
Automatic Natural Video Matting with Depth

Oliver Wang
Department of Computer Science

University of California Santa Cruz
owang@soe.ucsc.edu

Jonathan Finger
Department of Computer Science

University of California Santa Cruz
jfinger@cs.ucsc.edu

Qingxiong Yang
Department of Computer Science

University of Kentucky
qingziong.yang@uky.edu

James Davis
Department of Computer Science

University of California Santa Cruz
davis@cs.ucsc.edu

Ruigang Yang
Department of Computer Science

University of Kentucky
ryang@cs.uky.edu

Abstract

Video matting is the process of taking a sequence of
frames, isolating the foreground, and replacing the back-
ground with something different in each frame. This is
an under-constrained problem when the background is un-
known. Matting techniques exist to approximate these val-
ues using manual input cues. We look at existing single-
frame matting techniques and present a method that im-
proves upon them by adding depth information acquired by
a time-of-flight range scanner. We use the depth informa-
tion to automate the process so it can be practically used
for video sequences. In addition, we show that we can im-
prove the results from natural matting algorithms by adding
a depth channel. The additional depth information allows
us to reduce the artifacts that arise from ambiguities that
occur when an object is a similar color to its background.

1 Introduction

In video production, it is common to need to remove the
background from a sequence and put a new one in its place.
Our goal is to make it easy for a user to do this with an ar-
bitrary background. This process requires an alpha matte,
which is an image that defines the percent of each pixel that
is occupied by the foreground (this value is often called the
alpha (α) value). Typically the alpha matte is computed us-
ing a film studio and a blue (or green) screen for easier seg-
mentation. With a known background, the matting problem

becomes much easier. However, this method is not useful
in all situations, since it requires a calibrated studio setup
with special equipment. Not all videos that we would like
to remove the background from are taken in such isolated
environments. Natural matting methods are a class of al-
gorithms that attempt to solve the image matting problem
without prior knowledge of the background. They are ’nat-
ural’ in the sense that the image capture can take place out-
side of a studio with unrestricted visual components. The
problem is under-constrained, so some external information
is required. One of the goals of such algorithms is to pro-
duce a mask used to separate the foreground from the back-
ground with the least amount of additional information pos-
sible.

Natural matting algorithms often require a user gener-
ated segmentation to identify background, foreground, and
unknown regions. This segmentation is called a trimap. The
algorithms then use information given by the trimap to dis-
ambiguate the unknown regions. One problem with trimaps
is that they must generally be drawn by hand, either for each
frame or at keyframes. This makes the algorithm difficult to
extend to video because manually creating trimaps for many
frames is far too timely a task when dealing with long se-
quences. In addition, most natural matting algorithms work
only on the image domain and therefore are susceptible to
errors in locations where two sides of a depth discontinuity
have similar colors.

We present two contributions using the additional infor-
mation acquired by a depth camera. First, we remove the
frame-by-frame manual step from the process by automat-



Figure 1. An overview of our algorithm showing the input images, current existing solution, and
solution using our method.

ing the trimap generation. Secondly, we use the depth infor-
mation to disambiguate regions that are prone to error using
standard natural matting, such as areas with similar fore-
ground/background color. The user is required to set a few
parameters only once for a video sequence. These parame-
ters must be set by the user since they represent preferences
for the desired output.

Using a time-of-flight sensor that can capture full-frame
scene depth at video rate, we have extra information at
depth edges that can prevent bleed over artifacts visible in
existing matting techniques. We demonstrate our method
by augmenting two commonly used natural matting tech-
niques, Bayesian matting [5] and Poisson Matting [13], to
include the depth information. Figure 1 shows the effective-
ness of our approach. These improvements could be applied
to other natural matting algorithms as well.

2 Related Work

There has been extensive research done concerning
video and photo matting in general. The stage was set by
Smith and Blinn [12] when they analyzed a commonly used
technique, constant color matting, using a blue screen. This
method is still frequently used today as it is relatively simple
and effective. However, this technique requires that video
be filmed in front of a studio setup with a controlled back-
ground and lights.

Several single frame natural matting algo-
rithms [10] [11] [6] have been developed to reduce
the dependence on a known background. They use different
methods to estimate the background, foreground and alpha
values at each pixel. Chuang et al. [5] presented a Bayesian
method that has played an important role in this field. How-
ever, a problem with all of these natural matting techniques
is that they are not optimal when dealing with video since
creating trimaps for thousands of frames is too tedious to
do by hand. In addition, while these algorithms are capable
of producing high quality results, they operate on the

image intensity domain, so there is an inherent ambiguity
with regions across depth boundaries with similar colors.
Poisson matting [13] attempts to reduce these problems
by introducing a set of image based processing steps that
are manually adjusted to improve results, assuming a
smoothness constraint and analyzing the gradient domain
rather than the image domain. However, the inherent
intensity ambiguity still exists. Flash matting by Sun et
al. [14] expands upon Bayesian matting by collecting two
images, one with a flash on and one with a flash off. This
extra information helps improve the quality of the results,
and reduces the likelihood of same color ambiguities. Flash
matting is specific to single images, and would be hard to
extend to video since every frame must have symmetric
flash and non-flash images.

There have been several groups that have presented so-
lutions to video matting. Chuang et al. [4] added to their
previous work by showing that optical flow can be used to
interpolate hand drawn trimaps across time. This reduces
the amount of manual input, but does not get rid of it all to-
gether. McGuire et al. [9] bypasses the manual input trimap
problem by using aligned cameras, where each is at a dif-
ferent level of focus. The blurred background can be au-
tomatically converted into a good trimap from which alpha
matting can be applied. Because it is dependent on specific
apertures and blurring, it can get thrown off by scenes with
inadequate light or motion blur. In addition, depth from de-
focus requires objects to have high frequency texture infor-
mation, which is not always available. Apostoloff et al. [2]
presents a Bayesian matting modification with learned pri-
ors using spatiotemporal information and loose trimap gen-
eration to matte video. Their background estimation tech-
nique is based on the idea that movement between frames
gives a hint of which object is in the foreground. Since the
foreground object is not necessarily moving in all cases, we
prefer not to make that assumption. Joshi et al. [8] performs
video matting by using an array of cameras. They create a
synthetic aperture image and analyze image statistics to de-
termine what is in the foreground. This method generates



automatic trimaps for video, but requires a textured back-
ground.

There have been other hardware solutions that use depth
information for matting purposes. 3DV Systems [1] de-
veloped a depth and image camera combination called the
ZCam [7] which is able to perform foreground/background
segmentation. It uses depth information to split the scene
into distance regions based on dividing planes set by the
user. However, their method does not compute partial fore-
ground (α) values, and therefore has noticeable artifacts for
objects with fuzzy borders such as hair. Our work is similar
to the ZCam in that we both use time-of-flight sensors to
acquire depth data.

Our method incorporates automatic trimap generation
and is able to disambiguate regions where traditional nat-
ural matting fails. We use an active depth sensor in con-
junction with a camera to capture our data. The depth sen-
sor provides depth information by sending a pulse of light
and counting the time that it takes for the reflection to come
back and therefore works independently of object, color or
texture.

3 Method

In order to perform our matting method, we first create a
trimap from the depth image. The trimap is used as input to
our modified matting methods (Bayesian or Poisson based)
to generate an alpha matte. The matte is used to separate
the foreground from the image in order to put a new back-
ground behind it. This offline process can be applied to a
full sequence of frames making it ideal for video data.

Matting can be generally described by the formula:

C = αF + (1 − α)B (1)

where C is the observed pixels in the composite image,
F is the unknown foreground, B is the unknown back-
ground, and α is the percent of each pixel that is occupied
by the foreground. The α value is visually important with
fine objects, such as hair, where the color of a single pixel
may be a combination of both the background and fore-
ground.

Because there are three unknowns and one known, the
problem is highly under-constrained. Fortunately, only
a small amount of additional information is required to
achieve convincing results. Different matting techniques
solve the problem by predicting foreground, background
and alpha values that minimize some constraint, usually
determined by the color of neighboring pixels which are
known to be foreground or background. Therefore, the user
must specify where these known regions are. Our method
is able to use a depth camera to perform this segmentation
so the user does not have to.

3.1 Automatic Trimap Generation

A trimap is a three color image that contains information
about what is foreground and what is background. In our
implementation, white represents the foreground, black rep-
resents the background, and gray represents the unknown
region. We show that we can use our depth information to
automatically generate an accurate trimap. This is done in
3 steps: upsampling, thresholding, and dilating. Figure 2
shows the results from these steps.

Upsampling

For each frame we have a high resolution picture taken with
a digital camera and a low resolution depth map taken with
the depth camera. While high resolution images are cheap
due to CCD technology, it is not as simple to capture a depth
value at each pixel. Therefore, most depth cameras do not
provide the same level of resolution as the color camera.

The depth information that we used for our dataset was
collected using the CanestaVision [3] depth camera. This
camera computes a 64x64 resolution depth image. For our
algorithm, we desire a trimap at the same resolution as our
original image, so we must first upsample the depth map
to get the result in Figure 2c. Naive upsampling methods
such as bi-linear interpolation or nearest neighbor will cre-
ate depth edges that cross boundaries. Instead, we use a
super resolution method presented by Yang et al. [15] to
generate high resolution depth images. This method is able
to upsample the depth map up to 100 times the original res-
olution with little visible error.

Thresholding

We must then compute a background-foreground segmen-
tation using the depth information, which is provided as an
image where each intensity value represents a depth from
the camera. To do the segmentation, we require that the
user provide a dividing plane that defines which objects lie
in the foreground and which objects lie in the background.
Without this choice, it would be impossible to tell what is
meant by foreground and background. As with the ZCam,
this step is not automatic because we feel it is fundamen-
tally a user’s decision as to what is semantically defined
as the background for each situation. This manual input
must only be given once per capture session. We then com-
pute a threshold on the distance plane, which gives us a
background-foreground segmentation of the image. The
thresholded image is shown in Figure 2d.

Dilating

The two-color image is roughly accurate around the edges.
However, it is not precise, and does not take into account



Figure 2. Creating a trimap. (a) The original image, (b) low resolution depth map, (c) supersampled
depth map, (d) thresholded depth map, (e) dilated to create a trimap.

partial alpha values. We need to determine the region
around the object that is unknown foreground and back-
ground. To do this we erode and then dilate the foreground.
Anything that was modified in either of these steps is con-
sidered unknown. The exact amount of erosion and dilation
is specified by the user and is dependent on the ”fuzziness”
of the object in the foreground. We now have a trimap (as
shown in Figure 2e) that we can compute for each frame in
very little time. Using these trimaps, we can generate an
alpha mask at each frame in the video.

3.2 Improving Natural Matting

Natural matting algorithms generally work by comput-
ing the unknown background, unknown foreground and un-
known alpha value in Equation 1. Different algorithms use
different methods to approximate these parameters.

We perform our tests on two separate algorithms:
Bayesian and Poisson matting. However, our method could
be added to any natural matting method that operates on
RGB three channel images.

Natural matting techniques operate on the image inten-
sity domain and therefore do not always produce desirable
results when there are similar colors in the foreground and
background. In such cases many algorithms are unable
to differentiate between background and foreground colors
and produce a bleed of the predicted foreground color into
the background. The result is the creation of large false pos-
itive regions outside the object and false negative regions
inside the object. Some of these artifacts can be seen in
Figure 3c. By using the depth information in the error min-
imization step, we are able to prevent this bleeding.

Bayesian Matting

Bayesian matting maximizes a joint probability expressed
using Bayes Rule as follows:

Figure 3. Improved matting. Left: Bayesian
matting. Right: The improved algorithm gets
rid of undesirable artifacts.



arg max
F,B,α

P (F,B, α|C) = (2)

arg max
F,B,α

L(C|F,B, α) + L(F ) + L(B) + L(α)

where L is the log of probability L = log[P ]. The term
L(C|F,B, α) is the log probability of the observed pixel
value C given a predicted foreground F , background B, and
α. L(F ) and L(B) are the log probabilities of the colors F
and B being the foreground and background respectively.
L(α) is the probability of an alpha value, α, which for our
implementation is assumed to be constant. The algorithm
works its way from the outside in until the whole unknown
area is filled.

Our depth information gives us strong evidence for
whether the object is foreground or background in regions
with strong depth edges. However, this information is in-
accurate when the object is semitransparent (has an alpha
value that is not 0 or 1). We therefore weigh our confidence
in the depth channel based on the estimated alpha value us-
ing an inverse entropy function:

H ′(α) = 1 + α log α + (1 − α) log(1 − α)) (3)

This function is high when the alpha value tells us that
we are seeing mostly background or mostly foreground. We
then include the weighted depth information as a fourth
channel of information into Bayesian matting and perform
the same minimization solver as presented by Chuang et
al.[5].

Poisson Matting

Using depth information in the Poisson matting approach
is different from the Bayesian approach. Poisson matting
typically converts color images into a single-channel im-
age. Treating the binary depth map as an additional channel
leads to a poor alpha matte with an appearance similar to the
depth map, since the binary depth map heavily influences
the gradient field. To integrate the depth map into the Pois-
son matting approach, a confidence map is produced that
is based upon the consistency of the three channels of the
matte generated by the global Poisson matting approach:

αmin = min(α(0), α(1), α(2));
αmax = max(α(0), α(1), α(2));

F1 =
2∏

d=0

exp(− (α(d) − αmin)2

2σ2
);

F2 =
2∏

d=0

exp(− (α(d) − αmax)2

2σ2
);

F = min(F1, F2), (4)

Figure 5. Our data capture setup, consisting
of a depth camera and a color camera.

where αmin/αmax is the minimum/maximum of the matte,
and F is the confidence map. The final alpha matte is the
linear combination of the matte generated from the Poisson
matting approach and the depth map based on the confi-
dence map F :

α′ = Fα + (1 − F )D, (5)

where D is the binary depth map. Figure 4 provides a visual
comparison of the alpha matte with and without integrat-
ing depth information. Also provided is the corresponding
color image, the confidence map, and the depth map.

Poisson matting assumes that the gradient change in
the unknown regions within the trimap is caused by fore-
ground/background transitions only. This assumption is vi-
olated when there are textures in the foreground or back-
ground (as the sharp black/ivory transition in the back-
ground, near the top of the blue hat in Figure 4 (a)). The
depth map is independent of textures and therefore provides
a better estimation of the boundary in this case.

4 Experimental Results

We tested our approaches using several real sequences
we captured. Currently our experimental setup uses two
cameras: one for depth and one for color. Figure 5 shows
our data capture setup. There is a small baseline between
these two sensors. We register these two images via an
affine transformation. Given the low resolution from the
depth sensor, we found that this simple method provides a
good enough registration between the two cameras.

Our automatically generated trimaps worked well with
both of our modified natural matting algorithms, greatly re-
ducing the amount of noise when compared to the original
methods without using depth information. Figure 6 shows
the output on several frames of a scene using Bayesian mat-
ting and Figure 7 shows the results from Poisson matting.
The full sequences can be seen in our video. The slowdown



(a) Color image. (b) Confidence map. (c) Depth map.

(d) Alpha matte. (e) Refined alpha matte. (f) Local alpha matte.

Figure 4. Depth-combined Poisson matting. A confidence map is produced by measuring the consis-
tency of the RGB channels of the alpha matte generated from the global Poisson matting approach.
The confidence map is then used as guidance for the combination of the binary depth map and
the alpha matte. Note that we show the independent matte for each color channel for illustration
purpose.

from incorporating the depth channel into the matting algo-
rithm was negligible.

5 Limitations

One shortcoming from this research is that we require
a dividing plane to segment the foreground and the back-
ground. Therefore, when there is an object that occurs
closer than a foreground object it will be included in the
foreground as well. One common example of this would
be feet and a floor that is visible to the camera. Since the
floor’s depth spans from in front of the foot to behind it,
a single depth cut will divide the floor into two segments
which might not be desirable.

Since we are determining the background partially based
upon an exact distance, the cut off is a single plane parallel
to the camera. Though this is sufficient for our research, this
model could be improved. The cut off area could instead be
a plane at an angle or a surface with a different shape.

6 Conclusion and Future Work

Our approach represents a new way of dealing with video
matting. With a depth camera we were able to speed up
video processing dramatically. This makes natural matting
approaches more accessible for video. We also proposed
an improvement in accuracy by including the use of a depth
camera. In the future we would like to see how the semantic
meaning of foreground could be interpreted in a scene. It
would be possible to incorporate this system into a single
camera that captures both depth and color from the same
viewpoint.

References

[1] 3DV Systems. http://www.3dvsystems.com/.
[2] N. Apostoloff and A. Fitzgibbon. Bayesian video matting

using learnt image priors. Proceedings of CVPR 2004, pages
407–414, 2004.

[3] Canesta Inc. http://www.canesta.com/.



Figure 6. Video matting using improved Bayesian matting. Top: The original scene. Bottom: Back-
ground replaced.

Figure 7. Video matting using improved Poisson matting. Top: The original scene. Bottom: Back-
ground replaced.



[4] Y. Chuang, A. Agarwala, B. Curless, D. Salesin, and
R. Szeliski. Video matting of complex scenes, 2002.

[5] Y. Chuang, B. Curless, D. Salesin, and R. Szeliski. A
Bayesian approach to digital matting. Proceedings of Com-
puter Vision and Pattern Recognition (CVPR 2001, 2:264–
271, 2001.

[6] P. Hillman, J. Hannah, and D. Renshaw. Alpha channel es-
timation in high resolution images and image sequences.
Proceedings of Computer Vision and Pattern Recognition
(CVPR 2001, 1:1063–1068, 2001.

[7] G. Iddan and G. Yahav. 3D Imaging in the studio (and else-
where). Proceeding SPIE 2001, 4298:48, 2001.

[8] N. Joshi, W. Matusik, and S. Avidan. Natural video matting
using camera arrays. In SIGGRAPH ’06: ACM SIGGRAPH
2006 Papers, pages 779–786, New York, NY, USA, 2006.
ACM Press.

[9] M. McGuire, W. Matusik, H. Pfister, J. Hughes, and F. Du-
rand. Defocus video matting. Proceedings of ACM SIG-
GRAPH 2005, 24(3):567–576, 2005.

[10] Y. Mishima. Soft edge chroma-key generation based upon
hexoctahedral color space, Oct. 11 1994. US Patent
5,355,174.

[11] M. Ruzon and C. Tomasi. Alpha estimation in natural im-
ages. Proceedings of Computer Vision and Pattern Recogni-
tion (CVPR 2000), 1:18–25, 2000.

[12] A. Smith and J. Blinn. Blue screen matting. Proceedings
of the 23rd annual conference on Computer graphics and
interactive techniques, pages 259–268, 1996.

[13] J. Sun, J. Jia, C. Tang, and H. Shum. Poisson matting. ACM
Transactions on Graphics, 23(3), 2004.

[14] J. Sun, Y. Li, S. Kang, and H. Shum. Flash matting. Inter-
national Conference on Computer Graphics and Interactive
Techniques, 2006.

[15] Q. Yang, R. Yang, J. Davis, and D. Nistér. Spatial-depth
super resolution for range images. In To appear in CVPR
2007, 2007.


