
1

Comparative Assessment of Algorithms and Software
for Global Optimization

CHAROENCHAI KHOMPATRAPORN and ZELDA B. ZABINSKY
Industrial Engineering, Box 352650, University of Washington,
Seattle, Washington, 98195-2650, USA
ckhom@u.washington.edu, zelda@u.washington.edu

JÁNOS D. PINTÉR
Pinter Consulting Services Inc., and Dalhousie University,
PCS: 129 Glenforest Drive, Halifax, NS, Canada B3M 1J2
jdpinter@is.dal.ca

June 4, 2001

Abstract. The thorough evaluation of global optimization algorithms and software
demands devotion, time and (hardware) resources, in addition to professional objectivity.
This general remark is particularly valid with respect to global optimization (GO)
software since GO literally encompasses “all” mathematical programming models. It is
easy not only to fabricate very challenging test problems, but also to find realistic GO
problems that pose a formidable task for any algorithm of today (and of tomorrow).

A report on computational experiments should ideally cover a large number of aspects,
including detailed description and practical background of the models; related earlier
work; solution approach; algorithm implementation and parameterization; hardware
platform(s), operating system(s), and software environment; an exact description of all
performance measures; report of successes and failures; analysis of solver
parameterization effects; statistical characteristics for randomized problem-classes; and a
summary of results in tabular and/or graphical forms.

An extensive inventory of classical GO test problems, as well as often much harder test
suites have been suggested more recently. This paper will review several prominent test
collections, discuss comparison issues, and present illustrative numerical results. A
second paper will perform a comparative study using ideas presented here and
discussions from the Stochastic Global Optimization workshop to be held in New
Zealand, June 2001.

Key words: Global optimization; Analysis and comparison of numerical algorithms.

2

1. Introduction

In formulating and solving a quantitative decision model, one of the very first questions
to consider is: what optimization approach and — eventually — software to use? Ideally,
we want to choose the method that would be most suitable for solving the problem at
hand. The word “suitable” could imply different interests for different users. For
example, one practitioner may emphasize the speed of the algorithm to find a “good”
solution, even though the solution found is not guaranteed to be the optimum. Another
expert may give more attention to rigorous guarantees and to the accuracy of the solution
obtained by the algorithm. Since there is clearly no one universal algorithm that performs
best in all categories of optimization problems, numerical experiments to compare new
algorithms and software with existing ones is an important area complementing the
theoretical analysis of optimization methods. In this paper we will discuss key
computational issues related to comparing global optimization strategies and solvers.

Modern optimization algorithms typically utilize iterative techniques. These
algorithms, in combination with recent advances in computer technology, allow
practitioners to address problems that could not have been solved otherwise. It may be
beneficial to first reflect on a definition of what constitutes an algorithm. For example,
Kronsjø [23] defines an algorithm as “a procedure consisting of a finite set of
unambiguous rules which specify a finite sequence of operations that provides the
solution to a problem, or to a specific class of problems.” This definition reveals
interesting features that should be emphasized:
• The algorithm must be rigorously and precisely defined so that it eliminates

ambiguity.
• The algorithm must provide a solution (even if it may not be the best solution) to the

problem after a finite number of steps, or equivalently after a reasonable amount of
time.

• It is essential that an algorithm is applicable to classes of problems rather than just to
a particular problem instance.

This list generally agrees with the suggestions by Arora [2, 3] and Bazaraa, Sherali,
and Shetty [4] on the attributes of a good optimization method. More specifically, they
propose that a good algorithm has following attributes:
• Generality. The algorithm should be insensitive to secondary details of the problem

structure: that is, the algorithm should converge without any further restrictions on
the structure of the problem instance (assuming, of course, that the problem-class
belongs to the scope of the algorithm).

• Efficiency. The algorithm should (i) keep the amount of calculations as small as
possible so that the actual computation time is realistic; (ii) require relatively few
iterations and thus converge quickly; and (iii) be insensitive to the initial starting
point and other specifications.

• Trustworthiness. The algorithm should be reliable and solve the given problem within
a reasonable degree of accuracy, which can be specified by the user.

3

• Ease of Use. The application of the algorithm should be relatively easy to understand,
even by less experienced users. The algorithm should have as few parameters that
require tuning as possible.

Tradeoffs between these attributes are usually inevitable. When robustness and ease
of use increase, efficiency typically decreases and vice versa. Often a computational
penalty such as CPU time increase has to be paid in order to achieve a robust and easy to
use algorithm [49]. On the other hand, an algorithm tailored to a specific class of
problems with common structure may be more efficient for that particular problem class
than an algorithm that could be applied to a general class of problems, but a lot less
efficient — or even unusable — when applied to problems outside that class. Consult, for
instance, the related discussions by Neumaier [33] and Pintér [38].

These attributes are also interrelated. For instance, algorithms that are very sensitive
to the selection of the tuning parameters are often problem dependent, and hence not
sufficiently general. Thus, there are tradeoffs between generality, efficiency,
trustworthiness, and ease of use.

Once an algorithm is developed, the next phase is to demonstrate that it is a suitable
method — not only in theory, but also in practice. The next section discusses how
researchers have been appraising the “goodness” of optimization algorithms.

2. A Review of Comparative Characteristics

It is a challenging task to compare optimization algorithms because there are many
aspects of the algorithms that need to be addressed. The first and probably the most
important issue for any fair comparison is the selection of objective, empirical and
reproducible measures of merit.

2.1. MEASURES OF MERIT

Based on the proposed attributes of a good optimization algorithm discussed previously,
we can establish a guideline for merit measures as outlined below.

2.1.1. General Applicability

Dimensionality. The complexity of algorithms is usually interpreted in relation to the size
of the problems. In general, as model dimensionality becomes larger, algorithms take
longer time to solve them. A common experience is that once the dimension of the
problems reaches a certain (algorithm-specific) level, the algorithm practically can no
longer solve them [23]. A simple explanation of this experience is that the computational
burden and the memory storage requirements, especially for global optimization
problems, can dramatically increase with growing dimensionality [51]. Although global
optimization problems are known to be NP-complete [52], the hope is that practitioners
will be able to address large dimensional problems in some manner.

In order to acquire practical solutions to large dimensional global optimization
problems, heuristic methodologies must also be considered. Heuristic and stochastic
approaches that have been successfully applied to integer (linear) programming may be

4

adapted to (continuous) global optimization. Some of the measures such as the absolute
or relative deviation from the optimum value, useful in evaluating heuristics for integer
programming may also be applied to global optimization.

Local Minima. The number of local minima as well as their location and depth can affect
the performance of global optimization algorithms. Problems with relatively few local
minima are expected to be easier to solve than problems with many local minima. The
distribution of the local minima may also influence how algorithms perform. If the local
minima are closely concentrated in only a few areas on the feasible region, detection of
one local minimum may easily lead to finding other local minima, whereas if the local
minima are all scattered throughout the feasible region, it is generally more difficult to
find the global one.

Törn, Ali, and Viitanen [50] discuss the impact of distribution of minima on
algorithm performance. The phrase embedded global minimum case is used to describe
the situation when the global minimum is close to the other local minimizers. Detecting
these local minima often leads the algorithm to eventually detect the global minimum.
The opposite situation is termed the isolated global minimum case. Local search
techniques can be rightfully expected to perform poorly in the latter case.

2.1.2. Efficiency

Computation time, normally reported as program execution time or CPU time, is
nevertheless an important evidence revealing how an algorithm performs on a specific
problem. However, as Kronsjø [23] and numerous others caution, the execution time of
an algorithm can be greatly affected by programming skills and the hardware
characteristics of the machine used. Skillful changes in coding may not prominently alter
the underlying algorithm, but can significantly influence the speed of program execution.
Moreover, execution times of any two algorithms are not directly comparable if the
timing collected are not from machines with the same specifications.

With the above in mind, there is a line of thought suggesting that instead of relying on
execution time it may be better to count the number of the objective function evaluations
needed by the algorithm to numerically converge to the optimum within some degree of
accuracy. However, the number of the objective function evaluations also depends on
programming skills. Some algorithms may also have other computational requirements
(such as finding the inverse of the Hessian matrix) that are captured by solely counting
objective function evaluations. Therefore a joint report combining both execution time
and number of function evaluations is probably a better approach.

Thus far we have discussed the time complexity of an algorithm. The time complexity
of an algorithm is basically the time required to execute the algorithm. There are two
other types of complexity that should also be considered, namely space complexity and
computational complexity. Space complexity is the memory space required by an
algorithm to complete the entire execution. It is clear that a smaller memory requirement
is preferred to a large memory requirement for economic reasons. It is possible that some
methods applied to high dimensional problems imply huge memory requirements that
exceed the limitations of most (if not all) computers. Therefore space complexity should
be considered as a part of algorithm performance.

5

Computational complexity in practical terms refers to the number of arithmetic or
logical operations that an algorithm requires to solve a given problem. In numerical
computations, algebraic and analytic complexity (two branches of computational
complexity) should be distinguished. Algebraic complexity indicates a known bound on
the number of arithmetic operations required by the algorithm to achieve the solution.
This may not be a practically usable measure in the case of GO problems because
theoretical convergence typically needs an infinite number of search points and function
evaluations. On the other hand, analytic complexity focuses on how much computation is
needed to yield a solution with a certain degree of accuracy. Thus, in terms of
computational complexity, a better algorithm is the one requiring fewer arithmetic
operations to achieve a solution with a predetermined degree of accuracy.

There is also another type of complexity called theoretical complexity. Commonly,
the theoretical complexity is categorized by the theoretical convergence. For an algorithm
to be rigorous, it must guarantee convergence. The next issue is to examine the
algorithm’s theoretical convergence speed, referred to as the order of convergence. A
lower order of convergence implies (at least, in theory) greater speed. Hence, algorithms
with lower order of convergence are preferred over those with a higher order of
convergence. Exact definitions regarding the order of convergence can be found in
textbooks on nonlinear optimization, e.g. Bazaraa, Sherali, and Shetty [4], and Brent [6].

2.1.3. Trustworthiness

The trustworthiness or reliability of an algorithm is often characterized using both
theoretical analysis and computational results. Rigorous methods may provide
deterministic guarantees of accuracy after a finite number of iterations, but require a
theoretically infinite number of iterations for absolute convergence. Discussions of
rigorous GO methods can be found, for instance in [22, 32, 39].

A number of global optimization algorithms guarantee the convergence to the
solution only in probability. This implies that the results obtained in a finite number of
iterations or a given time may not be the optimum, and can provide (at best) statistical
bounds on the optimal value. Of course, one needs to balance speed (execution time or
number of function evaluations) against the degree of assurance regarding the results. In
certain cases and applications, strict solution guarantees are indispensable. In many other
situations, however, practicality dictates the acceptance of good quality solutions
obtained by a limited computational effort.

Törn and Zilinskas [51] suggested a comparison by using the success ratio γ = s/m,
where m is the total number of times that the algorithm (started from random initial
points) is applied to a problem, and s is the number of times that the algorithm
successfully finds the optimum. Then careful numerical experiments can be conducted
and a quantitative comparison can be drawn among probabilistic algorithms using the
success ratio.

Note that the solution accuracy per se is also a numerical issue, particularly for
continuous optimization problems. Algorithms should prevent rounding errors which
limit the accuracy of the solution. Examples illustrating the effect of rounding errors can
be found, e.g. in Brent [6].

6

2.1.4. Ease of Use

The effort of preparing the input data and model formulation — in order to use a given
algorithm (implementation) — should also be taken into consideration [4]. An algorithm
that needs extensive input data preparation, such as data sorting or complicated data
format conversion, is less desirable because this can be a time consuming process.

In general, users want to be able to use optimization software as simply as possible.
Algorithms that are straightforward to use are more attractive than those that are difficult
to comprehend on the user level. Ease of understanding leads also to easier and proper
implementation: this can enhance result reproducibility. Hence, a very important goal in
algorithm and software development is that average expert or non-expert alike should be
able to grasp the ideas underlying the algorithm with not much difficulty.

From a practitioner’s point of view, the ideal global optimization algorithm is
basically a black box that will output the final solution without too much preparation by
the user. Therefore any algorithm that depends upon a large number of (externally set)
independent parameters is less user friendly. Observe also that the introduction of too
many algorithm parameters, which usually require pre-calibration or “tuning” for every
new problem, indicates strong problem-dependency, and hence renders the algorithm less
useful. Again, this point implies nontrivial compromises between user-friendliness and
sophisticated implementations. A good compromise is often to provide preset (default)
parameterizations which will work acceptably well even for the inexperienced user, while
advanced users have the option of overriding these settings.

2.2. GLOBAL OPTIMIZATION MODEL TYPES AND CLASSIFICATIONS

Global optimization problems are very heterogeneous. As noted previously, GO
encompasses the usual categories of mathematical programming models, specifically
including both linear models and the broad nonlinear category.

There are no universally accepted ways to categorize nonlinear problems. For
instance, Törn and Zilinskas [51] classified global optimization test problems as follows:
Type A: Unconstrained global optimization problems

(A1) Solvable problems
(A2) General unconstrained problems

Type B: Constrained global optimization problems
(B1) Special form problems
(B2) General constrained problems.

These authors suggested further reading of (B2) type problems in Pardalos and Rosen
[34], whereas they addressed the other types of problems. This tentative classification is
obviously not too sophisticated or detailed, and can be refined in many ways. Consult, for
instance [20]. Also electronically available articles by Pintér [36, 37] provide concise, but
fairly detailed nomenclature of GO model-types, as well as a review of the most
frequently used solution approaches and GO software.

Törn, Ali, and Viitanen [50] also attempted to categorize problems from a pragmatic
solution point of view regarding the number of modes and the ease/difficulty in finding
them. They use the following categories:

7

(a) unimodal
(b) easy multimodal
(c) moderately difficult multimodal, and
(d) difficult multimodal problems.

The degree of difficulty is determined by the embeddedness of the global mimimum
relative to the minimizers, and the probability of missing the region of attraction of the
global minimum. Problems with isolated global minimum/minima and with smaller
chance of finding the region of attraction to the global minimum are (rightfully)
considered more difficult.

Especially in the past decade there has been very significant progress in GO
methodology, but there are and will always remain models of extreme complexity. As
Pintér [38] emphasizes, it is not difficult to construct GO problems which pose a
tremendous challenge to any correct GO method, whether today or tomorrow. Luckily,
many practical GO problems are much less intimidating than such purely mathematical
constructions, but many practically motivated models are still very difficult. For instance,
Ratschek and Rokne [40] analyzed a circuit design model described by a system of —
seemingly not too complicated — nonlinear equations in just 9 variables. The verified
solution of this model to a specified significant accuracy (a few years ago) took a
collective work power of tens of workstations and several months of total runtime.
Notwithstanding the apparent (potential) difficulty of GO models, global optimization
techniques have been successfully tailored and applied to a large variety of complex
engineering design problems. Examples can be found in [1, 9, 15, 17, 18, 28, 38, 41, 53].

2.3. TEST PROBLEMS

Perhaps the most comprehensive sources of global optimization test problems today are
the volumes compiled by Floudas and Pardalos [14] and by Floudas et. al. [15]. The latter
book is a significantly expanded version of the first one. Floudas and Pardalos [14]
classify GO test problems into four main categories:
(i) quadratic programming problems
(ii) quadratically constrained problems
(iii) general nonlinear programming problems, and
(iv) real-world application problems.

Note that in this classification (i) is contained by (ii); the latter is contained by (iii);
while (iv) may contain elements from any of the classes above. The second volume [15]
classifies test problems into 14 (again, partly overlapping) categories all of which are
mathematically related. Examples of prominent categories in the second volume are
quadratically constrained problems, mixed-integer nonlinear models, semidefinite
programming, as well as dynamic programming problems.

One should also note here the close theoretical connection between integer
programming (IP) and continuous GO models. Integer models can be directly
transformed into GO models since each disjunctive binary relation can be represented by
a reverse convex continuous constraint (consult, for instance [21, 35]). This fact implies
that, at least in theory, IP models may also serve to test GO strategies. Interested readers

8

may consult [25] as a good collection of problems closely related to the famous traveling
salesman model.

There is also a significant issue to consider regarding standard academic test
problems vs. real-world problems. The eventual goal of global optimization is
applicability to real-world problems which could be massively nonlinear, complex, and
high-dimensional, and/or have an unusual structure. Solving and reporting the results on a
particular problem or a small class of real-world problems may not be useful for purposes
of comparison, unless the problem is of true significance, and the test conditions and
results can be directly reproduced. Academic test problems are sometimes either a bit too
simplistic or have a “fabricated” structure, but others may well represent (possibly
simplified) real problems. Researchers have been proposing new classes of test problems
regularly: Schoen [46], Mathar and Zilinskas [27], or several randomized problem-classes
discussed in Pintér [35] are examples.

To conclude this section, note that the selection of test problems in itself poses a
difficult philosophical question: which problem sets can be chosen as the true benchmark
that algorithms should be tested against? Further related discussions can be found, e.g. in
[29, 33, 38].

2.4. REPORTING TEST RESULTS

Most works available in the published literature do not report all types of evaluation
criteria mentioned earlier, but only a combination of some of the measures. This is
probably due to the very serious resource demands of properly detailed testing. Another
natural issue is scientific objectivity. Törn, Ali, and Viitanen [50] mention that
comparisons of algorithms in the literature are often not quite fair, because of some, even
unavoidable subjectivity and parameter tuning to the test suite. A frequently observed
example is the selection of stopping criteria that are chosen in light of the (known or pre-
set) solution: such choice will typically shed too favorable light on the algorithm in
question.

Table 1 lists some criteria and other details that are often reported in the literature, to
indicate the performance of global optimization (or other) algorithms on selected test
problems. Let us discuss briefly the entries of this table. Typically, there exist some
pointers available regarding the motivation to select a particular test problem, or class of
problems. Test problems are sometimes chosen because they are pertinent to some real-
world applications. In other cases, they are used because there exist comparable
benchmark results using other algorithms. The model functional form, dimensionality,
and feasible region are commonly reported, whereas the numbers of local and global
minima may be unknown (in complex tests and in many practical problems), or simply
omitted from the report.

The best function value found is obviously a very important measure. There are many
difficult problems, such as the traveling salesman problem (TSP), molecular architecture,
and over-determined systems of equations, where the optimal solutions is unknown and
hence the best function value found is of primary interest.

9

Table 1. Performance Comparison Aspects of GO Algorithms.

ASPECTS NOTES

1. Test Problem Practical motivation, or original reference.
2. No. of Variables / Constraints Smaller is often (much) easier.
3. Feasible Region Smaller is usually (but not always) easier.

4. No. of Local Minima Fewer is easier.
 More embedded is easier.

5. No. of Global Minima More is easier if only one needs to be found.
More is difficult if all have to be found.

6. Best Function Value Found Closer to optimality is better.
7. CPU Time Less is better.
8. No. of Function Evaluation Fewer is better.
9. Accuracy Higher is better.
10. Avg. No. of Iterations per Replication (in
Multiple Replications)

Fewer is better.

11. No. of Replications More is better.
12. Success Rate Higher the better.

13. Tuning Parameters Fewer is better.
Less sensitive is better.

14. Stopping Criteria May vary.
15. Platform May vary.
Additional Comments Summary, recommendations can be provided.

The CPU time and the actual number of function evaluations seem to be the other
most frequently reported measures in the literature. This is probably because time is a
standard unit with physical meaning. For a given hardware platform, one can compare the
efficiency among algorithms by simply looking at the CPU time used by the algorithms.
Different platforms can be compared by using certain benchmark evaluations, but this
may lead to unwanted biases.

The accuracy of an algorithm is usually pre-set by its user. A high level of accuracy is
generally preferable, but there has not yet been a common agreement on the general level
of accuracy that should be used as the benchmark. In practice, the level of accuracy is
dictated by the actual model and data. The average number of major iterations is a bit less
often reported. One of the reasons is that this measure could be dependent also on the
programming skills of the algorithm developer. Some algorithms are designed to use a
large number of iterations, but in each iteration the objective function is evaluated only
once, whereas other algorithms may exploit many objective function evaluations per
major iteration, but need a lot fewer of such iterations. Practical applications often
involve computationally expensive objective function calculations, which may dominate
the computational overhead in a larger number of iterations. Thus, the total number of
function evaluations is a widely accepted and relevant measure.

Deterministic methods are expected to be able to reproduce identical results.
However, success rate for deterministic methods may be relevant when parameters such
as initial starting point could affect the quality of the solution. The number of replications
and success rate pertain to stochastic global optimization (SGO) algorithms. Since SGO
algorithms guarantee finding the global optimum in probability, their robustness needs to
be tested via properly chosen statistical tools.

Many numerical algorithms have a few parameters that must be “tuned” heuristically.
Examples include the mutation rate in genetic algorithms, and the cooling schedule in

10

simulated annealing algorithms. The stopping criteria used in one algorithm often differ
from those of another algorithm. For example, one can mention a pre-assigned constraint
satisfaction or Kuhn-Tucker condition satisfaction accuracy. Other pragmatic numerical
criteria include the maximal number of model function evaluations, the number of
evaluations without “noticeable” solution improvement, and/or the maximum execution
time. These parameters are usually decided somewhat arbitrarily, and this makes the
comparison of algorithms difficult.

A practical issue that contributes to the complication of evaluating algorithms is the
variety of available computer hardware and software platforms. Program execution times
are basically incomparable, unless the algorithms are implemented on the same hardware
platform with the same configurations. This issue becomes even more complicated when
algorithms can utilize parallel processing on several platforms. Further differences may
appear even between identical or similar algorithm implementations when using different
programming languages or compilers, not to mention the added burden of user-friendly
but resource-intensive program interface features.

In many cases, the performance of algorithms is depicted graphically to illustrate their
progress or convergence rate as a function of iterations completed for given test
problems. For the SGO approach, the average and standard deviation characteristics as
well as the best and worst cases encountered are also frequently reported when solving
the same model repeatedly. Such information can be useful in the statistical analysis of
SGO methods.

Without going into details beyond the scope of this work, observe that the criteria
listed are often (partially) conflicting. Consider, for instance, the tradeoff between
accuracy required and a pre-set maximal number of objective function evaluations. In
such cases, concepts and techniques used in multi-objective optimization (specifically
including the selection of non-dominated, Pareto optimal algorithms for a given set of test
problems) can be brought to the subject. Such analysis can lead to insights as to the
strengths and weaknesses of optimization algorithms.

3. Algorithm Implementations and Comparative Numerical Experiments

It is important to recognize the difference between an algorithm and its actual software
implementation. Although the latter is basically a machine-readable form of the
underlying algorithm, the software itself is not the algorithm. The effectiveness of a
software implementation may not directly reflect the effectiveness of the corresponding
algorithm because the coding skills of the developer can greatly affect the performance of
the software. However, in order to compare algorithms for a real-world setting, one needs
to compare both the algorithms and their implementations, as opposed to the algorithms
alone. Several important aspects of algorithm comparison have been discussed in the
previous section. Here we will focus on the issues arising from algorithm comparison
through software. Part of this section is based on Reklaitis, Ravindran, and Ragsdell [41].

11

3.1. A BRIEF HISTORY OF COMPARATIVE ASSESSMENTS IN CONSTRAINED
OPTIMIZATION

In 1968, Colville [8] made a pioneering attempt at comparing the performance of
algorithms by sending out eight test problems to developers of 30 nonlinear optimization
codes. The participants were required to submit the result of the “best effort” on each
problem and the corresponding program execution time. Characteristics of the Colville
set of test problems are summarized in Table 2.

This work was obviously a significant step towards establishing objective
evaluation and comparison criteria. Eason [12] observed, however that Colville’s study
contains three major flaws. First, the execution times collected in the study are not
comparable because the effect caused by the difference in the compilers and platforms
running the algorithms was not removed. Second, the participants could apply their codes
as many times as they liked and only the best results were reported. Hence, if an
independent investigator would like to apply the same code to the same problem, he/she
may not be able to reproduce the reported results. Third, no two participants reported the
same accuracy of their results since this aspect was not pre-specified.

Eason and Fenton [13] performed a comparative study of 20 optimization codes using
13 test problems, which are summarized in Table 3. The study primarily focused on
penalty-type methods and all of the computations were performed on one computer. The
major inadequacies of this study were due to (i) failure to include other powerful methods
available of the time and (ii) shortcomings in the difficulty of the problems.

Another major comparative study of nonlinear programming (NLP) methods was
implemented by Sandgren [43, 44]. The experimental procedure employed in the study
was:
1. Assembly of solver codes and test problems
2. Elimination of codes using 14 preliminary test problems
3. Application of the remaining codes to the full suite of test problems
4. Removal of the test problems on which fewer than 5 codes were successful
5. Aggregation of the test results
6. Preparation of individual and composite utility curves

Table 2. Colville [8] Problem Set (Source: [41]).

Problem Name and/or Source Number
of

Variables

Number of
Inequality

Constraints
(I)

Number of
Equality

Constraints
(E)

Total
Number of
Constraints

(I+E)

Total
Number of
Bounds on
Variables

1. Shell 5 10 0 10 5
2. Shell 15 5 0 5 10
3. Mylander / Res. Analysis Corp. 5 6 0 6 10
4. Wood / Westinghouse 4 0 0 0 8
5. Efroymson / Esso 6 4 0 4 0
6. Huard / Electricite de France 6 0 4 4 12
7. Gauthier / IBM France 16 0 8 8 32
8. Colville / IBM 3 14 0 14 6

12

Table 3. Eason and Fenton [13] Problem Set (Source: [41]).

Problem Name and/or Source Number
of

Variables

Number of
Inequality

Constraints
(I)

Number of
Equality

Constraints
(E)

Total
Number of
Constraints

(I+E)

Total
Number of
Bounds on
Variables

1. Colville #1 5 10 0 10 5
2. Post office parcel problem 3 2 0 2 6
3. Colville #3 5 6 0 6 10
4. Colville #4 4 0 0 0 8
5. Rosenbrock 2 0 0 0 4
6. Colville #5 6 0 4 4 12
7. Beightler / Journal bearing 2 1 0 1 4
8. Siddall / Flywheel 3 2 0 2 6
9. Siddall / Chemical reactor 3 9 0 9 4
10. Mischke / Gear train 2 0 0 0 4
11. Mischke / CAM design 2 2 0 2 4
12. Eason / Mechanism synthesis 4 0 0 0 8
13. Eason / Gear train 5 4 0 4 3

The purpose of step 2 in the experimental procedure was to avoid the possibilities of
wasted effort for codes that did not have the potential to solve the full suite of the test
problems. Sandgren was thus prioritizing thrustworthiness of the method over measures
of performance. Sandgren’s test problem set included problems 2, 7, and 8 of the Colville
problem set, all 13 problems from the Eason and Fenton problem set, eight problems
from the Dembo problem set which is shown in Table 4, a welded beam problem, and six
industrial design application problems. The Dembo models are geometric programming
problems which is a rather difficult class to solve by general NLP methods. After the
removal of several test problems (in step 4 of the procedure), there were only 23
problems left. A summary of the codes used in Sandgren’s study can be found in [41, 43,
44]. It is interesting to note that in Sandgren’s study, the print routines were removed
from the basic iterative loop so that accurate execution time of the algorithm itself can be
obtained.

Table 4 : Dembo [11] Problem Set (Source: [41]).

Problem Name and/or Source Number
of

Variables

Number of
Inequality

Constraints
(I)

Number of
Equality

Constraints
(E)

Total
Number of
Constraints

(I+E)

Total
Number of
Bounds on
Variables

1. Gibbs free energy 12 3 0 3 24
2. Colville #3 5 6 0 6 10
3. Alkylation process model

(Bracken and McCormick) 7 14 0 14 14

4. Practor design (Rijckaert) 8 4 0 4 16
5. Heat Exchanger (Avriel) 8 6 0 6 16
6. Membrane Separation (Dembo) 13 13 0 13 26
7. Membrane Separation (Dembo) 16 19 0 19 32
8. Beck and Ecker 7 4 0 4 14

13

The amount of execution time was the main performance measure used in Sandgren’s
study. He ranked the codes based on the relative number of problems solved within a
series of specified time limits. The limits are based on a fraction of the average time for
all codes on each problem. Moreover, the execution time to find the solution within a pre-
specified accuracy for a problem was normalized by dividing it by the average execution
time on that problem. This normalization allows direct comparison among algorithms. A
generic example on Sandgren’s ranking is shown in Table 5.

To read Table 5, the second column from the left indicates that Code A could solve 7
problems in 25% of the average execution time, 13 problems in 50% of the average
execution time, and so on. Using the number of problems solved within specified average
execution time levels as the comparison basis, fast codes can be easily identified. From
the table, Codes A and B dominate by being consistently faster than Codes C and D.
However, Code A is faster than Code B at the 50% of the average execution time level,
while after the 75% level, Code B worked faster than Code A. Similar comparisons can
be performed between other codes.

The last computational study of NLP codes discussed in this paper was performed by
Schittkowski [47]. The study includes 20 codes on 180 randomly generated problems
with predetermined characteristics and multiple starting points. An important difference
between the Schittkowski and Sandgren studies is that quadratic programming methods
were also included in Schittkowski’s study [41].

The codes were evaluated based upon their 1) efficiency, 2) reliability, 3) global
convergence, 4) ability to solve degenerate problems, 5) ability to solve ill-posed
problems, 6) ability to solve indefinite problems, 7) sensitivity to starting points, 8)
sensitivity to problem variations, and 9) ease of use. Each code was applied to all 180 test
problems. The data were collected in the same manner as in the Sandgren study.
Schittkowski then weighed the 9 criteria according to Saaty’s priority theory [45] which
is outlined by Lootsma [26]. Schittkowski’s weighting scheme is listed in Table 6. Using
this weighting scheme as the measures he suggested a ranking of the codes analyzed.

Several criteria in Schittkowski’s weighting scheme have been mentioned in the
beginning of this paper. Others may adopt different weighting factors or schemes, but this
study does imply the need to consider several measures of performance. An interesting
observation from this study is that it supports the theory that the reliability of a code may
reflect coding skills more than the quality of the algorithm itself [41].

Table 5: Number of Problems Solved at Accuracy Level ε = 10-4
within a Percentage of Normalized Execution Time.

FRACTION OF NORMALIZED EXECUTION TIME
CODES

0.25a 0.50 0.75 1.00 1.50 2.50
Code A 7 13 14 16 16 16
Code B 0 9 14 17 19 20
Code C 0 1 2 3 4 6
Code D 0 0 0 0 3 9

M M M M M M M
a Times the average execution time.

14

Table 6: Schittkowski’s [47] Weighting Scheme (Source: [41]).

Criteria Weights
1) Efficiency 0.32
2) Reliability 0.23
3) Global Convergence 0.08
4) Ability to Solve Degenerate Problems 0.05
5) Ability to Solve Ill-posted Problems 0.05
6) Ability to Solve Indefinite Problems 0.03
7) Sensitivity to Slight Problem Variations 0.03
8) Sensitivity to Starting Points 0.07
9) Ease of Use 0.14

Future computational comparison studies for global optimization can use these and
similar experiences. Specifically, they should consider multiple measures of performance,
a comprehensive choice of test problems, and a well-defined procedure to conduct the
evaluations. Note in this context that a large number of further test problems, such as
randomized systems of nonlinear equations, random clustering problem-instances, as well
as detailed case studies, are discussed in [35]. For an extensive myriad of other
practically motivated tests and case studies, consult e.g. [1, 7, 9, 10, 17, 18, 19, 24, 28,
30, 31].

4. An Illustrative Comparison of Algorithms: IHR and LGO

For illustration, two global optimization methods — namely the Improving Hit-and-Run
(IHR) algorithm and the Lipschitz Global Optimizer (LGO) program system — will be
briefly analyzed and qualitatively compared. (A more detailed comparative study will
appear in our forthcoming work.)

4.1. IMPROVING HIT-AND-RUN

Improving Hit-and-Run [54] is a sequential random search algorithm. It is an extension of
the original Hit-and-Run algorithm developed by Smith [48]. The IHR procedure first
generates a random point Xk which may depend upon the immediate previous point or
several previous points. Then the algorithm generates a random direction Dk and a
random step size sk along the random direction. If the function value at the new point Xk+1

is better than that of the previous point, i.e. f(Xk+sk Dk) < f(Xk), then the algorithm moves
to the new point; otherwise it remains at the current point. The algorithm iterates until
certain stopping criteria have been met. The basic IHR procedure is summarized below.

IHR was developed for global optimization problems where the feasible region is
contained in a bounded region (typically upper and lower bounds on all variables). It has
been shown that IHR will converge with probability one to the global optimum for a very
broad class of problems [51]. It has also been shown that the expected number of function
evaluations for quadratic problems is of order O(n5/2). Many tests have been performed
on global optimization problems with 25 or more variables. Several enhancements to IHR
have been reported, for example in [42], but they will not be discussed here.

15

Improving Hit-and-Run Algorithm

Step 0. Initialize the iteration counter k = 0 and let X0 ∈ S, Y0 = f(X0).

Step 1. Generate a random direction vector Dk from a uniform distribution on the surface
of the unit hypersphere.

Step 2. Generate a step size sk by sampling uniformly in S along the direction vector Dk
from the current point Xk.

Step 3. Update the point according to the following scheme:



 +

=+
k

kkk
k X

DsX
X 1

otherwise
)(if kkkk YDsXf <+

and set)(11 ++ = kk XfY .

Step 4. Stop if the stopping criteria have met. Otherwise increase k by 1 and return to
Step 1.

One feature of IHR is that it tends to make very quick improvements, and then the
sequence of points slows to converge. Figure 1 shows a graph of how IHR algorithm
performs for a specific maximization problem. This particular problem contains one
global optimum with the corresponding objective function value of 10. In the figure,
three IHR algorithm variations are compared against the number of iterations and the best
objective function value found so far. The best objective function value found so far is an
average of five successful replications, meaning that these representative replications
must converge to a certain degree of accuracy.

From Figure 1 one can see that variation A converges the fastest until approximately
the 190th iteration. After this iteration variation A starts to slowly converge and
eventually performs worst after 1000 iterations. Variation C converges slowest until
approximately the 270th iteration after which it starts to converge faster than variation A.
In fact, after about the 450th iteration, variations B and C converge at about the same rate.
Lines 1 and 2 indicate where variation A crosses variation B and variation A crosses
variation C, respectively.

Figure 1 reveals two important aspects in numerical comparison of algorithms. First,
it emphasizes the importance of stopping criteria. Often times, in practice the algorithms
are set to stop after a certain number of iterations. This number of iterations is often
arbitrarily decided by the user. Hence, some algorithms could be forced to prematurely
stop even though they would perform better later on. Second, the figure stresses the
consequence of the degree of accuracy. If the required degree of accuracy in the above
comparison was at the average objective function value of 100 after 1000 iterations,
variation A would be considered as a failure even though it converges the fastest in the
beginning.

16

Figure 1: Performance Comparison of Three IHR Variations

4.2. THE LGO (LIPSCHITZ GLOBAL OPTIMIZER) PROGRAM SYSTEM

LGO is a professionally developed and maintained software system which (as of
2001) has been used in some 15 countries by academia and private industry. The
theoretical background of LGO is discussed in [35]; note, however, that algorithmic
improvements as well as numerous user interface features have been added to LGO in
recent years. For a current description, consult [38]. The software has been recently peer-
reviewed by Benson and Sun [5].

The core LGO solver system provides a range of global and local (nonlinear)
optimization procedures that can be used in a flexible manner. One of the principal global
scope solvers is an adaptive partition (branch-and-bound) algorithm outlined below. Note
that for the sake of numerical efficiency, in addition to the globally convergent algorithm
outlined here, efficient local search methods are also incorporated in LGO.

Considering now the entries in Table 1, the LGO software can be applied to almost
arbitrary continuous models defined by Lipschitz functions. In practice, most (merely
continuous) GO models are also handled well. To use LGO, the user needs to set only a
handful parameters such as the maximum number of function evaluations, or the required
constraint satisfaction accuracy. Even some of these parameters can simply be left at their
default setting, in most cases, assuming that the optimization model is reasonably well-
scaled. In order to enhance its efficiency, LGO generates also random sample points. The
pseudo-random number generator can optionally be reset by the user, thereby enabling
the reproduction of results. The current standard LGO implementation is intended to seek
for a unique global solution, but customizations to find multiple solutions can also be
made available.

-6000

-5000

-4000

-3000

-2000

-1000

0

0 200 400 600 800 1000

iterations

A
ve

ra
ge

 b
es

t f
un

ct
io

n
va

lu
e

so
-f

ar

Variation A Variation B Variation C

Line 2

Line 1

17

LGO: Partition Algorithm Scheme

Step 0. Initialize()
Define
iteration count k = 0;
initial feasible set D;
set of active subsets D1 = {D}
initial lower bound estimate of optimum lb1 = -infinity
initial upper bound estimate of optimum ub1 = infinity
current optimal solution estimate xopt – undefined
numerical tolerance: “acceptable” discrepancy between lower and upper bounds, given
by parameter eps.

Step k. (main iteration cycle)
Set k = k+1
Given
selected active partition subset: Dk

current lower bound estimate of optimum: lb = lbk
current upper bound estimate of optimum: ub = ubk

Execute the following steps:

Partition(Dk) (partition currently selected subset)
The partition operator leads to new subsets: Dki, i = 1, ..., ik, which form a partition of Dk;
replace Dk by this new collection of subsets.

Do i = 1,ik
Sample(Dki) (generate sample points in Dki)
Update xopt and ub = f(xopt), whenever possible
Bound(Dki , boundki) (aggregate search information; generate optimum/bound

estimate in subset Dki)
Update lb, considering all currently active subsets and bounds

End Do

Fathom Test (boundi , xopt) (eliminate subsets when their lower bound exceeds f(xopt))

Termination Test (lb, ub, eps): If ub – lb < eps Then Stop; Else Continue

Select() (select best subset for further partition)
Go to Step k (Return to next main iteration cycle)

Stop: Report estimated solution xopt and f(xopt).

The PC version of LGO has a fully MS Windows-style version embedded into an
integrated development environment (IDE), with dialogs and model visualization
options). A simple “command-line” implementation; and a “silent mode” version can also
be provided: the “silent” version can be seamlessly built into user applications. The two
latter versions are available not only for workstations, but also can be connected to other

18

modeling environments: see, for instance, the LGO engine for MS Excel, as an advanced
Solver option in [16]. The LGO IDE supports seamless communication with a large
variety of MS Windows platforms.

In an extensive number of tests, including real-world applications received from
clients, LGO has proved to be a competitive professional software product, both in terms
of execution speed (number of function evaluations) and accuracy. The largest client
models solved so far had hundreds of variables and constraints; the corresponding
runtimes were at most in the order of hours when using moderately-fast Pentium
processor based machines. For details, please consult for instance [35] and [38].

5. Conclusions

Several measures of computational performance for global optimization algorithms and
software have been discussed. We propose the use of several measures in comparing
methods and discuss some of the difficulties of conducting a fair comparison. Highlights
of earlier studies restricted to constrained nonlinear programming have been summarized,
which may be used to guide future studies on global optimization algorithms and
software implementation.

In the forthcoming second part of this paper we will conduct a systematic
comparative study of IHR and LGO. We invite both test problems and software products
to be submitted to any of the authors to make this study as informative and representative
as possible.

6. Acknowledgements

The authors would like to thank Yanfang Shen and Eva H. Dereksdottir for preparing
Figure 1. The work of Zelda B. Zabinsky and Charoenchai Khompatraporn has been
partially supported by NSF Grant No. DMI-9820878. The work of János D. Pintér has
been partially supported by grants received from the National Research Council of
Canada (NRC IRAP Project No. 362093) and from the Hungarian Scientific Research
Fund (OTKA Grant No. T 034350).

References

1. Argonne National Laboratories (1993) MINPACK-2 Test Problem Collection. See
also the accompanying notes titled “Large-scale optimization: Model problems,” by
B.M. Averick and J.J. Moré. (See http://www-c.mcs.anl.gov/home/more/tprobs/html)

2. Arora, J.S. (Editor) (1997) Guide to Structural Optimization, ASCE Manuals and
Reports on Engineering Practice No. 90, American Society of Civil Engineers, New
York.

3. Arora, J.S. (1990) “Computational Design Optimization: A Review and Future
Directions,” Structural Safety 7, 131-148.

19

4. Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. (1993) Nonlinear Programming:
Theory and Algorithms (Second Edition), John Wiley and Sons, New York.

5. Benson, H.P., and Sun, E. (2000) “LGO — Versatile Tool for Global Optimization,”
OR/MS Today 27 (5), 52-55.

6. Brent, R.P. (1973) Algorithms for Minimization without Derivatives, Prentice-Hall,
New Jersey.

7. Bomze, I.M., Csendes, T., Horst, R., and Pardalos, P.M. (Editors) (1997)
Developments in Global Optimization, Kluwer Academic Publishers, Dordrecht /
Boston / London.

8. Colville, A.R. (1968) “A Comparative Study of Nonlinear Programming Codes,”
Technical Report. No. 320-2949, IBM Scientific Center, New York.

9. Corliss, G.F., and Kearfott, R.B. (1999) “Rigorous Global Search: Industrial
Applications,” Developments in Reliable Computing, edited by Csendes, T., 1-16,
Kluwer Academic Publishers, Dordrecht / Boston / London.

10. De Leone, Murli, A., Pardalos, P.M., and Toraldo, G. (Editors) (1998) High
Performance Software for Nonlinear Optimization: Status and Perspectives, Kluwer
Academic Publishers, Dordrecht / Boston / London.

11. Dembo, R.S. (1974) “A Set of Geometric Programming Test Problems and Their
Solutions,” Dept. Management Sci., University of Waterloo, Ontario, Canada,
Working Paper.

12. Eason, E.D. (1977) “Validity of Colville’s Time Standardization for Comparing
Optimization Codes,” ASME Des. Eng. Tech. Conf., Paper No. 77-DET-116,
Chicago.

13. Eason, E.D., and Fenton, R.G. (1974) “A Comparison of Numerical Optimization
Methods for Engineering Design,” ASME J. Eng. Ind. Ser. B 96(1), 196-200.

14. Floudas, C.A., and Pardalos, P.M. (1990) A Collection of Test Problems for
Constrained Global Optimization Algorithms, Lecture Notes in Computer Science
455, Springer-Verlag, Berlin / Heidelberg / New York.

15. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gümüs, Z.H., Harding,
S.T., Klepeis, J.L., Meyer, C.A., and Schweiger, C.A. (1999) Handbook of Test
Problems in Local and Global Optimization, Kluwer Academic Publishers, Dordrecht
/ Boston / London.

16. Frontline Systems (2001) Premium Solver Platform — Solver Engines. User Guide,
Frontline Systems, Inc., Incline Village, Nevada. (For a description of the LGO
Global Solver Engine, see also http://www.frontsys.com/ lgoeng.htm)

17. Grossmann, I.E. (Editor) (1996) Global Optimization in Engineering Design, Kluwer
Academic Publishers, Dordrecht / Boston / London.

20

18. Hendrix, E.M.T. (1998) Global Optimization at Work, Ph.D. disseration, LU
Wageningen, the Netherlands.

19. Hock, W., and Schittkowski, K. (1987) Test Examples for Nonlinear Programming
Codes, Lecture Notes in Economics and Mathematical Systems 187, Springer-Verlag,
Berlin / Heidelberg / New York.

20. Horst, R., and Pardalos, P.M. (Editors) (1995) Handbook of Global Optimization,
Kluwer Academic Publishers, Dordrecht / Boston / London.

21. Horst, R., and Tuy, H. (1996) Global Optimization — Deterministic Approaches
(Third Edition), Springer-Verlag, Berlin / Heidelberg / New York.

22. Kearfott, R.B. (1996) Rigorous Global Search: Continuous Problems, Kluwer
Academic Publishers, Dordrecht / Boston / London.

23. Kronsjø, L. (1987) Algorithms: Their Complexity and Efficiency (Second Edition),
John Wiley and Sons, New York.

24. Laguna, M., and González-Velarde, J-L. (Editors) (2000) Computing Tools for
Modeling, Optimization and Simulation, Kluwer Academic Publishers, Boston /
Dordrecht / London.

25. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., and Shmoys, D.B. (Editors) (1985)
The Traveling Salesman Problem, John Wiley and Sons, New York.

26. Lootsma, F.A. (1980) “Ranking of Nonlinear optimization Codes According to
Efficiency and Robustness,” in Konstruktive Methoden der Finiten Nichtlinearen
Optimierung, edited by Collatz L., Meinardus, G., and Wetterling, W., Birkhäuser,
Basel, Switzerland, 157-158.

27. Mathar, R., and Zilinskas, A. (1994) “A Class of Test Functions for Global
Optimization,” Journal of Global Optimization 5, 195-199.

28. Mistakidis, E.S., and Stavroulakis, G.E. (1997) Nonconvex Optimization. Algorithms,
Heuristics and Engineering Applications of the F.E.M., Kluwer Academic Publishers,
Dordrecht / Boston / London.

29. Mittelmann, H.D., and Spellucci, P. (2001) Decision Tree for Optimization Software.
(See http://plato.la.asu.edu/guide.html)

30. Mockus, J., Eddy, W., Mockus, A., Mockus, L., and Reklaitis, G. (1996) Bayesian
Heuristic Approach to Discrete and Global Optimization, Kluwer Academic
Publishers, Dordrecht / Boston / London.

31. Moré, J.J., Garbow, B.S., and Hillström, K.E. (1981) “Testing unconstrained
optimization software,” ACM Transactions on Mathematical Software 7, 17-41.

32. Neumaier, A. (1990) Interval Methods for Systems of Equations, Cambridge
University Press, Cambridge.

21

33. Neumaier, A. (2001) Global Optimization. (See http://solon.cma.univie.ac.at/~neum/
glopt.html)

34. Pardalos P.M., and Rosen, J.B. (1987) Constrained Global Optimization: Algorithms
and Applications, Lecture Notes in Computer Science 268, Springer-Verlag, Berlin /
Heidelberg / New York.

35. Pintér, J.D. (1996a) Global Optimization in Action, Kluwer Academic Publishers,
Dordrecht / Boston / London.

36. Pintér, J.D. (1996b) “Continuous Global Optimization Software: A Brief Review,”
Optima 52, 1-8. (For a WWW copy, see e.g. http://plato.la.asu.edu/gom.html)

37. Pintér, J.D. (1999) “Continuous Global Optimization: An Introduction to Models,
Solution Approaches, Tests and Applications,” Interactive Transactions in
Operations Research and Management Science 2, No. 2. (See http://catt.bus.okstate.
edu/itorms/pinter/)

38. Pintér, J. D. (2001) Computational Global Optimization in Nonlinear Systems — An
Interactive Tutorial, Lionheart Publishing, Atlanta, GA. (See http://www.lionhrtpub.
com/ books/ globaloptimization.html)

39. Ratschek, H., and Rokne, J. (1988) New Computer Methods for Global Optimization,
Ellis Horwood, Chichester.

40. Ratscheck, H., and Rokne, J. (1993) “Experiments using Inverval Analysis for
Solving a Circuit Design Problem,” Journal of Global Optimization 3, 501-518.

41. Reklaitis, G.V., Ravindran, A., and Ragsdell, K.M. (1983) Engineering Optimization
Methods and Applications, John Wiley and Sons, New York.

42. Romeijn, H.E., and Smith, R.L. (1994) “Simulated Annealing for Constrained Global
Optimization,” Journal of Global Optimization 5, 101-126.

43. Sandgren, E. (1977) “The Utility of Nonlinear Programming Algorithms,” Ph.D.
Dissertation, Purdue University, University microfilm, 300 North Zeeb Road, Ann
Arbor, MI, Document No. 7813115.

44. Sandgren, E., and Ragsdell, K.M. (1980) “The Utility of Nonlinear Programming
Algorithms: A Comparative Study—Part 1 and 2,” ASME J. Mech. Des. 102(3), 540-
551.

45. Saaty, T.L. (1977) “A Scaling Method for Priorities in Hierarchical Structures,” J.
Math. Psych. 15, 234-281.

46. Schoen, F. (1993) “A Wide Class of Test Functions For Global Optimization,”
Journal of Global Optimization 3, 133-138.

47. Schittkowski, K. (1980) Nonlinear Programming Codes: Information, Tests,
Performance, Lecture Notes in Economics and Mathematical Systems 183, Springer-
Verlag, Berlin / Heidelberg / New York.

22

48. Smith, R.L. (1984) “Efficient Monte Carlo Procedures for Generating Random
Feasible Points Uniformly Over Bounded Regions,” Operations Research 32, 1296-
1308.

49. Thanedar, P.B., Arora, J.S., Li, G.Y., and Lin, T.C. (1990) “Robustness, Generality
and Efficiency of Optimization Algorithms for Practical Applications,” Structural
Optimization 2, 203-212.

50. Törn, A., Ali, M.M., and Viitanen, S. (1999) “Stochastic Global Optimization:
Problem Classes and Solution Techniques,” Journal of Global Optimization 14, 437-
447.

51. Törn, A., and Zilinskas, A. (1989) Global Optimization, Lecture Notes in Computer
Science 350, Springer-Verlag, Berlin / Heidelberg / New York.

52. Vavasis, S.A. (1995) “Complexity Issues in Global Optimization,” Handbook of
Global Optimization, edited by Horst, R. and Pardalos, P.M., 27-41, Kluwer
Academic Publishers, Dordrecht / Boston / London.

53. Zabinsky, Z.B. (1998) “Stochastic Methods for Practical Global Optimization,”
Journal of Global Optimization 13, 433-444.

54. Zabinsky, Z.B., Smith, R.L., McDonald, J.F., Romeijn, H.E., and Kaufman, D.E.
(1993) “Improving Hit-and-Run for Global Optimization,” Journal of Global
Optimization 3, 171-192.

