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This paper investigates iterative learning control of nonlinear discrete time non-minimum
phase systems in tracking problems. The main objective of this paper is to find an input-
to-output mapping in order to stabilize the non-minimum phase systems and to obtain an

input update law for handling uncertain systems. In conventional approaches on the tracking
of non-minimum phase systems, zero dynamics is stabilized from the system equations and
the input is calculated from the state information. For the learning of uncertain systems,
conventional approaches depend on the output-to-state and state-to-input mappings. In the

proposed method, the inverse system is stabilized using the input-to-output mapping for
nonlinear non-minimum phase systems. A new input update law is proposed based on the
relative degree and the number of non-minimum phase zeros. This makes the overall proposed

learning system have a simple structure as in the classical ILC.
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1. Introduction

Iterative learning control (ILC) has been studied to

improve tracking performance of the control system by

performing the same task iteratively over a finite control

horizon (Uchiyama 1978, Arimoto et al. 1984, Moore

1993). These conventional ILC schemes which are

based on the relative degree correspond to the inverse

mapping from desired output to input. However, for

non-minimum phase systems, this inversion brings

about instability. The input obtained by ILC may be

bounded due to the finite control horizon, but may

be too large for non-minimum phase systems to use in

practice.
In recent years, tracking a desired trajectory for

non-minimum phase systems has been widely studied.

For continuous time systems, many control

designs have been proposed using stable inversion

(Devasia et al. 1996, Taylor and Li 2002). Several digital

controllers have also been studied for tracking problems

of discrete time non-minimum phase linear systems

(Tomizuka 1987, Choi and Choi 1998). Also a discrete

time version of stable inversion method has been pro-

posed in Zeng and Hunt (2000). All these methods

show reasonably good performance on tracking desired

trajectories if the relevant characteristics of the given

models are known.
Conventional learning approaches for non-minimum

phase systems in Roh et al. (1996), Ghosh and Paden

(2002) and Kinosita et al. (2000) are based on the

system model and can obtain only approximate

solutions. Also, the overall learning structures are

more complex than the conventional ILC methods for

minimum phase systems.
Classical ILC schemes have simple learning structures

using input update laws. Preserving the simple structure

of ILC, ILC with advanced output data was proposed

for linear discrete time non-minimum phase systems in

tracking a desired trajectory (Jeong and Choi 2002 a, b).*Corresponding author. Email: gm1004@kookmin.ac.kr
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Its results provided the condition for the
stability of inverse mapping of non-minimum phase
systems and an input update law which utilizes
the information on the the sum of the relative degree of
the system and the number of non-minimum
phase zeros. This learning law can be applied to
both minimum phase systems and non-minimum phase
systems.
In this paper, the results in Jeong and Choi (2002b)

are extended to nonlinear non-minimum phase systems.
In the proposed method, the inverse system is stabilized
based on the input-to-output mapping using the relative
degree and the number of non-minimum phase zeros.
Also, a learning scheme for a non-linear discrete time
system is proposed based on the mapping. The learning
structure and input update law are simple as in the
classical ILC schemes. The remainder of this
paper is organized as follows. In section 2, some of
our preliminary results on iterative learning control
with advanced output data (ADILC) for non-minimum
phase systems are described briefly. In section 3, the
results from section 2 are extended to nonlinear systems.
The boundedness of the input obtained by the
proposed method is proven. In addition, an example is
presented to illustrate the need to advance the
output in the input update law. The conclusion follows
in section 4.

2. ILC with advanced output data for linear

non-minimum phase systems

Some preliminaries and the results from Jeong and Choi
(2002b) will be briefly summarized here for proving
the results in section 3. An input update law which
depends on the relative degree and the number of non-
minimum phase zeros is considered. It can be used
for non-minimum phase systems as well as for minimum
phase systems. We assume that the number of non-
minimum phase zeros and the relative degree are
known a priori.
Let us consider the LTI systems described by

xðiþ 1Þ ¼ AxðiÞ þ BuðiÞ;

yðiÞ ¼ CxðiÞ:

)
ð1Þ

where, u 2 <1, x ¼ ½x1, . . . , xn�
T
2 <n, and y 2 <1 are

the input, the state, and the output of the system,
respectively. A, B and C are matrices of appropriate
dimensions. Let xd(i), yd(i) and ud(i) represent the
state, the output and the input corresponding to the
desired trajectory. Also let the desired output
ydðiÞ, i 2 ½�,Nþ � � 1� be given and u½i, j� :¼
½uðiÞ, . . . , uðjÞ�T, y½i, j� :¼ ½yðiÞ, . . . , yðjÞ�T. Here, � denotes

the relative degree of the system. The transfer function
of the system is represented as

GðzÞ ¼
�1z

n�1 þ � � � þ �n

zn þ �1zn�1 þ � � � þ �n
: ð2Þ

Basically, the ILC based on the relative degree utilizes
the following mapping:

y½�,Nþ��1� ¼ Haxð0Þ þ Jau½0,N�1�, ð3Þ

where

Ha ¼

H1

H2

� � �

HN

0
BB@

1
CCA, Ja ¼

J1 0 � � � 0
J2 J1 � � � 0

..

. ..
. . .

. ..
.

JN JN�1 � � � J1

0
BB@

1
CCA,

and Hl ¼ CA�þl�1, Jl ¼ CA�þl�2B. Since the system (1)
has a relative degree �, J� is non-zero and Ja is non-
singular.

For minimum phase systems, ud(i) can be uniquely
determined from y½�,Nþ��1� and xd(0). The inverse
mapping from y½�,Nþ��1� to u½0,N�1� is stable. However,
for non-minimum phase systems, the inverse mapping
from y½�,Nþ��1� to u½0,N�1� is unstable.

To consider the ILC with advanced output data, we
set the input horizon to ½0,Nþ d� 1� with
uðNÞ ¼ � � � ¼ uðNþ d� 1Þ ¼ 0 and the output horizon
to ½0,Nþ � þ d� 1�, 0 � d � n� �. The desired trajec-
tory yd is given in ½�,Nþ � � 1�. To compare the
result with that of the conventional ILC later, we set
ydðNþ �Þ, . . . , ydðNþ � þ d� 1Þ to some appropriate
constants.

In this case, the following equation can be obtained in
a manner similar to (3),

y½�þd,Nþ�þd�1� ¼ Hcxð0Þ þ Jcu½0,N�1�, ð4Þ

where

Hc ¼ ½ðHdþ1Þ
T, . . . , ðHNþdÞ

T
�T
,

Jc ¼

Jdþ1 Jd � � � 0

Jdþ2 Jdþ1 � � � 0

..

. ..
. . .

. ..
.

JNþd JNþd�1 � � � Jdþ1

2
66664

3
77775:

The time interval for the output of interest is
½� þ d,Nþ � þ d� 1� for some integer 0 � d � n� �
in (4) whereas it is ½�,Nþ � � 1� in (3), but the
time interval for the input of interest is ½0,N� 1� in
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both (3) and (4). Let d0 be the number of non-minimum
phase zeros of G(z). If we set d ¼ d0, the inverse
mapping is stable for non-minimum phase systems as
well as for minimum phase systems. For minimum
phase systems, we can set d¼ 0, which is equivalent
to the conventional ILC based on the relative degree.
At every iteration, we set xkð0Þ ¼ xdð0Þ and
ukðiÞ ¼ udðiÞ ¼ 0,N � i � N� 1þ d.
To analyse the stability of the inverse mapping, some

assumptions are needed.

(A1) The system is stable, controllable and observable.
(A2) The matrix A is invertible.
(A3) �n 6¼ 0 in (2).
(A4) The matrix Jc is non-singular.

An input update law which updates the input with
advanced output data is

ukþ1
½0,N�1� ¼ uk½0,N�1� þSek½�þd,Nþ�þd�1�, 0� d� n��, ð5Þ

where ek½�þd,Nþ�þd�1� ¼ yd
½�þd,Nþ�þd�1� � yk½�þd,Nþ�þd�1�.

From the above, the results on the stability of the
inverse mapping and its convergence analysis can be
derived.

Lemma 1 (Jeong and Choi 2002b): The inverse
mapping from yd

½�þd,Nþ�þd�1� to ud½0,N�1� is stable for
d ¼ d0 in (4).

Lemma 1 shows that the inverse mapping from
yd
½�þd,Nþ�þd�1� to ud½0,N�1� is stable for non-minimum
phase systems if d ¼ d0. In the next lemma, it will be
shown that the input uk½0,N�1� converges to ud½0,N�1� as
k!1 using the input update law (5). It is noted that
this inverse mapping is stable.

Lemma 2 (Jeong and Choi 2002b): The uncertain
system (1) satisfies (A1)–(A4). If the condition

kI� SJck � � < 1 ð6Þ

holds, the input uk½0,N�1� converge to ud½0,N�1� as k!1.

Note that the input update law (5) is a generalization of
iterative learning control from the minimum phase
systems to the non-minimum phase systems by setting
d ¼ d0.

3. ILC with advanced output data for nonlinear

non-minimum phase systems

In this section, the results presented in section 2 are
extended to nonlinear systems. The basic idea is the
same as in the linear systems.

Consider a class of discrete time SISO nonlinear non-
minimum phase systems

xðiþ 1Þ ¼ fðxðiÞÞ þ gðxðiÞÞuðiÞ

yðiÞ ¼ hðxðiÞÞ:

)
ð7Þ

The functions f, g and h are f : <n ! <n, g: <n ! <n

and h : <n ! <1, analytic and fð0Þ ¼ hð0Þ ¼ 0. The rela-
tive degree r is defined for continuous time systems
(Isidori 2002) and the similar notion in discrete-time
systems is the characteristic number � (Nijmeijer and
Schaft 1990). We will define the relative degree � for
discrete time systems as � ¼ �þ 1. If ð@=@uÞh�
ð f jð fþ guÞÞ ¼ 0, j < � � 1 and ð@=@uÞhð f ��1ð fþ guÞÞ is
non-singular, the relative degree of the system is �.
This is consistent with the relative degree in linear
systems which is defined as the difference between the
orders of the numerator and denominator polynomials
of the transfer function. It is assumed that the
relative degree of the system and the number of the
non-minimum phase zeros, d0 are known a priori.
As in the linear case, we set the input horizon to
½0,Nþ d� 1� with uðNÞ ¼ � � � ¼ uðNþ d� 1Þ ¼ 0 and
set the output horizon to ½0,Nþ � þ d� 1�,
0 � d � n� �. The desired trajectory yd is given in
½�,Nþ � � 1� and we set ydðNþ �Þ, . . . , yd �
ðNþ � þ d� 1Þ to some appropriate constants.

As in the linear case, the following mapping is
considered.

y d
½�þd,Nþ�þd�1� ¼ Fðxð0Þ, ud½0,N�1�Þ: ð8Þ

Here F is a nonlinear mapping obtained from the system
equation (7).

Linearization of (7) around ðxðiÞ, uðiÞÞ ¼ ð0, 0Þ results
in the linear system

xðiþ 1Þ ¼ AxðiÞ þ BuðiÞ

yðiÞ ¼ CxðiÞ,

)
ð9Þ

where

A ¼
@ð fðxðiÞÞ þ gðxðiÞÞuðiÞÞ

@xðiÞ

�����
xðiÞ¼0, uðiÞ¼0

,

B ¼
@ð fðxðiÞÞ þ gðxðiÞÞuðiÞÞ

@uðiÞ

�����
xðiÞ¼0, uðiÞ¼0

,

C ¼
@hðxðiÞÞ

@xðiÞ

�����
xðiÞ¼0

:

Then (7) becomes

xðiþ 1Þ ¼ AxðiÞ þ BuðiÞ

þ ½ fðxðiÞÞ � AxðiÞ þ ðgðxðiÞÞ � BÞuðiÞ�

yðiÞ ¼ CxðiÞ þ ½hðxðiÞÞ � CxðiÞ�:
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Note that for the system (9), the mapping (8) can be
represented as (4).

The following assumptions are needed for further
development:

(A10) The system (7) is stable. Also, the relative degree
of the system (17) is � and is well defined
8ðx, uÞ 2 Rnþ1 with respect to u(i).

(A20) For the system (7), kyd½�þd,Nþ�þd�1�k � c1, 8N and
kxð0Þk � c2 for some constants c1 and c2.

(A30) The linearized system (9) is stable and satisfies the
assumptions (A1)–(A4).

(A40) For any realizable output trajectory yd
½�þd,Nþ�þd�1�

that corresponds to a given initial condition xdð0Þ,
F is a one-to-one and continuous mapping.

It is noted that yd
½0, �þd�1� is not taken into consideration

since we consider the mapping (8). In the following
lemma, the boundedness of ud½0,N�1� is shown.

Lemma 3: Let us assume that the system (7), the desired
trajectory and the initial condition satisfy (A10)–(A40). Let
us set d ¼ d0, where d0 is the number of non-minimum
phase zeros. Then the desired trajectory ud½0,N�1� is
bounded.

Proof: From the mapping (4) and the desired trajec-
tory yd½�þd,Nþ�þd�1�, the desired input �u½0,N�1� for the
linearized system (9) can be obtained as

�u½0,N�1� ¼ J�1
c ½yd½�þd,Nþ�þd�1� �Hcxð0Þ�:

If the inverse mapping (4) is unstable, the magnitude of
�u½0,N�1� can be very large even though yd

½�þd,Nþ�þd�1� is
very small. From (A30) and Lemma 1, the inversion of
(4) is stable and �u½0,N�1� is bounded from above, i.e.,
there exists a constant c3 such that k�u½0,N�1�k � c3, 8N.
Substituting �u½0,N�1� into (8), the following mapping is

obtained:

�y½�þd,Nþ�þd�1� ¼ Fðxð0Þ, �u½0,N�1�Þ:

Since the system is stable from (A10) and x(0) and
�u½0,N�1� are bounded, �y½�þd,Nþ�þd�1� is also bounded,
i.e., k�y½�þd,Nþ�þd�1�k � c4 for some constant c4. It
should be noted that if d 6¼ d0, the boundedness of
�u½0,N�1� and �y½�þd,Nþ�þd�1� cannot be guaranteed as
N!1.
With the help of (A20), the following inequality holds.

k�y½�þd,Nþ�þd�1� � yd½�þd,Nþ�þd�1�k

� k�y½�þd,Nþ�þd�1�k þ kyd½�þd,Nþ�þd�1�k

� c4 þ c1:

Since F�1 is continuous from (A40), k�u½0,N�1��

ud½0,N�1�k � c5 for some constant c5 and ud½0,N�1� is
bounded as kud½0,N�1�k � c5 þ c3.

Lemma 3 shows that if d ¼ d0, the boundedness of
ud½0,N�1� is guaranteed under (A10)–(A40) even though
N!1. It should be noted that if d 6¼ d0, the bounded-
ness of ud½0,N�1� cannot be guaranteed. For later use, it is
necessary to derive a lemma that can relate the output
error with the initial state and the input.

Lemma 4 (Jeong and Choi 2002a): For the system (7),

yd½�þd,Nþ�þd�1� � yk½�þd,Nþ�þd�1�

¼ Hk
d�x

kð0Þ þ Jkd�u
k
½0,N�1�:

ð10Þ

Hk
d ¼ ½ðHk

dþ1Þ
T, . . . , ðHk

dþNÞ
T
�
T,

Jkd ¼

Jkdþ1,1 Jkdþ1,2 � � � 0

Jkdþ2,1 Jkdþ2,2 � � � 0

..

. ..
. . .

. ..
.

JkNþd,1 JkNþd,dþ2 � � � JkNþd,N

0
BBBBB@

1
CCCCCA,

�xkð0Þ ¼ xkð0Þ � xdð0Þ,

�uk½0,N�1� ¼ uk½0,N�1� � ud½0,N�1�:

Here Hk
i and Jkij, dþ 1 � i � Nþ d, j � i, are

Hk
i ¼ h0ðxði, �kðiÞÞÞ

�
Yi�1

l¼0

f f 0ðxdðlÞ, xkðl ÞÞ þ g 0ðxdðl Þ,xkðl ÞÞudðl Þg,

Jkij ¼ h0ðxði, �kðiÞÞÞ

�
Yi�1

l¼j

f f 0ðxdðl Þ, xkðl ÞÞ þ g0ðxdðl Þ, xkðl ÞÞudðl Þg

" #

� gðxkð j� 1ÞÞ,

where

f 0ðxdðiÞ, xkðiÞÞ �

f 01ðxði,�
k
1ðiÞÞÞ

..

.

f 0nðxði,�
k
nðiÞÞÞ

2
664

3
775,

g0ðxdðiÞ, xkðiÞÞ �

g01ðxði,�
k
1ðiÞÞÞ

..

.

g0nðxði,�
k
nðiÞÞÞ

2
664

3
775:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð11Þ
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Here

f 0
mðxði,�

k
mðiÞÞÞ ¼ f 0

mð�
k
mðiÞx

dðiÞ þ ð1� �k
mðiÞÞx

kðiÞÞ,

g 0
mðxði,�

k
mðiÞÞÞ ¼ g 0

mð�
k
mðiÞx

dðiÞ þ ð1� �k
mðiÞÞx

kðiÞÞ,

h0ðxði, �kðiÞÞÞ ¼ h0ð�kðiÞxdðiÞ þ ð1� �kðiÞÞxkðiÞÞ,

0 � �k
mðiÞ,�

k
mðiÞ, �

kðiÞ � 1,8i, k,m:

The following input update law with advanced output
data is proposed:

ukþ1
½0,N�1� ¼ uk½0,N�1� þ Sked½�þd0,Nþ�þd0�1�, ð12Þ

where
ek½�þd0,Nþ�þd0�1� ¼ yd½�þd0,Nþ�þd0�1� � yk½�þd0,Nþ�þd0�1� , Sk

is a learning gain matrix of dimension N�N.

Theorem 1: The system (7) satisfies (A10)–(A40) and the
system dynamics may not be known completely. If the
condition

kI� SkJkdk � � < 1, for all k ð13Þ

is satisfied, the input uk½0,N�1� which can be computed
by (12), converges to bounded ud½0,N�1� as k!1.

Proof: From xdð0Þ � xkð0Þ ¼ 0 and Lemma 4,

ud½0,N�1� � ukþ1
½0,N�1�

¼ ud½0,N�1� � uk½0,N�1� � Skek½�þd,Nþ�þd�1�

¼ ud½0,N�1� � uk½0,N�1� � Sk½Hk
d�x

kð0Þ þ Jkd�u
k
½0,N�1��

¼ ½I� SkJkd�½u
d
½0,N�1� � uk½0,N�1��: ð14Þ

Taking norms of both sides of (14) and using (13),

kud½0,N�1� � ukþ1
½0,N�1�k � �kud½0,N�1� � uk½0,N�1�k:

Hence, limk!1 kud½0,N�1� � uk½0,N�1�k ¼ 0:

The boundedness of ud½0,N�1� comes from Lemma 3.

Using (12), the stabilized input to track the desired
trajectory can be obtained using Lemma 3 and
Theorem 1. As in the linear case the input update law
(12) is a generalization from the minimum phase systems
to the non-minimum phase systems if d ¼ d0.
In the well-known stable inversion approach, the

input is calculated in the horizon (�1,þ1) and is
truncated to make it causal. Also, it uses the input-
to-state mapping and the state-to-output mapping.
On the other hand, the proposed method utilizes the
input-to-output mapping and it is possible to obtain
an input that provides perfect tracking of the desired
output on the output horizon except ½0, � þ d� 1�.

In practice, we need to have a good model of the
system in order to find the learning gain matrix Sk

which satisfies the condition (13). œ

Example: Let us consider the following nonlinear
discrete time non-minimum phase system:

x1ðiþ 1Þ ¼ x2ðiÞ

x2ðiþ 1Þ ¼ x3ðiÞ � sin2ðx2ðiÞÞ

x3ðiþ 1Þ ¼ 0:1x3ðiÞ þ 2:5 sin2ðx2ðiÞÞ þ uðiÞ

yðiÞ ¼ x1ðiÞ þ 2:5x2ðiÞ þ x3ðiÞ:

9>>>>=
>>>>;

ð15Þ

Since � ¼ 1, let us set z1 ¼ y, z2 ¼ x1, z3 ¼ x2, then
zðiÞ ¼ ðyðiÞ, x1ðiÞ, x2ðiÞÞ ¼ �ðxðiÞÞ. Using this relation,
the system is transformed into

z1ðiþ 1Þ

z2ðiþ 1Þ

z3ðiþ 1Þ

2
64

3
75 ¼

2:6 �2:6 �5:5

0 0 1

1 �1 �2:5

2
64

3
75

z1ðiÞ

z2ðiÞ

z3ðiÞ

2
64

3
75

þ

0

0

� sin2ðz3ðiÞÞ

2
64

3
75þ

1

0

0

2
64

3
75uðiÞ:

yðiÞ ¼ z1ðiÞ:

ð16Þ

The zero dynamics of the system is governed by

z2
z3

� �
¼

0 1
�1 �2:5

� �
z2
z3

� �
þ

0
� sin2ðz3ðiÞÞ

� �
ð17Þ

and it has one non-minimum phase zero and one
minimum phase zero around the origin.

The desired trajectory is given as follows:

ydðiÞ ¼
0, i ¼ 0, 1
0:2 sinð0:05�ði� 2ÞÞ, 2 � i � 22:

�
ð18Þ

Let us find the inputs that can track yd(i) by the stable
inversion method and the proposed method.

Stable inversion method (Zeng and Hunt 2000): Let us
assume that the system is completely known. From (16),
the following equation can be obtained:

z2ðiþ 1Þ
z3ðiþ 1Þ

� �
¼

0 1
�1 �2:5

� �
z2ðiÞ
z3ðiÞ

� �
þ

0
ydðiÞ

� �
: ð19Þ

By transforming

Q ¼
0 1
�1 �2:5

� �
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into the Jordan canonical form, i.e., D ¼ T�1QT, (19)
becomes

~�ðiþ 1Þ ¼ T�1zðiþ 1Þ ¼ D ~�ðiÞ þ T�1 0

ydðiÞ � sin2ðz3ðiÞÞ

� �

where

T ¼
0:8944 �0:4472
�0:4472 0:8944

� �
, D ¼

�0:5 0
0 �2:0

� �
:

Based on the following Picard iteration, the ~� can be
obtained

~�0ðiÞ ¼ 0

..

.

~�mþ1ðiÞ ¼
X1

k¼�1

	ði� kÞ

T�1 0

ydðk� 1Þ � sin2ð�0:4472 ~�1 þ 0:8944 ~�2Þ

� �
:

The input is calculated using ~�. Figures 1 and 2 show the
output and input using the stable inversion method.
In figure 3, the output error is shown. Since the input
is truncated to be causal, the truncated error exists on
the whole output interval.
Let us consider the learning of the non-minimum

phase systems by the proposed method.

Proposed method: The exact linearized model of (15)
around (0, 0) is as follows:

x1ðiþ 1Þ ¼ x2ðiÞ

x2ðiþ 1Þ ¼ x3ðiÞ

x3ðiþ 1Þ ¼ 0:1x3ðiÞ þ uðiÞ

yðiÞ ¼ x1ðiÞ þ 2:5x2ðiÞ þ x3ðiÞ:

9>>>=
>>>;

ð20Þ

It is difficult to have the linearized model when the
system equation is unknown. It is assumed that we

only have the following linear model with modelling

error terms compared to (20).

x1ðiþ 1Þ ¼ 1:2x2ðiÞ þ 0:2x3ðiÞ

x2ðiþ 1Þ ¼ �0:1x1ðiÞ þ x3ðiÞ

x3ðiþ 1Þ ¼ 0:4x3ðiÞ þ uðiÞ

yðiÞ ¼ x1ðiÞ þ 2:5x2ðiÞ þ x3ðiÞ:

9>>>=
>>>;

ð21Þ

We want to show that the desired input can be obtained
despite the modeling errors as long as we can find Sk

which satisfies the convergence condition. We set
ydð23Þ ¼ 0, uð22Þ ¼ 0, u0ðiÞ ¼ 0, i ¼ 0, . . . , 21. To deter-

mine S, Jkd is estimated from the above model and

denote it as Ĵd. Since the model is linear, Ĵd can be
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obtained from Jc in (4) with d¼ 1. We set S ¼ 0:5� Ĵ
�1

d

and use the input update law (12).
Figures 4 and 5 show the outputs and inputs for

different values of k, respectively. The output error
kydð1Þ � ykð1Þk converges to 0.0035 and yk½2, 22� converges
to yd½2,22� almost perfectly for k¼ 10 with
kyd½2,22� � y10½2,22�k

2
2 � 2:6916� 10�5. As can be seen in

figure 3, the output error yd½2,22� � y10½2,22� can be made
arbitrarily small by the proposed method.
Let us consider convergence condition in this

example. If the system is unknown, it is impossible to
check the convergence condition. Generally, the conver-
gence condition is given by using system equation.
Likewise, we use the system equation only to

check the convergence condition. However, it is difficult
to calculate Jkd in (10). Instead, we define

�J
k

d ¼
@yk½�þd,Nþ�þd�1�

@uk
½0,N�1�

,

which can be computed by using (15), and approximate
Jkd as �J

k

d. When uk½0,N�1� approaches to ud½0,N�1�,
�J
k

d

approaches to Jkd. Therefore kI� S �J
k

dk can be a good
indicator of kI� SJkdk. We found that kI� SJ

k

dk � 0:7
for all k and the convergence condition is more likely
satisfied.

This example shows a way of obtaining the gain
matrix Sk from a linear model even if the model has
modeling error terms.

4. Conclusion

This paper investigated the iterative learning control for
discrete time nonlinear non-minimum phase systems.
A new tracking method based on the input to output
mapping was proposed extending the results of linear
discrete time non-minimum phase systems.

By properly advancing the output data, it was shown
that it is possible to perfectly track the desired output
except at the beginning and that the inverse mapping
from the output to the input is stable. Also, a learning
scheme for handling uncertain systems was proposed
based on the result. Similar to the conventional ILC
schemes using the relative degree, the proposed
method has a simple structure based on the information
of the relative degree and the number of non-minimum
phase zeros. This approach is the generalization of
iterative learning control from the minimum phase
systems to the non-minimum phase systems. The
simulation results show that the proposed method
tracks the desired output better than the well-known
stable inversion method.
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