
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 3, JUNE 2007 607

Adaptive Robust Motion/Force Control of
Holonomic-Constrained Nonholonomic

Mobile Manipulators
Zhijun Li, Shuzhi Sam Ge, Fellow, IEEE, and Aiguo Ming, Member, IEEE

Abstract—In this paper, adaptive robust force/motion control
strategies are presented for mobile manipulators under both holo-
nomic and nonholonomic constraints in the presence of uncertain-
ties and disturbances. The proposed control is robust not only
to parameter uncertainties such as mass variations but also to
external ones such as disturbances. The stability of the closed-loop
system and the boundedness of tracking errors are proved us-
ing Lyapunov stability synthesis. The proposed control strategies
guarantee that the system motion converges to the desired man-
ifold with prescribed performance and the bounded constraint
force. Simulation results validate that the motion of the system
converges to the desired trajectory, and the constraint force con-
verges to the desired force.

Index Terms—Holonomic constraint, motion/force control, non-
holonomic mobile manipulators.

I. INTRODUCTION

MOBILE manipulators refer to robotic manipulators (or
arms) mounted on mobile platforms (or vehicles). Such

systems combine the advantages of mobile platforms and ro-
botic arms and reduce their drawbacks. The mobile platform
extends the arm’s workspace, whereas the arm offers much op-
erational functionality. Applications for such systems could be
found in mining, construction, forestry, planetary exploration,
and military [1]–[3].

Mobile manipulators possess strongly coupled dynamics
of mobile platforms and manipulators. With the assumption
of known dynamics, much research has been carried out.
Input–output feedback linearization was investigated to control
the mobile platform such that the manipulator is always posi-
tioned at the preferred configurations measured by its manipu-
lability [4]. Similarly, through nonlinear-feedback linearization
and decoupling dynamics in [5], force/position control of the
end-effector along the same direction for mobile manipula-
tors was proposed and applied to nonholonomic cart pushing.
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In [6], the effect of the dynamic interaction between the arm and
the vehicle of a mobile manipulator was studied and nonlinear-
feedback control for the mobile manipulator was developed to
compensate for the dynamic interaction. In [7], coordination
and control of mobile manipulators were presented with two
basic task-oriented controls: end-effector task control and plat-
form self-posture control. In [8], the concept of manipulability
was generalized to the case of mobile manipulators and the
optimization criteria in terms of manipulability were given to
generate the controls of the system.

However, control of mobile manipulators with uncertainties
is essential in many practical applications, especially for the
case when the force of the end-effector should be considered.
To handle unknown dynamics of mechanical systems, robust,
and adaptive controls have been extensive investigated for ro-
bot manipulators and dynamic nonholonomic systems. Robust
controls assume the known boundedness of unknown dynamics
of the systems; nevertheless, adaptive controls could learn the
unknown parameters of interest through adaptive tuning laws.

Under the assumption of a good understanding of dynamics
of the systems understudy, model-based adaptive controls have
been much investigated for dynamic nonholonomic systems. In
[9], adaptive control was proposed for trajectory/force control
of mobile manipulators subjected to holonomic and nonholo-
nomic constraints with unknown inertia parameters, which en-
sures the motion of the system to asymptotically converge to the
desired trajectory and force. In [10], adaptive state feedback and
output feedback control strategies using state scaling and back-
stepping techniques were proposed for a class of nonholonomic
systems in chained form with drift nonlinearity and parametric
uncertainties. In [11], the nonholonomic kinematic subsystem
was first transformed into a skew-symmetric form, and then
a virtual adaptive control designed at the actuator level was
proposed to compensate for the parametric uncertainties of the
kinematic and dynamic subsystems.

In [12], robust adaptive control was proposed for dynamic
nonholonomic systems with unknown inertia parameters and
disturbances, in which adaptive control techniques were used
to compensate for the parametric uncertainties and sliding
mode control was used to suppress the bounded disturbances.
In [13], adaptive robust force/motion control was presented
systematically for holonomic mechanical systems and a large
class of nonholonomic mechanical systems in the presence of
uncertainties and disturbances.

Because of the difficulty in dynamic modeling, adaptive
neural network control, a nonmodel-based approach, has been
extensively studied for different classes of systems, such as
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robotic manipulators [15]–[17] and mobile robots [18]. In [19],
adaptive neural network control for a robot manipulator in the
task space was proposed, which neither requires the inverse dy-
namical model nor the time-consuming offline training process.
In [20], the unidirectionality of the contact force of robot
manipulators was explicitly included in modeling and the fuzzy
control was developed. In [21], adaptive neural fuzzy control
for function approximation had been investigated for uncer-
tain nonholonomic mobile robots in the presence of unknown
disturbances. In [22], adaptive neural network controls had
been developed for the motion control of mobile manipulators
subject to kinematic constraints.

In this paper, we shall consider a class of mechanical
systems with both holonomic and nonholonomic constraints,
such as nonholonomic mobile manipulators, and address the
force/motion control for holonomic-constrained nonholonomic
mobile-manipulator systems in the presence of parameter un-
certainties and external disturbances. The main contributions of
this paper are listed as follows.

1) The control design is developed in a systematic and
unified manner for a class of mechanical systems with
both holonomic and nonholonomic constraints.

2) Decoupling adaptive robust motion and force control
strategies are presented for mobile manipulators with
both parameter uncertainties and external disturbances.

3) Nonregressor-based control design is developed and car-
ried out without imposing any restriction on the system
dynamics.

The stability and the boundedness of tracking errors are
proved using Lyapunov synthesis. The proposed control strate-
gies guarantee that the motion of the system converges to
the desired manifold and at the same time guarantee the
boundedness of the constrained force. The simulation studies
validate not only the motion of the system converging to the
desired trajectory but also the constraint force converging to the
desired force.

The rest of this paper is organized as follows. The mobile
manipulator subject to simultaneous nonholonomic and holo-
nomic constraints are briefly described in Section II. The main
results of control design are presented in Section III. Simulation
studies are presented by comparison between the proposed
adaptive robust control and model-based control in Section IV.
Concluding remarks are given in Section V.

II. SYSTEM DESCRIPTION

Consider an n DOF mobile manipulator mounted on a non-
holonomic mobile platform, as shown in Fig. 1. The constrained
mechanical system can be described as

M(q)q̈ + C(q, q̇)q̇ +G(q) + d(t) = B(q)τ + f (1)

where q = [q1, . . . , qn]T ∈ Rn denote the generalized coordi-
nates, M(q) ∈ Rn×n is the symmetric bounded positive def-
inite inertia matrix, C(q, q̇)q̇ ∈ Rn denote the centripetal and
Coriolis torques, G(q) ∈ Rn is the gravitational torque vector,
d(t) denotes the external disturbances, τ ∈ Rm are the control
inputs,B(q) ∈ Rn×m is a full-rank input transformation matrix
and is assumed to be known because it is a function of fixed

Fig. 1. Trajectory/force tracking of a mobile manipulator.

geometry of the system, and f = [fn, fh]T = JTλ ∈ Rn with
generalized constraint forces fn and fh for the nonholonomic
and holonomic constraints, respectively, and λ = [λn, λh]T de-
noting the Lagrangian multipliers with both the nonholonomic
and holonomic constraints.

The generalized coordinates may be separated into two sets
as q = [qv, qa]T with qv ∈ Rnv denoting the generalized coor-
dinates for the vehicle and qa ∈ Rna denoting the coordinates
of the arm. Therefore, we have

M(q) =
[
Mv Mva

Mav Ma

]

C(q, q̇) =
[
Cv Cva

Cav Ca

]

G(q) = [Gv Ga]T

d(t) = [dv da]T

B(q) =
[
Bv 0
0 Ba

]

τ = [τv τa]T

J =
[
A 0
Jv Ja

]
.

The vehicle is subjected to nonholonomic constraints, and
the l nonintegrable and independent velocity constraints can be
expressed as

A(qv)q̇v = 0 (2)

where A(qv) = [AT
1 (qv), . . . , A

T
l (qv)]T : Rnv → Rl×nv is the

kinematic-constraint matrix, which is assumed to have full-
rank l. In this paper, the vehicle is assumed to be completely
nonholonomic. The effect of the constraints can be viewed as a
restriction of the dynamics on the manifold Ωn as

Ωn = {(qv, q̇v)|A(qv)q̇v = 0} . (3)

The generalized constraint forces for the nonholonomic con-
straints can be given by

fn = AT(qv)λn. (4)
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Assume that the annihilator of the codistribution spanned
by the covector fields A1(qv), . . . , Al(qv) is an (nv − l)-
dimensional smooth nonsingular distribution ∆ on Rnv . This
distribution ∆ is spanned by a set of (nv − l) smooth and
linearly independent vector fields H1(qv), . . . , Hnv−l(qv), i.e.,
∆ = span{H1(qv), . . . , Hnv−l(q)}, which satisfy, in local co-
ordinates, the following relation [14]:

HT(qv)AT(qv) = 0 (5)

where H(qv) = [H1(qv), . . . , Hnv−l(qv)] ∈ Rnv×(nv−l). Note
that HTH is of full rank. Constraints (2) implies the existence
of vector η̇ ∈ Rnv−l, such that

q̇v = H(qv)η̇. (6)

Considering the nonholonomic constraints (2) and its deriva-
tive, the dynamics of mobile manipulator can be expressed as

[
HTMvH HTMva

MavH Ma

] [
η̈

q̈a

]

+
[
HTMvḢ +HTCvH HTCva

MavḢ + CavH Ca

] [
η̇

q̇a

]

+
[
HTGv

Ga

]
+

[
HTdv

da

]

=
[
HTBvτv
Baτa

]
+

[
0 0
Jv Ja

]T [
0
λh

]
. (7)

Let ξ = [η qa]T and assume that the system (7) is subjected
to k independent holonomic constraints

h(ξ) = 0, h(ξ) ∈ Rk (8)

where h(ξ) is of full rank. Define

J(ξ) = ∂h/∂ξ (9)

then the holonomic constraints could be further written as

J(ξ)ξ̇ = 0. (10)

The holonomic constraint force can be converted to the joint
space as

fh = JTλh. (11)

The holonomic constraint on the robot’s end-effector can be
viewed as restricting only the dynamics on the constraint
manifold

Ωh =
{
(ξ, ξ̇)|h(ξ) = 0, J(ξ)ξ̇ = 0

}
. (12)

Assume that the arm is a series-chain multiple links with
holonomic constraints (i.e., geometric constraints). Since the
motion is subject to k-dimensional constraint, the configura-
tion space of the holonomic system is left with na − k DOF.
From an appropriate manipulation of the constraint h(ξ) = 0,
the vector qa can be further rearranged and partitioned into
qa = [q1a, q

2
a]

T, where q1a ∈ Rna−k describe the constrained

motion of the arm and q2a ∈ Rk denote the remaining joint
variables. Then

J(ξ) =
[
∂h

∂η
,
∂h

∂q1a
,
∂h

∂q2a

]
. (13)

From [23], it could be concluded that q is the function of ζ =
[η, q1a]

T, that is, ξ = ϕ(ζ), and we have

ξ̇ = L(ζ)ζ̇ (14)

whereL(ζ) = ∂ϕ/∂ζ, ξ̈ = L(ζ)ζ̈ + L̇(ζ)ζ̇, andL(ζ), J1(ζ) =
J(ϕ(ζ)) satisfies the relationship

LT(ζ)J1T(ζ) = 0. (15)

The dynamics (7), when it is restricted to the constraint surface,
can be transformed into the reduced dynamics

M1L(ζ)ζ̈ + C1ζ̇ +G1 + d1(t) = u+ J1Tλh (16)

where

M1 =
[
HTMvH HTMva

MavH Ma

]

C1 =
[
HTMvḢ HTMva

MavH Ma

]
L̇(ζ)

+
[
HTMvḢ +HTCvH HTCva

MavḢ + Cav Ca

]
L(ζ)

G1 =
[
HTGv

Ga

]

d1(t) =
[
HTdv

da

]

u =B1τ,B1

=
[
HTBv 0

0 Ba

]

ζ =
[
η

q1a

]
.

Property 2.1: Matrices M1 and G1 are uniformly bounded
and uniformly continuous if ζ is uniformly bounded and con-
tinuous, respectively. Matrix C1 is uniformly bounded and
uniformly continuous if ζ and ζ̇ are uniformly bounded and
continuous, respectively.

Multiplying LT on both sides of (16), we can obtain

MLζ̈ + CLζ̇ +GL + dL(t) = LTu (17)

where

ML =LT (ζ)M1L

CL =LT(ζ)C1

GL =LT(ζ)G1

dL =LT(ζ)d1(t).
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The force multiplier λh can be obtained by (16)

λh = Z
(
C1ζ̇ +G1 + d1(t)− u

)
(18)

where

Z =
(
J1(M1)−1J1T

)−1
J1(M1)−1.

Property 2.2: The matrix ML is symmetric and positive
definite, and we have the following inequalities:

λmin(ML)‖x‖2 ≤ xTMLx ≤ λmax(ML)‖x‖2, ∀x ∈ Rn

(19)

where λmin and λmax denote the minimum and maximum
eigenvalues ofML, respectively [15].

Property 2.3: The matrix ṀL − 2CL is skew symmetric.
Property 2.4: For holonomic systems, matrices J1(ζ) and

L(ζ) are uniformly bounded and uniformly continuous if ζ is
uniformly bounded and continuous, respectively.

Remark 2.1: The matrix Z is bounded and continuous, since
M1 and J1(ζ) are bounded and continuous from Property 2.1
and Property 2.4.

III. CONTROL DESIGN

Since the system is subjected to the nonholonomic constraint
(2) and holonomic constraint (8), the states qv , q1a, and q2a are
not independent. By a proper partition of qa, q2a is uniquely
determined by ζ = [η, q1a]

T. Therefore, it is not necessary to
consider the control of q2a.

Given a desired motion trajectory ζd(t) = [ηd, q1ad]
T and a

desired constraint force fd(t), or equivalently, a desired multi-
plier λhd(t), we are to determine a control law such that for any
(ζ(0), ζ̇(0)) ∈ Ω, ζ, ζ̇, λh converge to a manifold Ωd specified
as Ω, where

Ωd =
{
(ζ, ζ̇, λh)|ζ = ζd, ζ̇ = ζ̇d, λh = λhd

}
. (20)

Assumption 3.1: The desired reference trajectory ζd(t) is
assumed to be bounded and uniformly continuous and has
bounded and uniformly continuous derivatives up to the second
order. The desired Lagrangian multiplier λhd(t) is also bounded
and uniformly continuous.

Consider the following signals:

eζ = ζ − ζd
ζ̇r = ζ̇d −Kζeζ

r = ėζ +Kζeζ

eλ =λh − λhd

whereKζ = diag[Kζi] > 0.
Consider the control input u in the form

u = ua − J1Tub. (21)

Then, (17) and (18) can be changed to

MLζ̈ + CLζ̇ +GL + dL = LTua (22)

λh = Z
(
C1ζ̇ +G1 + d1(t)− ua

)
+ ub. (23)

A. Model-Based Control

Under the assumption that the dynamics of mobile manip-
ulators are known without considering external disturbances,
consider the following control laws:

LTua = −Kpr −Ki

t∫
0

rds− Φm (24)

ub =χmζ̈d + λhd −Kfeλ (25)

where

Φm =CmΨm

χm =ZL+T
ML (26)

with

Cm = [ML CL GL]

Ψm = [ζ̈r ζ̇r 1]T

L+ =(LTL)−1LT.

Kp,Ki, andKf are positive definite.
Theorem 3.1: Consider the mechanical system without ex-

ternal disturbance described by (1), (2), and (8) with d(t) = 0.
Using the control law (24) and (25), the following hold for any
(q(0), q̇(0)) ∈ Ωn ∩ Ωh.

1) r converges to a set containing the origin as t→ ∞.
2) eq and ėq converge to zero as t→ ∞.
3) eλ and τ are bounded for all t ≥ 0.

Proof (i): The closed-loop system dynamics can be
rewritten as

MLṙ = LTua − µ− CLr (27)

where µ =MLζ̈r + CLζ̇r +GL + dL(t).
Substituting (24) into (27), the closed-loop dynamics are

given by

MLṙ = −Kpr −Ki

t∫
0

rds− Φm − µ− CLr. (28)

Consider the Lyapunov function candidate

V =
1
2
rTMLr +

1
2




t∫
0

rds




T

Ki

t∫
0

rds (29)

then

V̇ = rT


MLṙ +

1
2
ṀLr +Ki

t∫
0

rds


 . (30)

Using Property 2.3, the time derivative of V along the trajectory
of (28) is

V̇ = − rTKpr − rTµ− rTΦm

≤− rTKpr ≤ −λmin(Kp)‖r‖2 ≤ 0.
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Integrating both sides of the above equation gives

V (t)− V (0) ≤ −
t∫

0

rTKprds ≤ 0. (31)

From above all, r converges to a small set containing the origin
as t→ ∞. �

Proof (ii): From (31), V is bounded, which im-
plies that r ∈ Ln−k−l

∞ . We have
∫ t

0 r
TKprds ≤ V (0)− V (t),

which leads to r ∈ Ln−k−l
2 . From r = ėζ +Kζeζ , it can

be obtained that eζ , ėζ ∈ Ln−k−l
∞ . As we have established

that eζ , ėζ ∈ L∞, from Assumption 3.1, we conclude that
ζ(t), ζ̇(t), ζ̇r(t), ζ̈r(t) ∈ Ln−k−l

∞ , and q̇ ∈ Ln
∞.

Therefore, all the signals on the right-hand side of (28)
are bounded and we can conclude that ṙ and ζ̈ are bounded.
Thus, r → 0 as t→ ∞ can be obtained. Consequently, we have
eζ → 0 and ėζ → 0 as t→ ∞. It follows that eq and ėq → 0
as t→ ∞. �

Proof (iii): Substituting the control (24) and (25) into the
reduced order dynamics (23) yields

(I +Kf )eλ =Z(C1ζ̇ +G1 + d1(t)− ua) + ub

= − ZL+T
MLζ̈ + χmζ̈d. (32)

Since ζ̈ and Z are bounded, ζ → ζd, (−ZL+T
MLζ̈ + χmζ̈d)

is also bounded, the size of eλ can be adjusted by choosing the
proper gain matrixKf .

Since r, ζ, ζ̇, ζ1r , ζ̇r, ζ̈r, and eλ are all bounded, it is easy to
conclude that τ is bounded from (24) and (25). �

B. Robust Control

In practice, uncertainties and external disturbances do exist.
The above control so designed may give degraded performance
and may incur instability. Robust-control schemes can handle
the uncertainties and external disturbances on the dynamics.

To facilitate the robust-control formulation, the following
assumption is required.

Assumption 3.2: There exist some finite positive constants
cri > 0(1 ≤ i ≤ 4), and finite nonnegative constant cr5 ≥ 0
such that ∀ζ, ζ̇ ∈ Rn [13]

‖ML‖ ≤ cr1
‖CL‖ ≤ cr2 + cr3‖ζ̇‖
‖GL‖ ≤ cr4

supt≥0‖dL‖ ≤ cr5.
Assumption 3.3: Time-varying positive function δ converges

to zero as t→ ∞ and satisfies

lim
t→∞

t∫
0

δ(ω)dω = ρ <∞

with finite constant ρ.
There are many choices for δ that satisfy the Assumption 3.3,

e.g., δ = 1/(1 + t)2.

Consider the following control law:

LTua = −Kpr −Ki

t∫
0

rds− rΦ2
r

‖r‖Φr + δ
(33)

ub =
χ2

r

χr + δ
ζ̈d + λhd −Kfeλ (34)

where

Φr =CT
r Ψr

χr = c1‖Z∗L+T‖
with

Cr = [cr1 cr2 cr3 cr4 cr5]T

Ψr =
[
‖ζ̈r‖ ‖ζ̇r‖ ‖ζ̇‖ ‖ζ̇r‖ 1 1

]T

Z∗ =
(
J1(M ∗)−1J1T

)−1
J1(M ∗)−1.

Kp,Ki, andKf are positive definite and ‖LTM ∗L‖ = c1.
Theorem 3.2: Consider the mechanical system described by

(1), (2), and (8). Using the control law (33) and (34), the
following hold for any (q(0), q̇(0)) ∈ Ωn ∩ Ωh.

1) r converges to a set containing the origin as t→ ∞.
2) eq and ėq converge to zero as t→ ∞.
3) eλ and τ are bounded for all t ≥ 0.

Proof (i): Substituting (33) into (27), the closed-loop dy-
namics is obtained

MLṙ = −Kpr −Ki

t∫
0

rds− rΦ2
r

‖r‖Φr + δ
− µ− CLr. (35)

Considering the Lyapunov function candidate (29), from
Property 2.2, we have (1/2)λmin(ML)rTr ≤ (1/2)rTMLr ≤
(1/2)λmax(ML)rTr. By using Property 2.3, the time derivative
(30) of V along the trajectory of (35) is

V̇ = − rTKpr − rTµ− ‖r‖2Φ2
r

‖r‖Φr + δ

≤ − rTKpr − ‖r‖2Φ2
r

‖r‖Φr + δ
+ ‖r‖Φr

≤ − rTKpr + δ

≤ − λmin(Kp)‖r‖2 + δ.

Since δ is a time-varying function converging to zero as t→ ∞,
and δ is bounded, there exists t > t1 and δ ≤ ρ1, when ‖r‖ ≥√
ρ1/λmin(Kp), V̇ ≤ 0. From above all, r converges to a small

set containing the origin as t→ ∞.
Integrating both sides of the above equation gives

V (t)− V (0) ≤ −
t∫

0

rTKprds+ ρ <∞. (36)

�
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Proof (ii): From (36), V is bounded, which implies
that r ∈ Ln−k−l

∞ . We have
∫ t

0 r
TKprds ≤ V (0)− V (t) +

ρ, which leads to r ∈ Ln−k−l
2 . From r = ėζ +Kζeζ , it

can be obtained that eζ , ėζ ∈ Ln−k−l
∞ . As we have estab-

lished eζ , ėζ ∈ L∞, from Assumption 3.1, we conclude that
ζ(t), ζ̇(t), ζ̇r(t), ζ̈r(t) ∈ Ln−k−l

∞ , and q̇ ∈ Ln
∞.

Therefore, all the signals on the right-hand side of (35)
are bounded, and we can conclude that ṙ and ζ̈ are bounded.
Thus, r → 0 as t→ ∞ can be obtained. Consequently, we have
eζ → 0 and ėζ → 0 as t→ ∞. It follows that eq and ėq → 0
as t→ ∞. �

Proof (iii): Substituting the control (33) and (34) into the
reduced order dynamics (23) yields

(I +Kf )eλ =Z
(
C1ζ̇ +G1 + d1(t)− ua

)
+ ub

= − ZL+T

MLζ̈ +
χ2

χ+ δ
ζ̈d. (37)

Since ζ̈ and Z are bounded, ζ → ζd, −ZL+T
MLζ̈ + (χ2/(χ+

δ))ζ̈d is also bounded; the size of eλ can be adjusted by
choosing the proper gain matrixKf .

Since r, ζ, ζ̇, ζ1r , ζ̇r, ζ̈r, and eλ are all bounded, it is easy to
conclude that τ is bounded from (33) and (34). �

C. Adaptive Robust Control

In developing robust-control law (33) and (34), the vector
Cr is assumed to be known. However, in practice, it cannot
be obtained easily. We can develop adaptive updating law to
estimate the Cr [13].

Consider the adaptive robust-control law as

LTua = −Kpr −Ki

t∫
0

rdt−
5∑

i=1

rĉriΨ2
ri

‖r‖Ψri + δi
(38)

ub =
χ̂2

r

χ̂r + δ1
ζ̈d + λhd −Kfeλ (39)

where

˙̂cri = − ωiĉri +
5∑

i=1

γiΨ2
ri‖r‖2

‖r‖Ψri + δi
, i = 1, . . . , 5 (40)

χ̂r = ĉ1
∥∥∥ẐL+T

∥∥∥ . (41)

Ẑ = (J1(M̂ ∗)−1J1T)−1J1(M̂ ∗)−1 with ‖LTM̂ ∗L‖ = ĉ1,Kp,
Ki,Kf are positive definite; γi > 0, δi > 0, and ωi > 0 satis-
fying Assumption 3.3

∞∫
0

δi(s)ds = ρiδ <∞

∞∫
0

ωi(s)ds = ρiω <∞

with the constants ρiδ and ρiω .

Theorem 3.3: Consider the mechanical system described by
(1), (2), and (8). Using the control law (38) and (39), the
following hold for any (q(0), q̇(0)) ∈ Ωn ∩ Ωh.

1) r converges to a set containing the origin as t→ ∞.
2) eq and ėq converge to zero as t→ ∞.
3) eλ and τ are bounded for all t ≥ 0.

Proof (i): Substituting (38) into (27), the closed-loop dy-
namic equation is obtained

MLṙ = −Kpr −Ki

t∫
0

rds−
5∑

i=1

rĉriΨ2
ri

‖r‖Ψri + δi
− µ− CLr.

(42)

Consider the Lyapunov function candidate

V =
1
2
rTMLr +

1
2




t∫
0

rds




T

Ki

t∫
0

rds+
1
2
C̃rΓ−1C̃T

r

(43)

with C̃r = Cr − Ĉr.
Its derivative is

V̇ = rT


MLṙ +

1
2
ṀLr +Ki

t∫
0

rdt


 + C̃rΓ−1 ˙̃C

T

r (44)

where Γ = diag[γi] > 0, i = 1, . . . , 5.
From Property 2.2, we have (1/2)λmin(ML)rTr ≤

1/2rTMLr ≤ (1/2)λmax(ML)rTr. By using Property 2.3, the
time derivative of V along the trajectory of (42) is

V̇ = − rTKpr − rTµ− rT
5∑

i=1

rĉriΨ2
ri

‖r‖Ψri + δi

+ ĈT
r ΩΓ−1C̃r −

5∑
i=1

‖r‖2c̃riΨ2
ri

‖r‖Ψri + δi

≤ − rTKpr + ‖r‖Φri −
5∑

i=1

‖r‖2criΨ2
ri

‖r‖Ψri + δi
+ ĈT

r ΩΓ−1C̃r

≤ − rTKpr + CT
r ∆ + ĈT

r ΩΓ−1C̃r

= − rTKpr + CT
r ∆ + ĈT

r ΩΓ−1(Cr − Ĉr)

= − rTKpr + CT
r ∆− 1

4
CT

r ΩΓ−1Cr +
1
4
CT

r ΩΓ−1Cr

+ ĈT
r ΩΓ−1Cr − ĈT

r ΩΓ−1Ĉr

= − rTKpr + CT
r ∆−

(
1
2
CT

r − ĈT
r

)
ΩΓ−1

(
1
2
Cr − Ĉr

)

+
1
4
CT

r ΩΓ−1Cr

≤− rTKpr + CT
r ∆+

1
4
CT

r ΩΓ−1Cr

with Ω = diag[ωi], ∆ = [δ1, δ2, . . . , δ5]T, i = 1, . . . , 5.
Therefore, V̇≤−λmin(Kp)‖r‖2+CT

r ∆+(1/4)CT
r ΩΓ−1Cr.

Since CT
r ∆ + (1/4)CT

r ΩΓ−1Cr is bounded, there exists
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t > t2, CT
r ∆ + (1/4)CT

r ΩΓ−1Cr ≤ ρ2, when ‖r‖ ≥√
ρ2/λmin(Kp), V̇ ≤ 0, from above all, r converges to a

small set containing the origin as t→ ∞. �
Proof (ii): Integrating both sides of the above equation

gives

V (t)−V (0) ≤−
t∫

0

rTKprds+

t∫
0

(
CT

r ∆+
1
4
CT

r ΩΓ−1Cr

)
ds.

(45)

Since Cr and Γ are constant,
∫ ∞
0 ∆ds = ρδ = [ρ1δ, . . . , ρ5δ]T,∫ ∞

0 Ωds = ρω = [ρ1ω, . . . , ρ5ω]T, we can rewrite (45) as

V (t)− V (0) ≤ −
t∫

0

rTKprds+ CT
r




t∫
0

∆ds




+
1
4
CT

r




t∫
0

Ωds


Γ−1Crds

≤ −
t∫

0

rTKprds+ CT
r ρδ + CT

r ρωΓ−1Cr

< − λmin(Kp)‖r‖2 + CT
r ρδ + CT

r ρωΓ−1Cr

<∞. (46)

Thus, V is bounded, which implies that r ∈ Ln−k−l
∞ . From (46),

we have

t∫
0

rTKprds ≤ V (0)− V (t) + CT
r ρδ + CT

r ρωΓ−1Cr (47)

which leads to r ∈ Ln−k−l
2 . From r = ėζ +Kζeζ , it can

be obtained that eζ , ėζ ∈ Ln−k−l
∞ . As we have estab-

lished eζ , ėζ ∈ L∞, from Assumption 3.1, we conclude that
ζ(t), ζ̇(t), ζ̇r(t), ζ̈r(t) ∈ Ln−k−l

∞ , and q̇ ∈ Ln
∞.

Therefore, all the signals on the right-hand side of (42)
are bounded, and we can conclude that ṙ and ζ̈ are bounded.
Thus, r → 0 as t→ ∞ can be obtained. Consequently, we have
eζ → 0 and ėζ → 0 as t→ ∞. It follows that eq and ėq → 0
as t→ ∞. �

Proof (iii): Substituting the control (38) and (39) into the
reduced order dynamics (23) yields

(I +Kf )eλ =Z
(
C1ζ̇ +G1 + d1(t)− ua

)
+ ub

= − ZL+T
MLζ̈ +

χ̂2
r

χ̂r + δ1
ζ̈d. (48)

Since ζ̈ and Z are bounded, ζ → ζd, −ZL+T
MLζ̈ +

(χ̂2
r/(χ̂r + δ1))ζ̈d is also bounded, the size of eλ can be ad-

justed by choosing the proper gain matrixKf .
Since r, ζ, ζ̇, ζ1r , ζ̇r, ζ̈r, and eλ are all bounded, it is easy to

conclude that τ is bounded from (38) and (39). �

IV. SIMULATIONS

To verify the effectiveness of the proposed adaptive robust
control, let us consider the mobile-manipulator system shown in

Fig. 2. Two-DOF manipulator mounted on a mobile platform.

Fig. 2 [9]. The mobile manipulator is subjected to the following
constraints:

−ẋ sin θ + ẏ cos θ + lθ̇ + rθL =0
ẋ sin θ − ẏ cos θ + lθ̇ + rθR =0

ẋ cos θ + ẏ sin θ =0.

Using the Lagrangian approach, we can obtain the standard
form (1) with

qv = [x, y, θ]T qa = [θ1, θ2]T q = [qv, qa]T

A = [cos θ, sin θ, 0]T

Mv11 =
[
mp12 + 2Iw sin2 θ

r2 − 2Iw

r2 sin θ cos θ
− 2Iw

r2 sin θ cos θ mp12 + 2Iw cos2 θ
r2

]

Mv12 =
[−m12d sin θ
m12d cos θ

]

Mv21 =MT
v12 Mv22 =M1

11

Cv =




2Iw

r2 θ̇ sin θ cos θ − 2Iw

r2 θ̇ cos2 θ 0
2Iw

r2 θ̇ sin2 θ − 2Iw

r2 θ̇ sin θ cos θ 0
−m12dθ̇ cos θ −m12dθ̇ cos θ 0




M1
11 = Ip + I12 +m12d

2 + 2Iwl2/r2

Ma =diag[I12, I2]

mp12 =mp +m12 m12 = m1 +m2

I12 = I1 + I2

Mva =


 0.0 0.0
0.0 0.0
I12 0.0




B =




sin θ/r − sin θ/r 0.0 0.0
− cos θ/r cos θ/r 0.0 0.0
−l/r l/r 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0




Cva =0.0, Cav = CT
va, Ca = 0.0

Gv = [0.0, 0.0, 0.0]T Ga = [0.0,m2gl2 sin θ2]T

H =


− tan θ 0.0

1.0 0.0
0.0 1.0




τv = [τL, τr]T τa = [τ1, τ2]T.
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Given the desired trajectories

yd =1.5 sin(t)

θd =1.0 sin(t)

θ1d =π/4 (1− cos(t))

and the geometric constraints that the end-effector is sub-
jected to as

Φ = l1 + l2 sin(θ2) = 0

λhd =10.0N

it is easy to have

J =
[
cos θ sin θ 0 0 0
0 0 0 0 l2 cos θ2

]

L =



1 0 0
0 1 0
0 0 1
0 0 0




J1 =
[
0 0 0 0
0 0 0 l2 cos θ

]
.

In the simulation, we assume that the parameters
mp = m1 = m2 = 1.0 kg, Iw = Ip = 1.0 kgm2, I1 =
I2 = 1.0 kgm2, I = 0.5 kgm2, d = l = r = 1.0 m,
2l1 = 1.0 m, 2l2 = 0.6 m, q(0) = [0, 4, 0.785, 0.1]T,
q̇(0) = [0.0, 0.0, 0.0, 0.0]T, and λh(0) = 0. According to
Theorem 3.3, the control gains are selected as Kp = diag[1.0],
Kζ = diag[1.0], Ki = 0.0, and Kf = 0.5. The adaptation
gains in control law (33) are chosen as δi = ωi = 1/(1 + t)2,
i = 1, . . . , 5,Cr = [1.0, 1.0, 1.0, 1.0, 1.0]T , and Γ = diag[2.5].
The disturbances on the mobile base are set as 0.1 sin(t) and
0.1 cos(t). Under the same initial conditions, control gains,
and environment, we conduct the simulations by the adaptive
robust control using (38) and (39) in Theorem 3.3 and the
model-based control using (24) and (25) in Theorem 3.1,
respectively. For the model-based control, we assume that the
system model has 30% uncertainty. The trajectory-tracking
performances of the adaptive robust control and the model-
based control are illustrated in Figs. 3–5 and the velocities
tracking and the input torques by the adaptive robust control
are shown in Figs. 6 and 7, and Figs. 8 and 9 are the velocities
tracking and the input torques by the model-based control,
respectively. The force tracking of the adaptive robust control
is shown in Fig. 10 and that of the model-based control is
shown in Fig. 11. From the comparison of both controls, we
can see the proposed adaptive robust control is more stable,
smooth, and quickly converged. But, the tracking results of
the model-based control are not satisfactory and the evolutions
of velocities and torques fluctuate greatly in comparison with
the adaptive robust control. Moreover, the constraint force
using the model-based control changes more greatly, but this
force using the adaptive robust control converges quickly to the
desired force.

Fig. 3. Position of the joint.

Fig. 4. Position of the joint.

Fig. 5. Position of the joint.

Fig. 6. Velocities of the joints by adaptive robust control.
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Fig. 7. Torques of the joints by adaptive robust control.

Fig. 8. Velocities of the joints by model-based control.

Fig. 9. Torques of the joints by model-based control.

Fig. 10. Constraint force tracking of adaptive robust control.

Fig. 11. Constraint force tracking of model-based control.

The simulation results show that the trajectory and force-
tracking errors converge to zero, which validates the results of
the controls (38) and (39) in Theorem 3.3.

V. CONCLUSION

In this paper, effective adaptive robust-control strategies have
been presented systematically to control a class of holonomic-
constrained noholonomic mobile manipulators in the presence
of uncertainties and disturbances. The system stability and the
boundedness of tracking errors are proved using Lyapunov
synthesis. All control strategies have been designed to drive
the system motion converge to the desired manifold and, at the
same time, guarantee the boundedness of the constrained force.
Simulation studies have verified that not only the states of the
system converge to the desired trajectory but also the constraint
force converges to the desired force.
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