT = 3.3. With this value,
the corresponding posterior means are given in Table 3, which also includes the estimates for

ε Pr(Accepted) Pr(ρ < 3.3|Accepted) Efficiency Score

100 0.0282 < 0.0000 0.0007
50 0.0231 0.0029 0.0607
25 0.0101 0.0080 0.0808
10 0.0053 0.0509 0.2698
5 0.0015 0.1803 0.2705

3.3 0.0006 1.0000 0.6000

LFA 0.0147 0.0643 0.9452

TABLE 2. Acceptance rates in LF and (final row) LFA algorithm for different choices of ε. Final column is
Pr(Acceptance) × Pr(ρ < 3.3|Acceptance) × 1000
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the spherical model fitted by standard MCMC. Also included in the table are approximate
Monte Carlo standard errors, obtained by a naive batching of sample chains. Though crude,
they amply demonstrate that differences between the inferences are model instrinsic rather
than an artefact of the sample-based methodology.

A comparison of inferences on the characteristic size vC as a function of C, made under
the contrasting models, is shown in Figure 5. Results are similar to those obtained in the
simulation study: for small C, vC is underestimated by the spherical model relative to the
ellipsoidal model, whereas for large C, the order is reversed. Taking sampling variability into
account, the differences are not so large, and on this basis it might be argued that the spherical
analysis shows some robustness to potential shape mis-specification.

By contrast, a clear distinction between the two models is apparent when quantities other
than vC are considered. For example, Figure 6 compares posterior means and credibility
intervals of the inclusion rate for inclusions above a specified diameter. Even at extreme
thresholds, when rates are low under both models, there is a substantial difference between
the two inferences. There is an increasing body of literature that recognises that the impact
of extreme inclusions on clean steels is much too complex to be summarized simply by the
size of the largest inclusion, so that the presence of many inclusions of reasonably large size
may be more important than the presence of an individual inclusion of exceptional size. Our
analysis here - which is consistent with our simulation studies - suggest that measures of
inclusion impact that are strongly dependent on the rate of extreme inclusions are likely to
be strongly sensitive to assumptions made on inclusion shape.

5 Discussion

Our conclusions fall in two categories. First, with regard to general methodology, we have
demonstrated that Algorithm LFA, which combines earlier ideas on likelihood-free MCMC
and concepts from simulated tempering, is feasible and accurate, at least for problems of the
scale we have considered here. The computational cost of likelihood-free algorithms is heavy
however, and in many applications it may be acceptable to use simpler summary statistics to
improve the acceptance rate of the algorithm at the cost of a reduction in accuracy.

Second, in terms of the stereological extreme analysis, we have seen via a simulation study
that the mis-specification of inclusion shape family leads to biased estimates, especially of
rate parameters. The importance of such mis-specification depends, to some extent, on the
objective of the study. If inference is required specifically on the characteristic size, then the
spherical inclusion model may provide accurate enough inference, especially if the diameter

Model λ σ ξ

Spherical 30.7 (1.0) 1.47 (0.13) −0.022 (0.048)
Ellipsoidal 95.7 (3.2) 1.90 (0.06) −0.090 (0.014)

TABLE 3. Posterior means and associated Monte Carlo standard errors (in parentheses) for the spherical and
ellipsoidal inclusion models fitted to steel inclusion data.



distributions turn out to be fairly heavy tailed. In contrast, for aspects where the rate of large
inclusions is important, inferences are likely to depend much more critically on the accuracy
of the specified shape family.

Though our main objective was to assess the robustness of the stereological analysis to the
assumption of spherical inclusions, the fact that certain aspects of the inference do indeed
seem to be sensitive to this choice raises questions about the viability of shape identifica-
tion in the measurement process. This will obviously vary from application to application,
but in the clean steel context that we have considered here it seems that the nature of typ-
ical inclusion shapes, and how they vary according to material, inclusion composition and
production type, is reasonably well understood. For example, oxide inclusions are typically
spherical, titanium inclusions are often cubical or of joined-pyramid form, while rolled steels
often contain inclusions that are ‘torpedo-shaped’, and for which our ellipsoidal model may
provide a reasonable approximation. Despite this level of understanding, it remains routine
practice to report only a single measurement of surface inclusion size, which is interpreted as
the radius of the planar circle induced by slicing a spherical inclusion. Minimally, our analysis
has shown that for certain types of inference substantially better results might be obtained
by using a shape family that better represents the believed form of inclusion shapes for the
particular metal process under study.

A limitation of our analysis is that our investigations have been restricted to shape departures
from the spherical inclusion model in the form of ellipsoidal inclusions. Consequently, our
comments about robustness of the spherical model are limited to model mis-specification of
this type. The advantage, however, of likelihood-free algorithms is that they can be applied
to any model for inclusions that admits easy simulation. This would enable, for example, the
analysis of non-Poisson models or models with broader families of shapes, for example the
flexible parametric model for rotation invariant spatial particles described by Hobolth (2003).
Furthermore, even when an assumed family for typical inclusions is accurate, the presence of
occasional irregularly shaped inclusions is known to be commonplace. If a reasonable model
could be specified for this irregular contamination process, the LFA algorithm should again
provide a mecahnism for inference.
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FIGURE 1. Characteristic size vC as function of block size C. Dotted curve corresponds to correct values
under ellipsoidal inclusion model. Solid curve corresponds to sample mean over repeated simulations
of posterior mean based on spherical inclusion model. Outer dashed curves correspond to 2.5% and
97.5% quantiles of posterior means under repeated simulations and spherical model.
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FIGURE 2. Posterior marginal means, and means plus or minus two standard deviations (solid lines),
for each parameter conditional upon ε < εT . Horizontal lines correspond to mean and mean ± 2
standard deviations based on standard MCMC analysis. Vertical line corresponds to εT = 3.3.
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corresponds to estimates under spherical model. Solid curve corresponds to posterior means under
ellipsoidal model, with limits of 95% credibility intervals shown as dotted curves.
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FIGURE 6. Solid curve shows posterior mean of rate of inclusions exceeding a threshold u as a function
of u under the ellipsoidal model assumption. The broken curves are pointwise 95% credibility interval
limits of the same quantity. The dotted curve shows the marginal mean of the same quantity under
the spherical inclusion model


