Heuristic Model Checking for Java Programs

Alex Groce! and Willem Visser?

1 School of Computer Science, Carnegie Mellon University
agroce+Q@cs.cmu.edu
2 RIACS/NASA Ames Research Center

wvisser@riacs.edu

1 Introduction

Two recent areas of interest in software model checking are checking programs
written in standard programming languages [1, 5] and using heuristics to guide
the exploration of an explicit-state model checker [3]. Model checking real pro-
grams has the drawback that programs often contain a larger degree of detail
than designs and hence are more difficult to check (due to the more acute state-
explosion problem); however the large amount of detail in a program allows
more precise heuristics for narrowing down the search space when using a model
checker for error-detection. This paper describes the addition of support for
heuristic (or directed) search strategies to Java PathFinder (JPF), an explicit
state model checker for Java bytecode that uses a custom-made Java Virtual
Machine (JVM) [5].

The primary benefits of heuristic search are: discovery of errors that a depth-
first search fails to find, and shorter (and thus easier to understand and correct)
counterexample paths. In JPF a number of pre-defined heuristics are provided,
but a user can also write their own by using an interface to the JVM. The rest
of the paper is structured as follows: in section 2 we illustrate JPFs heuristic
capabilities by showing two novel predefined heuristics as well as a simple user-
defined heuristic, in section 3 we give results of using JPF with heuristics and
in section 4 be briefly sketch some future work.

2 Search Capabilities

The heuristic search options in JPF are primarily aimed at checking for deadlocks
and assertion violations. Using heuristics for more general LTL properties is
possible, but complicates the search strategy (heuristic searches are not very
effective for cycle detection[4]). We have found that two kinds of heuristics work
well for a variety of programs in searching for assertion violations and deadlocks.

Branch Exploration: Traditional branch coverage metrics measure the per-
cent of branches in a program covered by test cases. Although using a heuristic
that greedily searches for high branch coverage over paths (or globally) performs
poorly, something more complex works well: (1) States covering a previously un-
taken branch receive the best heuristic value. (2) States that are not reached
by taking a branch receive the next best heuristic value. (3) States that cover a

branch already taken are ranked according to how many times that branch has
been taken.

Thread Interleaving: Another useful heuristic is to maximize the inter-
leaving of threads along each path in order to find deadlocks or race conditions
that cause null pointer exceptions or assertion violations. Many JVMs and JIT
compilers only switch between threads at explicit yields inserted in the code
or after multiple bytecodes have been executed (for obvious efficiency reasons).
This scheduling can leave errors based on subtle interleavings undetected until
the code is used in a different setting. By context switching as much as possible,
the interleaving heuristic uncovers some of these subtle errors.

What makes these two heuristics particularly interesting is that they focus on
the structure of the program being analyzed: the interleaving heuristic will only
work well if a program is concurrent whereas the branch-exploration heuristic
is best suited to programs where nondeterministic actions are explored (nonde-
terminism is most often encoded in a branching control structure, such as an
if or case statement). These observations are supported by the results shown
in the next section. JPF also includes other heuristics: maximizing the number
of blocked threads out of running threads (for deadlock detection), randomized
exploration, and counting executions of every bytecode rather than branches.
Other options include using the sum of two heuristics, limiting the size of the
search queue! (sacrificing completeness for focused exploration), and using an A*
search rather than the default best-first search. Users may also change the code
in the file UserHeuristic.java to create their own heuristics. Consider a program
with a class Main with a static field buffer, itself an object of a class with inte-
ger fields current and capacity. Following is the code for a heuristic returning
either (capacity — current) or a default value (defined in the UserHeuristic

class) if the Main.buffer field hasn’t been initialized:

public int heuristicValue() {
Reference m = getSystemState().getClass("Main");
if (m !'= null) {
Reference b = m.getObjectField("buffer");
if (b != null) {
int current = b.getIntField("current");
int capacity = b.getIntField("capacity");
if (current > capacity)
return 0;
return (capacity-current);

}}

return defaultValue;

}

Note that lower heuristic values are better, with zero (0) being the top prior-
ity, and negative values indicating that a state should not be queued for explo-
ration (for trimming the state space when a runtime computation can show that
no successors of a state can give rise to a counterexample). Options allow states
with the same heuristic value to be explored in the order they were generated

! Heuristic search in JPF is implemented by generating all successor states from the
current state and then adding them to a priority queue depending on the heuristic(s)
being used.

(for BFS-like behavior when all states have the same value), in the reverse of
the order in which they were generated (for DFS-like behavior), or in the order
of their hash values. The code above would be useful if errors were suspected to
occur when the buffer was at or near its capacity.

3 Experimental Results

DEOS
Search/Heuristic | Time [Memory|States Explored|Length|[Max Depth
branch 60 91 2,701 136 139
branch(A™) 59 92 2,712 136 139
statement 62 88 2,195 136 137
statement(A™) 63 94 2,383 136 137
BFS FAILS - 18,054 - 135
DFS FAILS - 14,678 - 14,678
DFS (depth 500) | 6,782 383 392,479 455 500
DFS (depth 1000)| 2,222 196 146,949 987 1,000
DFS (depth 4000)| 171 | 270 8,481 3,997 | 4,000
Dining Philosophers
Search/Heuristic Size| Time [Memory|States Explored|Length|{Max Depth
branch 8 |FAILS - 374,991 - 41
BFS 8 |FAILS - 436,068 - 13
DFS 8 |FAILS - 398,906 - 384,286
DFS (depth 100) 8 |FAILS - 1,357,596 - 100
DFS (depth 500) 8 |FAILS| - 1,354,747 - 500
DFS (depth 1000) 8 |FAILS - 1,345,289 - 1,000
DFS (depth 4000) 8 |FAILS| - 1,348,398 - 4,000
interleaving 8 |FAILS - 487,942 - 16
interleaving (queue 5) 8 2 1 1,719 66 66
interleaving (queue 40) | 8 5 5 16,569 66 66
interleaving (queue 160) | 8 12 27 62,616 66 66
interleaving (queue 1000)| 8 60 137 354,552 67 67
interleaving (queue 5) | 16 4 5 6,703 129 129
interleaving (queue 40) | 16 16 45 69,987 131 131
interleaving (queue 160) | 16 | 60 207 290,637 131 132
interleaving (queue 1000)| 16 |FAILS - 858,818 - 41
interleaving (queue 5) | 32 11 32 25,344 257 257
interleaving (queue 40) | 32 |FAILS - 472,022 - 775
interleaving (queue 160) | 32 |FAILS - 494,043 - 86
interleaving (queue 5) [64 [59 206 101,196 514 514

The first results? are from the DEOS real-time operating system case study [5],
where a very subtle error exists that can lead to an assertion violation. Because
the error results from a particular choice of action at a particular point in time
on the part of threads, the branch coverage based heuristics (and statement cov-
erage heuristics) find the bug quickly by exercising different options as quickly as
possible. The thread interleaving heuristics were not used as the real-time con-
straints prevent any thread interleaving choices in DEOS. Note how the limited
depth DFS searches find much longer counterexamples in each case.

2 All results obtained on a 1.4 GHz Athlon with JPF limited to 512Mb. Times are in
seconds and memory is in megabytes. FAILS indicates failure due to running out of
memory.

The second table shows the results of applying heuristics to the classic din-
ing philosophers problem. Here, branch based heuristics are not very success-
ful (since there are almost no branches in the program), but the interleaving-
based heuristic plus queue size limitation (analogous to the depth limitations for
DFS) produces counterexamples even for quite large numbers of philosophers
(threads).

4 Conclusions and Future Work

Explicit-state model checkers such as JPF and SPIN will always be faced with
the state-explosion problem — it can be pushed further away but it will never go
away — therefore it seems inevitable that unless we employ clever abstractions
[1] we will need to focus on error-detection, in which case the development of
clever heuristics to guide the model checker towards likely errors will be a fruitful
area of research.

It is our view that when doing a heuristic search not only should one gear
the heuristics towards the property to be checked, but also one should focus
the selection of the heuristics to be used on the structure of the program be-
ing analyzed. We showed two such structure-dependent heuristics here: namely,
one geared towards finding interleaving related problems, and one for analyzing
highly nondeterministic programs. Furthermore, one should allow the capabil-
ity for the user to specify heuristics, since the user’s domain knowledge will be
invaluable during model checking.

Many areas for future research exists within heuristic-based model checking,
most notably how to select the best heuristic and heuristic parameters for a
specific problem. This area has seen much attention in the AI community and
we hope to leverage their results. We also believe a closer link between the
property specific language and heuristics should exist: we envisage a property
including certain heuristic guidelines, e.g. we might like to specify “DFS until
full(queue) then show no-deadlock using branch-exploration”. The next phase
of the heuristic-based JPF development will therefore focus on learning when
to use which heuristic as well as the development of a language for guiding the
model checker during property checking.

References

1. Thomas Ball, Sriram K. Rajamani. Automatically Validating Temporal Safety
Properties of Interfaces. In SPIN 2001, pages 103—-122, 2001. LNCS 2057.

2. Gerard Holzmann and Doron Peled. The State of SPIN. In CAV ’96, LNCS, 1996.
3. Stefan Edelkamp, Alberto Lluch Lafuente, and Stefan Leue. Directed explicit
model checking with HSF-Spin. In SPIN 2001, pages 57-79, 2001. LNCS 2057.

4. Stefan Edelkamp, Alberto Lluch Lafuente, and Stefan Leue. Trail-Directed Model
Checking. In Proceedings of the Workshop of Software Model Checking, Electrical
Notes in Theoretical Computer Science, Elsevier, July 2001.

5. W. Visser, K. Havelund, G. Brat and S. Park. Model Checking Programs. In IEEE
International Conference on Automated Software Engineering (ASE), September
2000.

