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By coarsely 
quantifying relevant 
factors, a risk-
assessment model 
helps hardware and 
software engineers 
make trade-offs 
among quality 
requirements early 
in development.

A
lthough detailed information is typically scarce during a project’s early phases, 
developers frequently need to make key decisions about trade-offs among qual-
ity requirements. Developers in many fields—including systems, hardware, and 
software engineering—routinely make such decisions on the basis of a shallow 

assessment of the situation or on past experience, which might be irrelevant to the current 
project. As a consequence, developers can get locked into what is ultimately an inferior de-
sign or pay a significant price to reverse such earlier decisions later in the process.

We’ve designed and deployed a model to help de-
velopers in diverse fields make better requirements 
decisions in early project phases. Our model is based 
on a coarse quantification of relevant factors and 
how those factors interact. For each application, we 
populate the model with information elicited from 
relevant stakeholders during group sessions. We use 
custom software to store the model and to compute 
and present its information (using cogent visualiza-
tions) to assist stakeholders in their decision-making 
and detailed-planning activities. Here, we describe 
our model and offer examples of how we applied 
our approach to study software technologies at the 
Jet Propulsion Laboratory in Pasadena, California. 

Domain overview
JPL developers design, build, and operate space-

craft for the US National Aeronautics and Space 
Administration. Our work applies to a spacecraft 

project’s early phases, in particular to the new 
technologies that developers hope will successfully 
mature for use on future spacecraft. These early 
phases require key decisions, such as which of many 
promising technologies to pursue further and which 
missions to introduce them into. Developers must 
also plan maturation paths for the selected tech-
nologies—from research prototypes to mission-
ready capabilities that project managers will want 
to adopt. 

Our work supports decision making in these 
crucial early phases. Although spacecraft use many 
technologies, we’re increasingly focusing our stud-
ies on software because it’s playing an increasingly 
prominent role in spacecraft. Also, while our expe-
rience is with JPL’s space-mission applications, the 
domain has obvious parallels in many terrestrial 
technology projects. As at many organizations, for 
example, JPL developers must decide
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where to first apply new technology, 
how to assess and trade off requirements be-
tween the new technology’s target application 
and its environment, and
the costs of meeting various quality levels. 

Our approach also accounts for process require-
ments—including manageability, conformity to 
accepted business practices, and availability of suf-
ficiently skilled personnel—which, for large and 
complex projects, are just as critical as functional 
performance issues.

A risk-based requirements model
In 1998, Steven Cornford invented our defect 

detection and prevention (DDP) approach to aid 
hardware assurance.1 The method’s name reflects 
its purpose: to help developers cost-effectively select 
assurance activities (such as assembly procedures, 
tests, and analyses) and thereby both prevent the in-
troduction of hardware defects and detect and cor-
rect existing ones. 

DDP has since found its niche at JPL, assisting 
early life-cycle decision making to guide promising 
research technologies toward adoption by space-
craft projects.2 We’ve applied the approach to en-
tire research and mission portfolios to guide choices 
about which research avenues to pursue and which 
missions to plan.3 All our application areas use the 
same DDP model, even though the nomenclature 
(especially the “defects” part of DDP’s name) might 
not directly apply. 

Model overview
We populate a DDP model with instances of 

three concepts:

Requirements: What are the functional and 
quality (nonfunctional) requirements of the 
project, system, or technology? How might 
they factor into its development?
Risks: What might impede attaining these 
requirements?
Mitigations: What can we do to reduce risks?

We assign values for each of these attributes in the 
DDP model.

First, we assign each requirement a weight, or 
relative importance: Weight(Requirement):float   
[0,maxfloat]. Typically, we choose values from 
an easy-to-remember scale, such as 0–100. By as-
signing requirements weights, we can guide trade-
off and descoping decisions when—as is often the 
case—it’s not possible or economically feasible to 
attain all requirements. In such cases, developers 

can use the weights to easily determine which re-
quirements are most important. 

Next, we assign each risk an a-priori likeli-
hood, indicating the probability of its occurrence 
in the absence of mitigation: APL(Risk):float  
[0,1]. We then assign each mitigation effort a cost: 
Cost(Mitigation):float  [0,maxfloat], as well as 
a Boolean that indicates whether we’ll perform it: 
Selected(Mitigation):Boolean. The cost is usually 
a financial cost, but we can also consider other re-
sources, such as schedule or memory utilization.

A DDP model’s instances have the following 
relationships:

Risks relate quantitatively to requirements to 
indicate how much each risk, should it occur, 
will detract from each requirement’s attain-
ment. We express each such value as a propor-
tion of the requirement’s attainment that we’ll 
lose if the risk occurs. For example, 0.1 means 
that we’ll lose one-tenth of the requirement’s at-
tainment: Impact(Risk, Requirement):float  
[0,1].
Mitigations relate quantitatively to risks to in-
dicate how much a specific mitigation will re-
duce each risk. We express each value as a pro-
portion of the mitigation’s risk reduction; for 
example, 0.1 means it reduces by risk by one-
tenth: Effect(Mitigation, Risk):float  [0,1].

Mitigations incur costs and reduce risks, leading 
to increased requirements attainment. We calculate 
this for a set of mitigations using four formulas. In 
the first, we calculate a risk’s likelihood as its a-pri-
ori likelihood, diminished by the selected mitiga-
tions. For a Risk K: 

Likelihood(K : Risk) = APL(K) * (M  Mitigations) : 
If(Selected(M), 1 – Effect(M, K), 1)

Thus, multiple mitigations’ effects on a single 
risk act like a series of filters, each removing some 
fraction of the risk. For example, if a risk has an a-
priori likelihood of 1.0, then two mitigations with 
0.1 and 0.7 effect proportions, respectively, act as 
follows: The first mitigation filters out 0.1 of the 
risk’s likelihood, reducing it from 1.0 to 0.9; the 
second filters out 0.7 of what remains, reducing it 
from 0.9 to 0.27. (We offer a detailed description 
elsewhere of how we handle mitigations that reduce 
risk impacts rather than likelihoods, as well as miti-
gations that increase risks.4)

In the remaining three formulas:

We calculate a requirement’s attainment 

A DDP model’s 
instances have 

quantitative 
risk and risk-

mitigation 
relationships.
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as its weight diminished by the risks that 
affect it; as a result, multiple risks’ im-
pacts on the same requirement simply add 
up. For example, for a Requirement R:

Attainment(R : Requirement) = Weight(R) * (1 – Min(1, 
( (K  Risks) : Likelihood(K) * Impact(K, R)))

We calculate total cost as: TotalCost = (M  
Mitigations) : If(Selected(M), Cost(M), 0).
We calculate total attainment: TotalAttainment 
= (R  Requirements) : Attainment(R).

Following a DDP study, developers determine 
which mitigations to select. In most situations, the 
total cost of all postulated mitigations far exceeds 
the available budget (of whatever resources being 
modeled), so arriving at a cost-effective mitigation 
selection is crucial.

Modeling example 
One of our studies concerned a GUI-based envi-

ronment for control-system prototyping. The study 
examined the idea of machine-generating—from 
the prototype—a standalone executable to serve as 
the actual spacecraft control system, rather than re-
coding the executable from scratch. 

One of our quality concerns surrounded how 
this approach would affect the resultant code’s speed 
when running real-time control loops. To represent 

this, we created two DDP requirements: one to rep-
resent the speed requirement with few and/or slow 
control loops (the “few/slow” requirement), and the 
other to represent many and/or fast control loops 
(the “many/fast” requirement). Among the risks we 
identified was heap fragmentation, in which a data 
storage area becomes increasingly divided into al-
located and unallocated fragments and eventually 
requires the execution of a time-consuming defrag-
mentation algorithm to rearrange the fragments. 
We identified built-in garbage collection (GC) as a 
mitigation to help address this threat.

The resulting DDP formulae were as follows:

Requirements: “few/slow” – Weight(“few/
slow”) = 100, and “many/fast” – Weight(“many/
fast”) = 100 
Risk: “heap frag” – APL(“heap frag” ) = 1.
Mitigation: “built-in GC” – Cost(“built-in 
GC”) = $10,000.
Impacts: Impact(“heap frag”, “few/slow”) = 0.1, 
and Impact(“heap frag”, “many/fast”) = 0.99.
Effect: Effect(“built-in GC”, “heap frag”) = 
0.9.

As figure 1 shows, we then calculated requirements 
attainment with and without built-in GC. 

As figure 1 shows, if the target application 
needs the machine-generated software to operate 
many and/or fast control loops, then developers 

Likelihood(“heap frag”) = APL(“heap frag”) = 1

Attainment(“few/slow”)
= Weight(“few/slow”) * (1 – Min(1, Likelihood(“heap frag”) * Impact(“heap frag”, “few/slow”)))
= 100 * (1 – Min(1, 1 * 0.1)) = 100 * (1 – 0.1) = 100 * 0.9 = 90

Attainment(“many/fast”)
= Weight(“many/fast”) * (1 – Min(1, Likelihood(“heap frag”) * Impact(“heap frag”, “many/fast”)))
= 100 * (1 – Min(1, 1*0.99)) = 100 * (1 – 0.99) = 100*0.01 = 1

(a)

Likelihood(“heap frag”) = APL(“heap frag”) * (1 – Effect(“built-in GC”, “heap frag”))
= 1 * (1 – 0.9) = 0.1

Attainment(“few/slow”)
= Weight(“few/slow”) * (1 – Min(1, Likelihood(“heap frag”) * Impact(“heap frag”, “few/slow”)))
= 100 * (1 – Min(1, 0.1 * 0.1)) = 100 * (1 – 0.01) = 100 * 0.99 = 99

Attainment(“many/fast”)
= Weight(“many/fast”) * (1 – Min(1, Likelihood(“heap frag”) * Impact(“heap frag”, “many/fast”)))
= 100 * (1 – Min(1, 0.1 * 0.99)) = 100 * (1 – 0.099) = 100 * 0.901 = 90.1

(b)

Figure 1. Requirements 
attainment with 
and without built-in 
garbage collection. 
(a) Calculating 
requirements 
without built-in 
GC. (b) Calculating 
requirements with built-
in GC.
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should choose built-in GC mitigation. As the figure 
also shows, DDP model calculations are relatively 
straightforward. The complexity arises from the 
data volume and interrelatedness typical of DDP 
models.

Gleaning information from DDP models
Figure 2 shows our study’s entire requirements-

risks-mitigations structure, which contains 35 re-
quirements, 100 risks, 100 mitigations, 600 im-
pacts, and 600 effects. This dauntingly convoluted 
picture is typical of a DDP model’s information. To 
glean decision-making information from this mo-
rass, we use a combination of

calculation, to derive useful information from 
the model’s raw data; and
a cogent visualization for decision makers to 
examine. 

DDP formulae define how to calculate a popu-
lated model’s total cost and total requirements at-
tainment, given a set of mitigations. Our custom 
DDP software performs these calculations auto-
matically; for a typical DDP model, it executes them 
in less than a second on a modest laptop. Decision 
makers can thereby explore different mitigation op-
tions in real time. 

In addition to measuring total cost and total re-
quirements attainment, the calculations reveal 

the extent to which the project is meeting indi-
vidual requirements,
how much each risk detracts from requirements 
attainment (measured in terms of requirement 
weights), and

each mitigation’s contribution to risk reduction 
and increased requirements attainment (again, 
measured in terms of requirement weights). 

To help guide decision makers, we use bar 
charts to display these factors. The bar chart clearly 
shows which requirements the project is attaining 
(and which it’s not). This helps developers select ap-
plications for the target technology and find mitiga-
tions to reduce the risks impacting key unattained 
requirements.

In addition to helping decision makers under-
stand specific mitigations’ details, DDP also helps 
them understand alternate mitigation selections’ 
overall decision space. There is a trade-off be-
tween maximizing requirements’ total attainment 
(by selecting mitigations to reduce risks) and mini-
mizing total mitigation costs. The DDP software 
explores this trade space, and generates a scatter 
plot indicating the key measures of total cost and 
total requirements attainment for a wide variety 
of mitigations. 

Figure 3 shows an example of this exploration, 
derived from a DDP model for one of our other soft-
ware technology studies. The red line—the “Pareto 
frontier”—demarks optimal attainable outcomes 
(points on that frontier represent the greatest at-
tainment for the least cost). Points away from the 
Pareto frontier represent suboptimal mitigation se-
lections. In this case, there are many more subop-
timal selections than the density of the black-point 
cloud suggests because the heuristic search we use 
explores the Pareto frontier’s neighborhood more 
thoroughly than the rest of the selection space.

That a cost-benefit trade-off exists is no sur-
prise; the visualization’s value is in revealing the 
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Figure 2. The example 
study’s requirements-
risks-mitigations 
structure. It includes 
35 requirements (tiny 
circles along the top) 
and more than 100 
risks (tiny circles in 
the middle row) and 
mitigations (tiny circles 
along the bottom 
row). The structure 
also has 600 impacts 
(quantitatively scored 
red links) and 600 
effects (quantitatively 
scored green links).
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location of this trade-off space’s Pareto frontier. 
As figure 3 shows, this specific study yielded three 
insights: 

We must spend at least $1,800,000 to meet any 
requirements; at $2,000,000, we reach the first 
significant plateau (requirements attainment of 
7). 
At approximately $4,000,000, we see signifi-
cant improvement (requirements attainment of 
7.5). 
Beyond that, additional spending offers only in-
cremental improvements. 

Given such information, decision makers can 
arrive at defensible decisions. Most project manag-
ers will argue the need for a larger budget, more 
time, and so on. DDP information gives them—
and those reviewing their requests—the ability to 
gauge how much improvement they can expect if 
resources are increased. 

Experience using DDP
To populate a DDP model, we use facilitated 

group sessions with all key stakeholders. As partic-
ipants proffer information—such as requirements 
and their relative weight—we enter it on-the-fly 
into the DDP model and project the information 
aggregation onto a screen that everyone can see. 
Our DDP software offers several visualizations 
suited to this information display. 

Using our visual aid lets the group view its prog-
ress, encourages members to identify mistakes 
and suggest corrections, and triggers wide-range 
thinking—someone mentioning one type of re-
quirement’s risk might trigger another participant 
to think of a different requirement’s analogous 
risk. It also lets participants discover and resolve 
disagreements among their views. For example, 
if participants disagree about a risk’s impact on 
a requirement, we encourage them to raise the is-
sue immediately. We often find that disagreements 
stem from trying to assess a risk at too high an ab-
straction level—that is, the participant is assessing 
its impact on a very general requirement. In such 
cases, we can resolve disagreements by decom-
posing the requirement into its constituent parts. 
Disagreement is thus constructive and acts as a 
guide, showing us where we need more detail to 
adequately capture important distinctions. We 
also vary the depth to match the problem at hand. 
When assessing a novel technology, for example, 
we examine risks related to the technology’s most 
novel aspects in detail, rather than those pertaining 
to well-understood aspects.

Costs
Clearly, populating a DDP model can involve 

a nontrivial amount of effort. Is it worth it? We’ve 
performed several DDP studies every year since 
1999. We’ve made several observations on the basis 
of these experiences.

First, a DDP study’s cost is the stakeholders’ 
time while they help build the model and then use it 
to make decisions. When we study novel technolo-
gies, we have little historical data to draw from, so 
model-population—identifying requirements, risks, 
and mitigation, and creating impact and effect links 
among them—is a human-intensive elicitation pro-
cess. In particular, eliciting impacts requires partici-
pants to consider all risk/requirement pairs, while 
eliciting effects requires consideration of all mitiga-
tion/risk pairs. Both steps are major time sinks. 

We can often take shortcuts, such as ruling out 
subareas in which an entire risk subset has no im-
pact on a requirements subset, and decomposing 
the effort into different expertise areas so different 
stakeholders can provide parallel inputs for differ-
ent areas. However, populating the DDP model 
remains relatively labor-intensive. A typical tech-
nology study involves 10 to 20 participants, all of 
whom participate in several two-to-four half-day 
sessions. Thus, total labor time can be as high as 
several hundred hours. 

Benefits
Although somewhat harder to quantify, our 

experiences suggest that, typically, the benefits of 
performing a DDP study substantially outweigh 
the costs. The nature of these benefits varies. We’ve 
seen several instances of each of the following:

Realization of a mismatch between the technol-
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of various mitigation 
costs and requirements 
attainment.
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ogy developers’ belief about the application re-
quirements and the would-be customers’ actual 
needs. Because DDP model building usually 
starts with requirements, this realization occurs 
early on, letting us correct the mismatch and 
proceed with the study. 
Realization of a mismatch among various 
stakeholders’ perceptions of the cost of achiev-
ing certain requirements. Customers tend to de-
clare all their requirements essential. However, 
as they realize that some requirements might 
cost much more than others, they’re motivated 
to reconsider this stance.
Realization of an imbalance in the preexist-
ing technology-development plan. That is, the 
plan spends too much to mitigate some risks 
and too little to mitigate others; as a result, re-
quirements attainment is suboptimal (because 
the developers could otherwise attain the same 
requirements level for less). Because our stud-
ies focus on novel technologies, with concerns 
that span multiple discipline areas, it’s hard for 
one person to have the knowledge needed to 
develop a balanced plan. DDP’s quantitative 
(albeit coarse) treatment is key to addressing 
this knowledge deficit.
A broad-ranging consideration of potential im-
pediments to success. This, the most common 
benefit, stems from our combining inputs from 
all relevant stakeholders, such as project man-
agers; engineers; quality-assurance personnel; 
technologists, whose (often novel) technologies 
are the study’s subject; and scientists, whose 
investigations drive the mission. This input 
lets us identify problems and their solutions 
early, which saves costs of later-phase correc-
tions that require rework, redesign, and so on. 
Stakeholder input also helps us better target 
the technology to well-suited applications. 

Discussion
When using DDP, we must simultaneously con-

sider a wide range of requirements, including prop-
erties of 

the technology itself, both functional (such as 
“computes distance to ground”) and nonfunc-
tional (such as “computes in 10 seconds”);
the technology’s surrounding environment, 
both functional (“provides radar data to the 
technology”) and nonfunctional (“provides at 
least 10 percent of CPU cycles to the technol-
ogy”); and
the development process, both functional (“cost 

and schedule predictability”) and nonfunctional 
(“ability to track development progress”).

Because DDP encompasses properties of both 
the technology and its environment (also known 
as optative and indicative requirements, respec-
tively5), it helps developers make trade-off deci-
sions between the two. It thus accommodates the 
intertwining of specification and implementation,6 
which is especially useful for large and complex 
projects, where process and functional perfor-
mance issues are equally important.

Coarse requirements representation
DDP requires only that developers describe 

each requirement such that all stakeholders have 
a common understanding of its meaning and give 
each a weight representing its relative importance. 
It can thus coarsely represent all key process and 
quality requirements. However, this coarse repre-
sentation has several implications. 

First, DDP requirements are discrete, not con-
tinuous. Earlier, for example, we described a DDP 
speed requirement “when there are few and/or slow 
control loops.” During the actual DDP session, 
however, we’d ensure a common understanding of 
the precise meaning—that is, the number of control 
loops divided by seconds-per-loop. Note, however, 
that our DDP requirement models a single point in 
the potentially continuous space of loop number di-
vided by seconds-per-loop. In our actual study, we 
modeled just two points, “few/slow” and “many/
fast,” which were distinct capability regimes of par-
ticular interest to the postulated applications. This 
is typical of our studies: for a given quality mea-
sure, we use (at most) a handful of individual DDP 
requirements to represent discrete points in some 
continuous range.

Second, DDP requirements lack a cost attribute. 
If, for example, we used a requirement to represent 
a potential feature, there’d likely be a cost associ-
ated with providing that feature. Other require-
ments trade-off methods (such as the cost-value 
approach7) commonly ascribe costs directly to re-
quirements. In DDP, we achieve this same effect in-
directly: we assume that we’ll meet a DDP require-
ment unless there are DDP risks that detract from 
its attainment. To decrease these risks, we select 
DDP mitigations, which do have associated costs. 
Although this seems convoluted at first glance, it 
lets us represent a variety of approaches. For ex-
ample, if the project requires some level of compu-
tational performance, we can represent alternative 
solutions, such as hosting the processing on a more 
powerful computer or developing faster algorithms.

DDP 
encompasses 

properties 
of both the 
technology 

and its 
environment.
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Third, we don’t directly model mutually in-
compatible requirements because the limiting fac-
tor is typically the cost of addressing all the associ-
ated risks. For example, “security” and “response 
time” might be considered mutually incompatible 
(as when virus checkers hog CPU cycles), yet a suf-
ficiently powerful computer can have both.

Fourth, the DDP notion of risk must encom-
pass all kinds of potential impediments to attain-
ing requirements, not just mechanism breakage and 
software bugs. Again, DDP’s “risk” nomenclature 
can be misleading; some other work instead uses 
the term “obstacles.”8 Indeed, to identify risks, we 
often begin by thinking of a requirement and the 
factors that might prevent attaining it. We share the 
traditional risk-assessment idea that risks have like-
lihoods that can be reduced by mitigations. How-
ever, while project risk-management approaches 
often advocate scoring risks against just three fac-
tors—cost, schedule, and performance—such re-
quirements are too abstract for the kind of deci-
sion making we wish to support. So, we decompose 
risks further, such as separately considering bounds 
on run-time memory size and the executable’s stor-
age size. We don’t, however, descend to the detailed 
“shall” statements that characterize a carefully con-
sidered design; those emerge later in the life cycle. 

Overall, DDP favors breadth over representa-
tional fidelity. Breadth has proven useful, letting 
us account for a wide range of relevant aspects in 
early-lifecycle decision making (of which there are 
surprisingly many).

Risk and mitigation assessment 
When projects have novel elements, any ap-

proach that assists in early life-cycle decision mak-
ing must work from estimates, not certainties. We 
derive DDP’s estimates from stakeholders’ assess-
ments of how risks impact requirements and how 
mitigations affect risks. Rather than restrict their at-
tention to Pareto-frontier solutions, the DDP model 
helps decision makers locate acceptable-decision 
neighborhoods (with similar costs and benefits). 
Decision makers then explore a neighborhood’s al-
ternatives to arrive at a specific selection. 

In studying our approach, we’ve discovered two 
recurring phenomena. First, an acceptable-decision 
neighborhood might feature radically distinct alter-
natives. For example, in one of our studies, we ex-
amined the neighborhood within 5 percent of the 
maximal requirements attainment possible within 
our budget. We found several strikingly distinct 
alternatives. In one case, a selection of 30 mitiga-
tions included two that, together, cost more than 
half the cost of the other 28 combined, while an-

other case avoided using either of the two expensive 
mitigations! 

To find distinct alternatives, we adopt data-min-
ing techniques that identify data-set outliers using 
distance from nearest neighbors as a measure of un-
usualness.9 We don’t seek outliers per se, merely in-
terestingly distinct alternatives. Alternately, we use 
the same metric to group similar solutions. (Other 
work describes how to apply metric-based tech-
niques to DDP models.10)

Second, relatively few of the mitigation-selection 
decisions are crucial. For example, in one of our 
larger studies, we had almost 100 mitigations. In 
the target neighborhood, two-thirds of those miti-
gations had little effect on the overall cost and ben-
efit. To identify subsets of critical decisions, we use 
a machine-learning technique that one of us (Tim 
Menzies) pioneered and has widely applied.11,12 

Both of these phenomena—the radically distinct 
alternatives within an acceptable-decision neighbor-
hood and the relative prevalence of inconsequential 
mitigation selections—can be helpful. When deci-
sion makers can easily see the critical decisions, 
they can better focus their attention. When they 
can view radically distinct alternatives, they can 
pick and choose, accounting for preferences not en-
coded in the model. Indeed, our work is partially 
motivated by the design-by-shopping paradigm,13 
which focuses on revealing the options space avail-
able to users, without presuming that analysts have 
previously elicited all selection criteria.

A lthough DDP is akin to quality function 
deployment,14 a mainstream decision-
support approach, it has a quantitative, 

probabilistic foundation inspired by risk-assessment 
techniques. This novel combination places it in a 
sparsely populated niche among decision-making 
techniques. We believe this is why it continues to be 
useful in studying the requirements needs of a wide 
variety of technologies—software, hardware, and 
combinations of the two.

Free DDP software licenses are available for 
research and government use; send inquiries to  
softwarerelease@jpl.nasa.gov.
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