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Abstract

TCP-friendly rate control (TFRC), an equation-based congestion control protocol, has been a promising alternative to
TCP for multimedia streaming applications. However, TFRC using the TCP response function, has the same poor perfor-
mance as TCP in high-speed and long-distance networks. In this paper, we propose high-speed equation-based rate control
(HERC), as an extension of TFRC by replacing the TCP response function with a high-speed response function. HERC
could be used for applications, such as high-definition video streaming, and remote collaboration involving high-resolution
visualization, which prefer a high-speed and relatively smooth sending rate. The impact of a general high-speed response
function on the throughput and smoothness of HERC is studied analytically and verified by using simulation. Our result
indicates that by using the response function of a high-speed TCP variant and tuning HERC parameters accordingly,
HERC can compete fairly with high-speed TCP flows in the same network, while maintaining the desired smoothness
of TFRC.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

TCP-friendly rate control (TFRC) [8], an equa-
tion-based congestion control protocol, is being
adopted in Internet standards [9–11] for congestion
control of media streaming applications. In order to
compete fairly with TCP, TFRC adjusts its sending
rate by using the TCP response function [16], which
describes the sending rate of a TCP flow as a func-
tion of the loss rate, delay, and size of packets.
TFRC is able to achieve approximately the same
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long-term throughput as TCP under comparable
network conditions, while providing a smoother
sending rate.

Standard TCP has been working very well in tra-
ditional networks; however, it has been shown [7,5]
that TCP cannot efficiently utilize the huge link
capacity in high-speed and long-distance networks,
and has an unsatisfactory performance. Recently,
several high-speed TCP variants, such as HSTCP
[7], STCP [14], BICTCP [26], FAST [13], HTCP
[19], LTCP [4], TCP-Africa [15], and TCP-West-
wood [6], have been proposed to achieve higher
throughput than TCP in high-speed and long-
distance networks, and be reasonably friendly to
TCP traffic.
.
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TFRC using the TCP response function, conse-
quently, has the same poor performance as TCP
in high-speed and long-distance networks. In this
paper, we extend TFRC by replacing the TCP
response function with a high-speed response function,
and propose High-speed Equation-based Rate
Control (HERC). By using the response function
of a high-speed TCP variant, HERC can compete
fairly with high-speed TCP flows in the same net-
work, while providing a relatively smooth sending
rate. For instance, HERC with HSTCP response
function [7] can achieve approximately the same
long-term throughput as HSTCP flows under com-
parable network conditions. The selection of the
high-speed response function may depend on which
high-speed TCP variant will finally become the
dominant one in the Internet, and this is out of
the scope of this paper. In this paper, we consider
HERC with a general form of high-speed response
functions. The proposed HERC could be used for
applications, such as high-definition video stream-
ing [17,1,2], and remote collaboration involving
high-resolution visualization [20], which prefer a
high-speed and relatively smooth sending rate.

Our early work [25] studies the rate smoothness
of HERC. In this paper, we provide a more compre-
hensive study of the performance of HERC. Specif-
ically, the main contributions of our work are as
follows. First, we study the impact of a high-speed
response function on the long-term throughput1 of
HERC. For the basic control (defined in [23] and
described in the next section), the upper and lower
bounds of the long-term throughput of HERC are
derived. We find that with certain high-speed
response functions, such as the one of STCP [14],
the lower bound is indeed the long-term throughput
of HERC with basic control. A closed-form expres-
sion of the lower bound is also obtained under some
reasonable assumptions.

Second, we study the impact of a high-speed
response function on the smoothness of HERC.
Following the work of [8], we measure the smooth-
ness by the coefficient of variation (CoV) of sending
rates. Our result indicates that while HERC
achieves higher throughput than TFRC, it has
worse smoothness than TFRC, if they use the same
loss history size. We obtain a closed-form expres-
sion for the CoV of the sending rates as a function
1 In this paper, we use throughput and sending rate inter-
changeably.
of the loss history size and response function coeffi-
cients. By adjusting the HERC loss history size
accordingly, HERC can use any high-speed
response function while maintaining the same
smoothness as TFRC.

The rest of the paper is organized as follows. Sec-
tion 2 gives an overview of TFRC. Section 3 pre-
sents HERC. Section 4 analyzes the long-term
throughput of HERC, and Section 5 studies the
smoothness of HERC. Section 6 shows the simula-
tion results. Related work and conclusion can be
found in Sections 7 and 8.

2. Background and notation

TFRC [9,8] is an equation-based congestion con-
trol protocol designed for best-effort multimedia
streaming, by maintaining a relatively smooth send-
ing rate, while providing approximately the same
average sending rate as TCP under comparable net-
work conditions.

The sending rate of TFRC [9] is calculated by
using Eq. (1) below, which is a simplified version
of the TCP response function proposed in [16] when
assuming p < 0.54. TCP response function describes
TCP throughput R as a function of packet size s,
round-trip time rtt, loss event rate p, timeout period
rto, and b that is the number of packets acknowl-
edged by an ACK.

RTCP ¼
s

rtt �
ffiffiffiffiffi
2bp
3

q
þ rto � 3

ffiffiffiffiffi
3bp

8

q
pð1þ 32p2Þ

: ð1Þ

When p is small and b is 1, Eq. (1) can be reduced to
the following more simplified form, which is inde-
pendent of rto.

RTCP ¼
s

rtt
1:22

p0:5
: ð2Þ

TFRC defines a loss event as one or more packets
lost (or marked with Explicit Congestion Notifica-
tion (ECN)) within one round-trip time. Following
the notation in [23], we denote hi to be the ith loss

interval, which is the number of packets sent
between the ith and (i + 1)th loss events, and denote
ĥi to be the weighted average loss interval calculated
by using the L most recent loss intervals as follows,
where L is referred to as the loss history size.

ĥi ¼
XL

l¼1

wlhi�l; ð3Þ

where wl is given by
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Fig. 1. Response functions of TCP and high-speed TCP variants.

L. Xu / Computer Networks 51 (2007) 1847–1859 1849
wl ¼
1

3
4L

0 < l 6 L
2
;

L�lþ1
3
4L L

2þ1ð Þ
L
2
< l 6 L:

8<
: ð4Þ

TFRC recommends L = 8, and then we have

ĥi ¼
hi�1

6
þ hi�2

6
þ hi�3

6
þ hi�4

6
þ hi�5

7:5
þ hi�6

10

þ hi�7

15
þ hi�8

30
if L ¼ 8: ð5Þ

TFRC estimates the loss event rate by the inverse
of the weighted average loss interval. Let pi denote
the loss event rate estimated right after the ith loss
event. We have

pi ¼
1

ĥi

: ð6Þ

After estimating the loss event rate, TFRC then
adjusts its sending rate. Let Ri denote the new
TFRC sending rate calculated right after the ith loss
event. We have

Ri ¼ RTCPðpiÞ; ð7Þ

where RTCP(Æ) is either Eq. (1) or Eq. (2).
To simplify the analysis of TFRC, it is usually

[23,18] assumed that TFRC keeps the same sending
rate Ri between the ith and (i + 1)th loss events.
This is called basic control [23]. The actual TFRC
implementation [9], called comprehensive control,
includes more sophisticated algorithms, such as
the most recent loss interval calculation and history
discounting, which address the impact of the most
recent loss interval on the sending rate. It has been
observed [23] that the long-term throughput of
TFRC is mainly determined by the basic control,
while the comprehensive control has a larger impact
on the short-term throughput of TFRC.

3. High-speed equation-based rate control

Since TCP performs poorly in high-speed and
long-distance networks [7], TFRC using the TCP
response function has the same poor performance
as TCP in these networks. In this section, we
describe high-speed equation-based rate control
(HERC) as an extension of TFRC for multimedia
streaming over high-speed and long-distance net-
works. HERC maintains the overall design of
TFRC (such as loss event rate estimation, basic con-
trol, and comprehensive control), but replaces the
TCP response function with a high-speed response
function. By replacing the TCP response function
with the response function of a high-speed TCP var-
iant, HERC can compete fairly with high-speed
TCP flows in the same network, while maintaining
the desired smoothness of TFRC.

The response function of a high-speed TCP vari-
ant determines serval important properties of the
protocol, such as bandwidth scalability, and TCP
friendliness. Fig. 1 shows the response functions
(in Packets/RTT) of TCP, HSTCP [7], STCP [14],
and BICTCP [26] as the loss event rate varies. (1)
The bandwidth scalability of a protocol, defined as
the ability of the protocol to achieve high through-
put in a high-speed network, is typically determined
by its sending rates under low loss event rates. In
Fig. 1, a protocol becomes more bandwidth scalable
as its sending rate gets higher under low loss event
rates. Thus, HSTCP, STCP, and BICTCP all show
better bandwidth scalability than TCP. (2) The
TCP friendliness defines whether a protocol is being
fair to TCP, and it is critical to the safety of deploy-
ing a protocol in the Internet. The TCP friendliness
of a high-speed protocol is determined by the point
where its response function intersects that of TCP.
This is because a high-speed protocol usually runs
its own algorithm only when the loss rate is smaller
than the intersection point, and it acts the same as
TCP when the loss rate is greater than the intersec-
tion point. Therefore, all these high-speed protocols
are claimed to have reasonable TCP friendliness.

HERC may use the response function of any of
these high-speed TCP variants, and then is able to
achieve the same bandwidth scalability and TCP
friendliness as the corresponding protocol. The
selection of a high-speed response function may
depend on which high-speed TCP variant will finally
become the dominant one in the Internet, and this is
out of the scope of this paper. Instead of using the
response function of a specific protocol, in this
paper, we study the performance of HERC with a
general response function in the following form.
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RHERC ¼
s

rtt
c
pd
; ð8Þ

where c and d are two protocol-specified parameters.
TCP and its variants usually have constant c and d.
For instance, TCP has c = 1.22 and d = 0.5, HSTCP
[7] has c = 0.12 and d = 0.835, STCP [14] has c =
0.08 and d = 1.0, and BICTCP has [26] c = 15.5
and d = 0.5 for small loss event rate p.

4. Throughput analysis

In this section, we analyze the throughput of the
proposed HERC. Vojnović and Le Boudec [23]
analyze the throughput of TFRC by considering
two control modes: basic control and comprehen-
sive control. They find that the long-term through-
put mainly depends on the basic control, and the
comprehensive control has a larger impact on the
short-term throughput. Therefore, in this section,
we focus on the analytical study of long-term
throughput of HERC with the basic control, and
give the upper and lower bounds. Both of them
together provide information on how well HERC
tracks the target throughput.

We define Sj as the average sending rate within
time interval j from tj to tj + Dt, where Dt is the
duration of a time interval.

Sj ¼
number of bits sent between tj and tj þ Dt

Dt
:

ð9Þ

The average sending rate E½S� of a protocol in n

time intervals can be obtained by

E½S� ¼
Pn

j¼1Sj

n
: ð10Þ

Note that Ri defined in Section 2 is different from
Sj, the former is the sending rate between the ith and
(i + 1)th loss events, whereas the later is the sending
rate in time interval j. If every loss interval has the
same duration, we have E½R� ¼ E½S�.

4.1. Long-term throughput of HERC with basic

control

Vojnović and Le Boudec [23] show that for the
basic control, the long-term throughput of an equa-
tion-based congestion control protocol with
response function R(p) can be obtained by using
Eq. (11), if successive loss intervals are independent
of each other.
E½S� ¼ E½h�

E
h

Rð1
ĥ
Þ

" # ¼ 1

E
1

Rð1
ĥ
Þ

" # : ð11Þ

There are indications [29,27] that the assumption
that successive loss intervals are independent of
each other is reasonable. It is well known [29] that
the packet losses of a flow are not independently
and identically distributed (IID), due to the strong
correlation between consecutive packet losses. How-
ever, since all packet losses within the same RTT are
counted as a single loss event, it is reasonable to
consider that loss intervals are IID. Furthermore,
several recent studies [29,27] of Internet traffic show
that loss intervals can be approximately modeled as
a Poisson process.
4.2. Upper and lower bounds of HERC with basic

control

In this subsection, we obtain the upper and lower
bounds of the long-term throughput of HERC with
basic control by using Jensen’s inequality. Similar
methods have been used in [18,23] to obtain the
upper and lower bounds of long-term throughput
of TFRC.

Theorem 1. For the basic control, the average
sending rate E½S� of HERC with response function

RðpÞ ¼ s
rtt

c
pd (c > 0, 1 P d P 0.5) is bounded by the

following inequality, if successive loss intervals are

independent of each other. The equality with the lower

bound holds if d = 1.

R E
1

ĥ

� �� �
6 E½S� < R

1

E½ĥ�

 !
:

Proof. Let RuðĥÞ ¼ 1
Rð1

ĥ
Þ. Its second derivative is

given by d2ðRuðĥÞÞ
dðĥÞ2 ¼

rtt
s�c

dðdþ1Þ
ĥdþ2 , which is positive. There-

fore, RuðĥÞ is a convex function of ĥ. Thus, by Jen-
sen’s inequality, we have E½RuðĥÞ� > RuðE½ĥ�Þ.

Let Rl
1
ĥ

� �
¼ 1

R 1
ĥ

	 
. Its second derivative is given by

d2 Rl
1
ĥ

	 
	 

d 1

ĥ

	 
2 ¼ rtt
s�c

dðd�1Þ
ĥd�2 , which is non-positive for any d

between 0.5 and 1. Therefore, Rl
1
ĥ

� �
is a concave

function of 1
ĥ
, and by Jensen’s inequality, we con-

clude E Rl
1
ĥ

� �h i
6 Rl E 1

ĥ

h i� �
. The equality holds

when the second derivative is zero (i.e., d = 1).
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By using Eq. (11), we have E½S� ¼ 1=E½RuðĥÞ� ¼
1=E½Rlð1ĥÞ�, and then we can prove the theorem after
some straightforward manipulation. h

Comment 1: The upper bound Rð 1
E½ĥ�Þ is the target

sending rate, since ĥ is an unbiased estimator of the
inverse of the actual loss event rate p (i.e., E½ĥ� ¼ 1

pÞ.
Therefore, for the basic control, the average sending
rate E½S� of HERC is less than the target sending
rate. This is consistent with the TFRC analysis in
[23,18]. Since the comprehensive control adds some
throughput increase to the basic control, the final
throughput of HERC may he higher than this upper
bound.

Comment 2: The lower bound R E 1
ĥ

h i� �
is not the

target sending rate, since 1
ĥ

is a biased estimator of
the loss event rate due to the convexity of 1

ĥ
(i.e.,

E 1
ĥ

h i
6¼ p). We note that if d = 1, the average sending

rate E½S� of HERC with basic control is equal to the
lower bound. Since the comprehensive control does
not decrease the throughput of the basic control, the
obtained lower bound is also a lower bound of
HERC with comprehensive control.
4.3. Closed-form expression for the lower bound

The lower bound of HERC throughput obtained
in the last subsection is an important property of
HERC. (1) As we proved that if the exponent d of
a high-speed response function is 1, such as the
one of STCP [14], the lower bound is indeed the
long-term throughput of HERC with basic control.
(2) The lower bound instead of the upper bound
(i.e., the target throughput) can be safely used as
the maximum media playback rate of a media
stream using HERC. Otherwise, the media playback
rate may sometimes be faster than the media arrival
rate, and then the player is forced to stop playback
until enough data has been received to resume. In
this subsection, we therefore obtain a closed-form
expression for the lower bound of HERC through-
put. We first calculate the probability density func-
tion fĥðkÞ of the weighted average loss interval ĥ,

and then obtain a closed-form expression for E 1
ĥ

h i
.

4.3.1. Distribution of the weighted average loss

interval

In the previous analysis, we only assume that suc-
cessive loss intervals are independent of each other.
In this subsection, we further assume that loss inter-
val h is exponentially distributed with an expected
value of 1
p, which is a reasonable assumption as

observed by several recent Internet measurement
experiments [29,27].

The probability density function fĥðkÞ of ĥ can be
obtained by using the Laplace transform method.
Since h is exponentially distributed with an expected
value of 1

p, the Laplace transform of h is given by

LhðsÞ ¼ p
pþs. Since weighted average loss interval

ĥi ¼
PL

l¼1hi�lwl is the sum of multiple independent
random variables, the Laplace transform of ĥ is
given by

QL
l¼1LhðwlsÞ. For example, if L = 8, we

have

LĥðsÞ¼
p

pþ s
6

� �4 p
pþ s

7:5

� �
p

pþ s
10

� �
p

pþ s
15

� �
p

pþ s
30

� �
if L¼ 8: ð12Þ

By inverting LĥðsÞ, we can get probability density
function fĥðkÞ. For example, by inverting Eq. (12),
we get fĥðkÞ as shown by Eq. (13). This probability
density function is accurate; however, it is very com-
plicated. In order to simplify our analysis, below we
propose a simple function to approximate fĥðkÞ.

fĥðkÞ ¼ 204:80e�0:075k � 6:83e�0:1k þ 0:119e�0:15k

� 0:0002e�0:3k þ ð0:000056k3 � 0:018k2

þ 2:80k � 198:1Þe�0:06k if L ¼ 8: ð13Þ

Inspired by the fact that the sum of multiple inde-
pendent and identical exponential random variables
is an Erlang random variable [22], which has a rela-
tively simple probability density function, we
attempt to approximate fĥðkÞ with the probability
density function of an Erlang random variable.

Define another weighted average loss interval
�hi ¼

PM
l¼1hi�l=M . For example, if M = 7, and we

have

�hi ¼
hi�1

7
þ hi�2

7
þ hi�3

7
þ hi�4

7
þ hi�5

7

þ hi�6

7
þ hi�7

7
if M ¼ 7: ð14Þ

Based on the analysis of the moments of ĥ and �h, we
found that when M ¼ 3

4
Lþ 1, the probability

density function of �h is very similar to that of ĥ.
For example, when L = 8 and M = 7, ĥi is given
by Eq. (5), and �hi is given by Eq. (14). In this
case, we can prove that random variables ĥ and �h
have the same first moment (i.e., the expected
value), and the difference ratios of their second
and third moments are less than 0.2% and 0.6%,
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respectively [27]. However, we do not have a rigor-
ous proof that �h is the best approximation to ĥ when
M ¼ 3

4
Lþ 1.

By using the probability density function of an
Erlang random variable given in [22], we obtain
f�hðkÞ as follows:

f�hðkÞ ¼
ðMpÞM

ðM � 1Þ! kM�1e�Mpk: ð15Þ

Fig. 2 shows the accurate fĥðkÞ obtained by invert-
ing LĥðsÞ, and f�hðkÞ given by Eq. (15). We can see
that they are very close to each other, when M ¼
3
4
Lþ 1. Note that even though f�hðkÞ � fĥðkÞ, the

value of �hi could be quite different from that of ĥi

given the same set of hi�1, . . . ,hi�L. That is, variable
�hi itself is not a good approximation to variable ĥi.

4.3.2. Closed-form expression for the lower bound

The lower bound of the average sending rate of
HERC is RðE½1

ĥ
�Þ, where E½1

ĥ
� can be calculated by.

E
1

ĥ

� �
¼
Z 1

0

fĥðkÞ
1

k
dk �

Z 1

0

f�hðkÞ
1

k
dk

¼ Mp
M � 1

Z 1

0

ðMpÞM�1

ðM � 2Þ! kM�2e�Mpk dk

¼ Mp
M � 1

: ð16Þ

Finally, we have the following theorem.

Theorem 2. For both basic control and comprehen-

sive control, the lower bound of the average sending

rate of HERC with a loss history size of L and a

loss event rate of p can be obtained by R E 1
ĥ

h i� �
¼

R Mp
M�1

	 

, where M ¼ 3

4 Lþ 1, if the loss intervals are

exponentially distributed.
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4.4. Verifying upper and lower bounds of basic control

In this subsection, we verify our analysis of
HERC basic control by using simulation. The per-
formance of HERC with comprehensive control will
be studied in Section 6.

We simulate a single HERC flow over a link with
transmission errors. Transmission errors are gener-
ated so that loss intervals are IID with probability
density function fhðkÞ ¼ ke�kðk�hminÞ, where k > 0
and hmin > 0 are two parameters of the function.
A loss interval with this probability density function
is actually the sum of a constant hmin and an expo-
nential random variable with a mean of 1/k. The
mean value and coefficient of variation (CoV) of
loss intervals are given by E½h� ¼ hmin þ 1=k, and
CoV½h� ¼ 1=k

hminþ1=k. As described in [23], a desirable

feature of function f is that we can vary CoV[h]
while keeping the mean and some high-order
moments fixed.

First, we study the impact of HERC response
function RðpÞ ¼ s

rtt
c

pd on the upper and lower
bounds. We fix c to 0.12, and vary d from 0.5 to
1. Loss history size L is set to 8. We set E½h� to
105 (i.e., p = 10�5). The upper bound (or the
target sending rate) is R(p) = R(10�5), and the
lower bound is obtained by measuring E½1

ĥ
� directly

in the simulation. Fig. 3 shows the measured lower
bounds normalized to the upper bound, and the
measured average sending rates also normalized
to the upper bound. The left one shows the results
with CoV[h] = 1.0 and the right one with CoV[h] =
0.8.

We have the following observations from Fig. 3.
(1) The average sending rate of HERC with basic
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control is indeed bounded by the upper and lower
bounds. (2) The gap between the upper and lower
bounds depends not only on the response function,
but also on the distribution of loss intervals. The
gap reduces as the variance of loss intervals
decreases. In addition to the above two observa-
tions that are consistent with previous TFRC anal-
ysis [23,18], we have another important
observation. (3) The larger the exponent d of the
response function, the closer the average rate to
the lower bound. Especially, if d = 1, the average
rate is the same as the lower bound as proved by
Theorem 1. Since high-speed TCP variants have a
larger d than the standard TCP, this implies that
the throughput of HERC with a high-speed TCP
response function is closer to its lower bound than
that of TFRC with TCP response function to its
lower bound.

Next, we study the accuracy of the closed-form
expression for the lower bound, when loss intervals
are exponentially distributed. In the simulation of
Fig. 3a, the loss intervals are exponentially distrib-
uted with p = 10�5, and then we can obtain the
lower bound RðE½1

ĥ
�Þ ¼ Rð Mp

M�1
Þ ¼ Rð7p

6
Þ, based on

Theorem 2. The closed-form lower bound Rð7p
6
Þ is

shown in Fig. 4. We can see that the closed-form
lower bounds closely match the measured lower
bounds.

Finally, we evaluate the accuracy of the closed-
form lower bound as we change loss history
size L. Fig. 5 shows results with the same simulation
parameters as Fig. 4, except that d is fixed to 1.0 and
L varies from 4 to 64. We can see that there is some
difference between the closed-form lower bound and
the measured lower bound when L = 4, but in most
cases, the difference is very small.
5. Smoothness analysis

In addition to high throughput, HERC should
provide a smooth sending rate, as big rate fluctuation
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may significantly affect the user-perceived multime-
dia quality. Fig. 6 shows the throughput curves of
a HERC flow with c = 0.12, d = 0.835, and L = 8,
and a TFRC flow with the same L, in an NS-2 simu-
lation with a 1 Gbps bottleneck shared among
HERC, TFRC, and other background traffic. We
can see that HERC achieves higher throughput than
TFRC; however, HERC shows larger rate fluctua-
tion than TFRC.

Following the work of [8], we define the smooth-
ness index of a protocol by the coefficient of varia-
tion (CoV) of sending rates. CoV[S] can be
obtained as follows:

CoV½S� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1

Pn
j¼1ðSj � E½S�Þ2

q
E½S� ; ð17Þ

where n is the number of time intervals, Sj is
the sending rate in time interval j as defined by
Eq. (9), and E½S� is the average sending rate as de-
fined by Eq. (10). CoV[S] is an indication of the rate
smoothness of a protocol at time scale Dt. A smaller
CoV[S] value implies that the sending rate has smal-
ler fluctuation, that is, better smoothness. For
example, in Fig. 6, with 1-s measurement intervals,
the CoV[S] of HERC is 0.074, and that of TFRC
is 0.037. That is, HERC has worse smoothness than
TFRC, when they have the same loss history size.

5.1. Smoothness of HERC

In this subsection, we analytically study the
smoothness of HERC with basic control. Our simu-
lation results show that the obtained CoV[S] of the
basic control is also a good approximation to that
of the comprehensive control.
We use CoV[R] as an approximation to the
smoothness index CoV[S], where Ri is the sending
rate between the ith and (i + 1)th loss events calcu-
lated by using Eq. (8).

CoV½S� � CoV½R�: ð18Þ
Note that, only if every loss interval has the same

duration, CoV[S] is exactly equal to CoV[R]. Our
simulation results show that in most cases, CoV[R]
is a good approximation to CoV[S].

Because round-trip delay rtt is an exponentially
weighted moving average with a big filter constant
0.9 [9], its variance is typically small. Therefore, it
is reasonable to assume that rtt is a constant. Con-
sidering that s, c, and d are all constants, CoV[R]
can be obtained as follows, where the last step is
based on [21].

CoV½R� ¼ CoV
s

rtt
c
pd

� �
¼ CoV

1

pd

� �

¼ CoV ĥd
h i

� d � CoV ĥ
h i

: ð19Þ

We also assume that h is independently and iden-
tically distributed, and then CoV½ĥ� can be calcu-
lated as follows:

CoV½ĥ� ¼ CoV
XL

l¼1

wlhi�l

" #

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiXL

l¼1

w2
l

vuut CoV h½ �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32Lþ 56

27L2 þ 54L

r
CoV h½ �: ð20Þ

For any L P 1, we can approximate CoV½ĥ� by

CoV½ĥ� � 1:09ffiffiffi
L
p CoV h½ �: ð21Þ

Putting Eqs. (18), (19) and (21) together, we get the
following theorem.

Theorem 3. For the basic control, the CoV[S] of

HERC with response function s
rtt

c
pd and loss history

size L is approximated by CoV½S� � 1:09dffiffi
L
p CoV½h�, if

the weighted moving average of RTT is a constant

and loss intervals are independently and identically

distributed.
Therefore, the smoothness of HERC is linearly
proportional to d, but independent of c. Typically,
a high-speed response function has a larger d than
the TCP response function, in order to have better
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bandwidth scalability. If HERC has the same L and
experience the same CoV[h] as TFRC, but has a lar-
ger d, then HERC has worse smoothness than
TFRC. This is the reason for the worse smoothness
of HERC in Fig. 6, where the d of HERC is larger
than that of TFRC (i.e., 0.835 > 0.5).

Now, we consider a few common loss models
used in the literature [28].

• HERC with a deterministic periodic loss model:
Under a deterministic periodic loss model, every
loss interval has the same number of packets.
Therefore CoV[h] = 0, and then CoV[S] = 0.

• HERC with a Bernoulli loss model: Under a Ber-
noulli loss model, a packet is lost with probability
p, and loss intervals are geometrically distributed.
Thus, CoV½h� ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� p
p

, and then CoV½S� ¼
1:09d

ffiffiffiffiffiffi
1�p

L

q
.

• TFRC with a Bernoulli loss model: Considering
that the response function of TFRC as described
in Eq. (2) is also in the form of s

rtt
c

pd , Theorem 3
can be applied to TFRC as well. The d of
TFRC is 0.5, and the recommended L of
TFRC is 8. Therefore, under a Bernoulli loss

model, the CoV[S] of TFRC is 1:09d
ffiffiffiffiffiffi
1�p

L

q
¼

0:193
ffiffiffiffiffiffiffiffiffiffiffi
1� p
p

� 0:193 for small p. This value is
close to the numerical result shown in [28].
5.2. Verifying smoothness analysis

We have conducted various NS-2 simulations of
HERC with comprehensive control to verify Theo-
rem 3, and the simulation results show that our
analysis has a very good accuracy even with com-
prehensive control.

First, we check the relation between CoV[S] and
CoV[h]. In order to accurately control CoV[h], we
simulate a single HERC flow over a link with trans-
mission errors. Transmission errors are generated so
that loss intervals are IID with probability density
function fhðkÞ ¼ ke�kðk�hminÞ. We fix E½h� to 105 (i.e.,
the loss event rate is 10�5), and vary CoV[h] from
10�7 to 1.0. We set c = 0.12, d = 0.835 (correspond-
ing to the HSTCP response function [7]), and L = 8
(recommended value for TFRC). We measure
CoV[S] by using Eq. (17) with a time interval of
1 s (referred to as simulation result in Fig. 7), and
also calculate CoV[S] by using Theorem 3 (referred
to as analytical result in Fig. 7). The results with
95% confidence intervals are shown in Fig. 7. We
can see that our analysis has good accuracy. We
also notice that as CoV[h] increases, the simulation
result becomes greater than the analytical result,
even though the relative difference is very small
(<10%). We find out that this difference is caused
by the comprehensive control of HERC, since The-
orem 3 considers only the basic control of HERC.

Next, we test the relation between CoV[S] and d,
as d varies over the suggested range [0.5,1]. We also
set E½h� to 105, CoV[h] to 0.8, and L to 8. The sim-
ulation result with 95% confidence intervals and
the analytical result are shown in Fig. 8. We observe
that our analysis has good accuracy. Also we can
see that as d increases, the smoothness becomes
worse. This is consistent with our finding in Fig. 6.

Finally, we analyze the relation between the
smoothness CoV[S] and the loss history size L. We
vary L from 4 to 512. We set E½h� to 105, CoV[h]
to 0.8, c to 0.12, and d to 0.835. The simulation
result with 95% confidence intervals and the analyt-
ical result are shown in Fig. 9. We observe that our
analysis has good accuracy for L between 4 and 128.
After L becomes greater than 128, our analytical
result continues decreasing, however, the simulation
result keeps almost constant. This is consistent with
the results shown in [24]. We find out that the differ-
ence is due to the comprehensive control, which we
do not model in the analysis. This means the com-
prehensive control leads to a minimum CoV[S],
which cannot be mitigated by increasing L.
5.3. Improving smoothness

Theorem 3 shows that if both HERC and TFRC
have the same L and CoV[h], and HERC has a larger
d than TFRC, then HERC has worse smoothness
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than TFRC. In this subsection, we present a method
to improve the smoothness of HERC, so that HERC
is able to achieve better bandwidth scalability than
TFRC, while maintaining the same smoothness as
TFRC under the same loss interval distribution.
We define the smoothness scaling factor F of a pro-
tocol as follows:

F ¼ CoV½S�
CoV½h� ¼

1:09dffiffiffi
L
p : ð22Þ

If two protocols have the same F, then with the
same CoV[h], they have the same smoothness index
CoV[S].

The recommended values for TFRC are L = 8
and d = 0.5, and then the smoothness scaling factor
is F TFRC ¼ 1:09�0:5ffiffi

8
p ¼ 0:193. For a HERC flow with

response function s
rtt

c
pd and loss history size L, the

smoothness scaling factor is F HERC ¼ 1:09�dffiffi
L
p . By set-

ting FHERC = FTFRC, we get

1:09� dffiffiffi
L
p ¼ 0:193) L ¼ 32d2: ð23Þ
Therefore, in order for HERC to achieve the
same smoothness as TFRC under the same loss
interval distribution, HERC should set its L to
32d2. For example, if d is 0.835, then L should be
set to 22.

Fig. 10 shows the smoothness of HERC with the
HSTCP response function (d=0.835) and L = 8,
HERC with the HSTCP response function
(d=0.835) and L = 22, and TFRC with the TCP
response function (d=0.5) and L = 8. We measure
their smoothness as we vary CoV[h] from 10�7 to
1 � 10�7, with E½h� ¼ 105. We can see that even with
different response functions, HERC with L = 22
and TFRC with L = 8 achieve the same smooth-
ness, while HERC with L = 8 has worse smoothness
than TFRC.
6. Simulation result

In Sections 4 and 5, we have verified our analysis
result by simulation where loss intervals are IID
random variables. In this section, we evaluate the
performance of HERC by NS-2 simulation with
more realistic background traffic.

Fig. 11 shows that our simulation uses a typical
dumbbell topology. The one-way delay of the bot-
tleneck link is 50 ms. Each source and sink are con-



0

 0.1

 0.2

 0.3

 0.4

 0.5

 100  150  200  250  300  350  400  450  500

C
oV

 o
f S

en
di

ng
 R

at
es

 (
C

oV
[S

])

Bandwidth (Mbps)

HSTCP
HERC

TCP
TFRC

Fig. 13. HERC with the HSTCP response function achieves the
same smoothness as TFRC.

L. Xu / Computer Networks 51 (2007) 1847–1859 1857
nected to the bottleneck link through different
access links with delays randomly varied from
0.1 ms to 0.9 ms to mitigate phase effect. To increase
traffic dynamics and further reduce phase effect, var-
ious kinds of background traffic are simulated in
both directions, including Web traffic, random burst
UDP traffic with the Pareto distribution, short-term
TCP flows with limited congestion window sizes,
and long-lived TCP flows without window con-
straint. All background traffic consumes a minimum
of 25% and 40% of the bottleneck bandwidth in the
forward and backward directions, respectively. The
packet size is set to 1500 bytes for all connections.
We test adaptive RED (Random Early Detectic)
routers with suggested parameters for high-speed
links [12].

We measure the throughput and smoothness of
four forward connections: HSTCP, HERC with
HSTCP response function (d=0.835) and L = 22,
TCP, and TFRC with TCP response function
(d = 0.5) and L = 8. We run each simulation for
500 s and take the measurement after the first
250 s. The results are calculated with 95% confi-
dence intervals by repeating the simulation for 10
times. Note that HSTCP could be replaced by other
high-speed TCP variants, but the response function
and L of HERC should be adjusted accordingly.

Fig. 12 shows the throughput of these four proto-
cols as the bottleneck capacity increases from
100 Mbps to 500 M bps. We can see that HERC
with HSTCP response function achieves similar
throughput as HSTCP, and as expected TFRC with
TCP response function achieves similar through-
put as TCP. Even though the absolute differ-
ence between HERC and HSTCP is larger than
that between TFRC and TCP, the relative difference
between HERC and HSTCP is comparable to that
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between TFRC and TCP. In addition, we measure
the loss event rate experienced by HERC in the sim-
ulation, and then calculate the closed-form lower
bound by using Theorem 2. We can see that the
obtained lower bound in this simulation has a good
accuracy, even though the loss intervals are not
independently and exponentially distributed.

Fig. 13 shows the smoothness of these protocols.
We can see that both HERC and TFRC achieve
better smoothness than HSTCP and TCP. We also
observe that HERC has similar smoothness as
TFRC, and this verifies our analysis in Section 5
that by setting L = 32d2, HERC can have the same
smoothness as TFRC.

Overall, we can see that by using the response
function of a high-speed TCP variant and tuning
HERC parameters accordingly, HERC can compete
fairly with high-speed TCP flows in the same net-
work, while maintaining the same smoothness as
TFRC.
7. Related work

Equation-based congestion control, such as
TFRC [8], is based on pioneering work by Padhye
et al. [16] that models the throughput of TCP using
packet loss, delay, and sizes. Most TFRC studies
[8,3,28] evaluate the performance of TFRC by simu-
lation, and there are only a small number of analyt-
ical studies [23,18,27]. The work [23] by Vojnović
and Le Boudec study theoretically the case when
TFRC is TCP friendly, and they show that in most
cases, the TCP sending rate is the upper bound of
the TFRC throughput. Rhee and Xu [18] analytically
and experimentally identify the reasons why TFRC
may not give the same throughput as TCP, by
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examining how the three main factors that determine
TFRC throughput, namely, the TCP friendly equa-
tion, loss event rate estimation and delay estimation,
can influence the long-term throughput imbalance
between TFRC and TCP. Xu and Helzer [27] pro-
pose an analytical model for TFRC traffic and a
queueing model for a TFRC client buffer, in order
to study the user-perceived media quality.

8. Conclusion

In this paper, we present HERC as an extension
of TFRC for multimedia streaming over high-speed
and long-distance networks. By using the response
function of a high-speed TCP variant and tuning
HERC parameters accordingly, HERC can compete
fairly with high-speed TCP flows in the same net-
work, while maintaining the desired smoothness as
TFRC. This makes HERC more suitable for appli-
cations, such as high-definition video streaming,
and remote collaboration involving high-resolution
visualization, which prefer a high-speed and rela-
tively smooth sending rate.

In this paper, we analyze the throughput and
smoothness of HERC by assuming IID loss inter-
vals, fixed round-trip times, and without consider-
ing the impact of the most recent loss interval,
and history discounting. Developing more accurate
models is of future interest. In addition, we are
interested in more realistic Internet experiments to
investigate the performance of HERC.
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