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Abstract 

In this paper, we investigate the texture classification problem with individual and combined multiresolution 

features, i.e., dyadic wavelet, wavelet frame, Gabor wavelet, and steerable pyramid. Support vector machines are 

used as classifiers. The experimental results show that the steerable pyramid and Gabor wavelet classify texture 

images with the highest accuracy, the wavelet frame follows them, the dyadic wavelet significantly lags behind. 

Experimental results on fused features demonstrated the combination of two feature sets always outperformed 

each method individually. And the fused feature sets of multi-orientation decompositions and stationary wavelet 

achieve the highest accuracy.  
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1. Introduction 

In the past few decades, a large number of texture features have been proposed. Tuceryan and Jain (1991)  

divides these into four major categories, namely, statistical, geometrical, model-based and signal processing 

features. Recently, one of the major developments in texture classification has been the use of multiresolution and 

multichannel descriptions. This description provides information about the image contained in time-frequency 

domain, and thus provides a powerful tool for the description of similar textures. Several multiresolution and 

multichannel transform algorithms have been used for texture classification, such as the dyadic wavelet transform 

(Arivazhagan and Ganesan, 2003, Mallat, 1989, Mallat, 1989), wavelet frame transform (Unser, 1995), Gabor 

filters (Jain and Farrokhnia, 1991, Manjunath and Ma, 1996) and the steerable pyramid (Simoncelli and Freeman, 

1995, Karasaridis and Simoncelli, 1996).  



In recent years, the support vector machine (SVM) has emerged as a very successful classification and 

regression method (Cristianini and Shawe-Taylor, 2000). It has outperformed traditional techniques in various 

applications such as handwritten digit recognition, text classification, spam categorization and object detection.  

In this paper, we investigate the texture classification problem with multiresolution features, i.e., dyadic wavelet, 

wavelet frame, Gabor wavelet, and steerable pyramid. Support vector machines are used as classifiers. The 

experimental results show that the steerable pyramid and Gabor wavelet classify the texture images with the 

highest accuracy, the wavelet frame follows them, the dyadic wavelet significantly lags behind. Experimental 

results on fused features demonstrated the combination of two feature sets always outperformed each method 

individually. And the fused feature set of multi-orientation descriptions, i.e., steerable pyramid and Gabor wavelet, 

and stationary wavelet achieve the highest accuracy.  

The rest of this paper is organized as follows. Brief introductions to dyadic wavelet transform, wavelet frame 

transform, Gabor wavelet and steerable pyramid are given in Section 2. Section 3 describes the feature extraction 

method and classification results of those four methods and their combinations. The last section gives some 

concluding remarks.  

2. Multiresolution methods 

2.1 Dyadic wavelet transform 

The dyadic wavelet transform (DWT) is the most useful technique for multiresolution image analysis (Mallat, 

1989, Mallat, 1989). In practice, dyadic wavelet decomposition is carried out using 2 channel filter banks 

composed of a low-pass (G) and a high-pass (H) filter and each filter bank is then sampled at a half rate (1/2 down 

sampling) of the previous frequency. By repeating this procedure, it is possible to obtain wavelet transforms of 

any order. The down-sampling procedure keeps the scaling parameter constant (n=1/2) throughout successive 

wavelet transforms so that it enables a simple computer implementation. In the case of an image, the filtering is 

implemented in a separable way by filtering the lines and columns. An example is illustrated in Fig.1. The original 

image through the low-pass filters and high-pass filters can be transformed into four sub-images, namely 

low-low(LL), low-high(LH), high-low(HL) and high-high(HH). 
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Fig.1. Two-level DWT. 



2.2 Wavelet frame transform 

The major inconvenience of the dyadic wavelet representation is that it does not conserve an essential property 

in image processing, which is invariance to translation. Unser (1995) proposed an overcomplete wavelet 

representation called a wavelet frame transform (WFT). The "overcompleteness" is due to the fact that WFT has 

no dyadic decimation on each decomposition level, which results in an increase in computational complexity, i.e., 

both memory requirements and number of flops are O(N log N). Avoiding down-sampling guarantees both 

aliasing free and translation invariant properties. Although the resulting transform is highly redundant from an 

information theoretic point of view, it is still simple to compute. A general discrete wavelet frame transform, 

which corresponds to a two-level decomposition of an image, is presented in Fig.2. 
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           Fig.2. Two-level WFT.                     Fig.3. System diagram of SP. 

2.3 Gabor wavelet transform 

A Gabor filter bank is a pseudo-wavelet filter bank where each filter generates a near-independent estimate of 

the local frequency content. Roughly speaking, a 2-D Gabor filter acts as a local band-pass filter with certain 

optimal joint localization properties in the spatial domain and in the spatial frequency domain. Given an input 

image I(x, y), Gabor wavelet transform(GWT) is performed by convolving I(x,y) with a set of Gabor filters of 

different preferred orientations and spatial frequencies that cover appropriately the spatial frequency domain. 

Design of a Gabor filter bank for image texture segmentation was proposed by Jain and Farrokhnia (1991). The 

general functional g(x; y) of the two-dimensional Gabor filter family can be represented as a Gaussian function 

modulated by an oriented complex sinusoidal signal: 
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where xσ and 
yσ  are the scaling parameters of the filter, W is the center frequency, and θ  determines the 

orientation of the filter. Gabor filters act as local bandpass filters. 

2.4 Steerable pyramid 

The steerable pyramid (SP) is a linear multi-scale, multi-orientation image decomposition method, unlike most 

discrete wavelet transforms, which is non-orthogonal and overcomplete (Simoncelli and Freeman, 1995). Fig.3 



shows the analysis/synthesis diagram of steerable pyramid for a single stage. The left-hand side of the diagram is 

the analysis part and the right hand side is the synthesis part. The circles in between represent the decomposed 

subband images. The image is first decomposed into lowpass and highpass subbands, using steerable filters L0 and 

H0. The lowpass band continues to be divided into a set of oriented bandpass subbands B0, …, BN and a lower 

lowpass subband L1. The lower lowpass subband is subsampled by a factor of 2 along the x and y directions. 

Repeating the shaded area provides the recursive structure.  

The steerable pyramid representation is translation-invariant and rotation-invariant. The primary drawback is 

that the representation is overcomplete by a factor of 4k/3, where k is the number of orientation bands. 

 

3. Test and results 

3.1 Test dataset 

In this experiment, we use three datasets from two different texture sources: the Brodatz album, the MIT Vision 

Texture database, which used in most of the experimental settings for texture classification.  

The first dataset shown in Fig.4 has 28 textures, each of size 256× 256. This dataset is challenging because 

there are significant variations within some textures and some of them are very similar to each other. The second 

and third datasets both have 10 textures, each of size 128× 128, shown in Fig.5 and Fig.6, respectively. For these 

two groups, due to the inhomogeneity and large variations, texture types in local windows are perceptually close. 

All the images have been globally equalized prior to being used.  

        

        

        

    

Fig.4. Texture dataset 1  



 

Fig.5. Texture dataset 2 

 

  Fig.6. Texture dataset 3 

Many previous texture classification studies used overlapping training and test sets, and this is likely to yield 

unreliable and over-optimistic performance results. Here, we use a complete separation between the training and 

test sets and repeat the experiment 100 times and compute the average performance.  

3.2. Feature extraction 

Based on common belief, the mean and variance of the energy distribution of the multiresolution transform 

coefficients for each subband at each decomposition level can be used to identify a texture. Let the image subband 

be , with i denoting the specific subband, the resulting feature vector ),( yxIi },{ iif σµ= with, 
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where M and N is the size of . ),( yxIi

3.3. SVM setup 

Because the number of texture classes is greater than two, we adopt the conventional one vs. all approach of 

casting this multi-class classification problem as a number of binary classification problems. In other words, we 

have one classifier for each texture class, each attempting to separate samples belonging to this class from samples 

belonging to the other classes. On classifying a new sample, the classifier with the largest output will be selected 

as the winner, and this new sample is assigned to the winner's corresponding texture class.  

In the experiments, the Gaussian kernel will be used in the SVM, because preliminary results suggest that the 

Gaussian kernel outperforms the polynomial kernel. The gamma value is set to 1 and C value is 1000.  



3.4. Experimental results and comparison  

For all the three datasets, the original texture images are subdivided into nonoverlapping samples of size 32× 32. 

50 % of the total samples are used for training and the rest are used for testing. The classification results for the 

four multiresolution decompositions on the three datasets are presented in Table 1. For the dyadic wavelet 

transform, the texture image regions are decomposed with 3 levels, and db1, db4, db8, coif1, and coif4 basis are 

used. For the wavelet frame transform, the setup is the same to the dyadic wavelet transform. For the Gabor 

wavelet transform, the maximum and minimum center frequency are set to 0.4 and 0.05, the scales and 

orientations are set to 4 or 6. For the steerable pyramid, the decomposition filters are sp0filters, sp1filters, 

sp3filters and sp5filters.  

From Table 1, we can see that for the first two datasets, the Gabor wavelet with 6 scales and 6 orientations 

achieves the highest accuracy. The steerable pyramid with sp5filters follows it. The wavelet frame decompositions 

with haar basis also have good results. The dyadic wavelet transform is the worst one. For dataset 3, the steerable 

pyramids with sp1filters and sp3filters have the best classification accuracy. The wavelet frame transform and 

Gabor wavelet follow it. The dyadic wavelet transform again has the worst performance. From the table, we can 

say that different wavelet bases result in very different classification performance.  

 
Table 1 Classification results for different individual multiresolution description (%) 

Test dataset Multiresolution methods Number of features 
Dataset 1 Dataset 2 Dataset 3 

DWT(db1,L=3) 18 90.06 85.51 72.85 
DWT(db4, L=3) 18 87.41 86.75 72.25 
DWT(db8, L=3) 18 89.06 84.40 70.00 

DWT(coif1, L=3) 18 89.20 88.07 72.54 
DWT(coif4, L=3) 18 93.58 89.12 79.94 
WFT(db1, L=3) 18 96.20 92.49 81.25 
WFT(db4, L=3) 18 93.99 89.20 80.91 
WFT(db8, L=3) 18 92.68 90.19 81.13 

WFT(coif1, L=3) 18 94.59 90.60 80.78 
WFT(coif4, L=3) 18 93.34 89.77 81.16 
GWT(s=4,o=4) 32 96.13 94.40 78.15 
GWT(s=4,o=6) 48 96.53 94.79 80.94 
GWT(s=6,o=4) 48 95.96 93.15 78.64 
GWT(s=6,o=6) 72 96.58 94.40 80.21 
SP(sp0, L=2) 6 75.44 75.21 62.88 
SP(sp1, L=1) 6 87.51 89.35 86.49 
SP(sp3, L=1) 10 95.40 91.16 85.04 



SP(sp5, L=2) 26 96.58 92.63 82.64 

The number of features for all the setups is also shown in Table 1. From the table, we can see that the Gabor 

wavelet has the largest number of features, compared to the other three methods. 

Commonly, different information sources for the same recognition task often lead to different error in the 

recognition results. So combination of complementary sources will effectively reduce the error rate. Thus, we 

combine those four different multiresolution decompositions by concatenating them. The classification results of 

the combined feature sets are shown in Table 2. From the table, it can be concluded that the classification results 

of combined feature sets are better than those of individual feature sets. And the best accuracies are achieved by 

the combination of multi-orientation descriptions, i.e. the steerable pyramid and Gabor wavelet, and the wavelet 

frame transform.  

Table 2 Classification results for combined multiresolution descriptions (%) 
Test dataset Combination features Number of 

features Dataset1 Dataset2 Dataset3 
DWT(coif4,L=3)+WFT(db1, L=3) 36 96.58 92.70 81.67 
DWT(coif4, L=3)+GWT(s=6,o=6) 90 97.65 94.90 81.77 
DWT(coif4, L=3)+SP(sp5, L=2) 44 98.10 94.03 84.89 
WFT(db1, L=3)+GWT(s=6,o=6) 90 97.47 95.76 81.21 
WFT(db1, L=3)+SP(sp5, L=2) 44 98.47 95.25 86.70 
GWT(s=6,o=6)+SP(sp5, L=2) 98 97.31 95.36 83.05 

 

4. Conclusions 

In this paper, we investigated the texture classification problem with multiresolution features, i.e., dyadic 

wavelet, wavelet frame, Gabor wavelet, and steerable pyramid. Support vector machines are used as classifiers. 

The experimental results show that the steerable pyramid and Gabor wavelet classify the texture images with the 

highest accuracy, the wavelet frame follows them, the dyadic wavelet significantly lags behind. Experimental 

results on fused features demonstrated the combination of two feature sets always outperformed each method 

individually. Fused feature sets of multi-orientation decompositions, i.e., steerable pyramid and Gabor wavelets, 

and wavelet frame achieved the highest accuracies.  
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