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Interpolation Based Unitary Precoding for Spatial
Multiplexing MIMO-OFDM With Limited Feedback

Jihoon Choi, Bishwarup Mondal, and Robert W. Heath, Jr., Senior Member, IEEE

Abstract—Spatial multiplexing with linear precoding is a simple
technique for achieving high spectral efficiency in multiple-input
multiple-output orthogonal frequency division multiplexing
(MIMO-OFDM) systems. Linear precoding requires channel state
information for each OFDM subcarrier, which can be achieved
using feedback. To reduce the amount of feedback, this paper
proposes a limited feedback architecture that combines precoder
quantization with a special matrix interpolator. In the proposed
system, the receiver sends information about a fraction of the
precoding matrices to the transmitter and the transmitter re-
constructs the precoding matrices for all the subcarriers. A new
interpolator is proposed inspired by spherical interpolation that
respects the orthogonal columns of the precoding matrices and
the performance invariance to right multiplication by a unitary
matrix. The interpolator is parameterized by a set of unitary
matrices; a construction of a suitable set is briefly described. Sim-
ulations illustrate the performance of limited feedback precoding
with coding, estimation or prediction error, and time variation
for bit error rate (BER), mutual information, and mean squared
error (MSE).

Index Terms—Interpolation, multiple-input multiple-output
(MIMO), spatial multiplexing.

I. INTRODUCTION

SPATIAL multiplexing is a method to exploit the high spec-
tral efficiency offered by multiple-input multiple-output

(MIMO) systems [1], [2]. Spatial multiplexing provides higher
multiplexing gain than traditional space-time codes [3], [4], but
is sensitive to ill-conditioning of the channel matrix deficiencies
in MIMO channels [5]–[8]. One way to improve the robustness
of spatial multiplexing to rank deficiencies in the channel is to
use linear precoding, where the data streams are premultiplied
by a matrix chosen based on channel state information (CSI).
Precoding has been proposed based on perfect CSI [9], [10] or

Manuscript received December 4, 2004; revised November 11, 2005. The
work of B. Mondal was supported by a Motorola Partnerships in Research Grant.
This work was supported in part by the Texas Advanced Tech. Program by Grant
003658-0380-2003 and the National Science Foundation by Grant CCF-514194
and CNS-322957. This work has appeared in part in the 2004 IEEE Global
Telecommunications Conf. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Xiaodong Wang.

J. Choi is with the Telecommunication R&D Center, Telecommunication Net-
work Business, Samsung Electronics, Suwon-city, Gyeonggi-do, Korea (e-mail:
heydark1@yahoo.com).

B. Mondal was with the Wireless Networking and Communications Group,
Department of Electrical and Computer Engineering, The University of Texas
at Austin, Austin, TX 78712 USA. He is now with Motorola Laboratories,
Schaumburg, IL 60196 USA (e-mail: bishwarup@gmail.com).

R. W. Heath, Jr., is with the Wireless Networking and Communications
Group, Department of Electrical and Computer Engineering, The University
of Texas at Austin, Austin, TX 78712 USA (e-mail: mondal@ece.utexas.edu;
rheath@ece.utexas.edu).

Digital Object Identifier 10.1109/TSP.2006.881251

perfect knowledge of the first/second-order channel statistics
[11]–[17].

When perfect CSI is not readily available at the transmitter, it
is often possible to use a low-rate feedback channel to provide
quantized channel state information to the transmitter [18]. In
the case of a frequency selective MIMO link, full CSI may be
represented in the form of a matrix with com-
plex entries for every realization of the channel, where ,
is the number of receive and transmit antennas and, is the
number of resolvable multipath components. In the case of a
frequency flat MIMO channel ( ), instead of quantizing
the channel matrix [19], [20], alternative approaches have been
proposed that involve quantizing an orthogonal precoding ma-
trix of dimension corresponding to every channel re-
alization, where is the number of multiplexed streams and

[21], [22].1 It has been pointed out that,
in contrast to the channel matrix, the precoding matrix does not
contain power allocation information but provides most of the
gains of full CSI [23]. Further, quantization of the precoding ma-
trix is more efficient than that of the channel matrix, because of
smaller dimension and the orthogonality constraint [24]. Other
approaches include quantizing the transmit covariance matrix
[25] and antenna subset selection [5], [7], [26]–[29], which can
be viewed as a special case of quantized precoding.

The problem of quantization of CSI for the case of frequency
selective channels for linearly precoded MIMO systems has
received little attention in the literature. Prior work in [30] deals
with adaptive two-dimensional (2-D) beamforming ( )
based on channel statistics as opposed to quantized instanta-
neous CSI. In our previous work, we considered quantized
beamforming [31] which made connections to spherical in-
terpolation [32] and could be considered as a special case of
precoding with one substream ( ).

In this paper, a MIMO-OFDM signaling scheme (combining
orthogonal frequency division multiplexing with MIMO) is
chosen that converts a frequency selective channel into a series
of narrowband MIMO channels called tones or subcarriers and
enables efficient equalization [30], [33]–[35]. A primary reason
for choosing MIMO-OFDM is the fact that the precoding
techniques developed for frequency-flat MIMO channels can
be applied to MIMO-OFDM by treating each subcarrier as a
narrowband MIMO channel.

The focus of the present paper is to develop a CSI quan-
tization strategy for a MIMO-OFDM system that optimizes a
system performance metric, for example, mean squared error
(MSE) with a linear receiver, mutual information, etc. For this

1In the remaining of the paper, precoding matrix (or precoder) will always be
orthogonal and of dimensionM �M .
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purpose, we assume perfect CSI at the receiver and a zero-delay
error free feedback link (later simulations are provided that re-
laxes these constraints). A simple strategy is to feedback the
time-domain channel taps. This involves quantization and feed-
back of the complex coefficients and may be used
for precoding, as well as power allocation for each tone at the
transmitter.2 An alternative approach is to perform the quantiza-
tion in the frequency domain where the CSI can be modeled as
a matrix of complex parameters, where is the
number of narrowband subcarriers (see, for example, [36]). It
is not established conclusively, which approach is more bit-effi-
cient but in this paper we pursue the frequency-domain approach
due to the following reasons.

• The techniques of compressing CSI used for narrowband
channels can be applied to each of the subcarriers in fre-
quency-domain. This implies that for each subcarrier, a

orthogonal precoder matrix may be used for
quantization. This forms a trivial extension of the strate-
gies used for quantizing precoding matrices in narrowband
channels [23] at the cost of a -fold increase in the feed-
back load.

• The complex parameters described above
are, in general, strongly correlated and provides the scope
of utilizing smart quantization techniques that reduces the
feedback overhead substantially without significantly com-
promising the performance.

For simplicity, we also consider uniform power allocation
across subcarriers. It may be noted that adaptive modulation
and power control across different subcarriers and streams can
be included in the proposed framework but is relegated to fu-
ture research. In this paper, we restrict ourselves to the class
of optimal precoding matrices designed with perfect CSI that
are orthonormal [37]. It is also observed that if we constrain
the quantized precoding matrices to be orthonormal, then the
quantization effectively occurs in a lower dimensional subset (a
Grassmann manifold) of the complex Euclidean space
and can lead to an efficient quantization [24]. With this mo-
tivation, we constrain the quantized precoding matrices to be
orthonormal.

In this paper, we propose clustering and interpolation as
methods to exploit the redundancy of the precoding ma-
trices, one for each subcarrier. The optimal strategy would
be to jointly quantize the precoder matrices but due to
unrealistic computational complexity and quantizer design
and storage limitations, we resort to suboptimal techniques.
In the clustering algorithm, adjacent tones are grouped into
clusters and a representative quantized precoder is chosen
for each cluster. Precoders of different clusters are quantized
independently. This reduces the computational complexity at
the cost of optimality.

The idea of interpolation is to quantize the precoding ma-
trices for select subcarriers and reconstruct the other precoding
matrices using a special nonlinear interpolator. It has been ob-
served using simulations that preserving the orthonormal struc-
ture of the precoders after interpolation provides better perfor-

2It may be recalled that the efficiency of quantization with a fixed number
of bits depends on the number of parameters as well as the joint entropy of the
parameters.

Fig. 1. Spatial multiplexing MIMO-OFDM system with linear precoding using
M transmit antennas, M receive antennas, M substreams, and N subcar-
riers. s(k) is aM -dimensional vector, x(k) is aM -dimensional vector,F(k)
is M �M .

mance than simply normalizing the columns of the precoding
matrix to reflect the power constraint at the transmitter. With this
premise, we propose a nonlinear interpolation algorithm along
the same lines of [31].

The optimal solution of the problem of compressing channel
information for a frequency selective MIMO channel is an open
problem. Here, we consider a MIMO-OFDM system and pro-
pose a suboptimal quantization strategy based on a simple clus-
tering technique and a nonlinear interpolation as a way to ex-
ploit the correlation between the different tones. It is worth men-
tioning that present and upcoming wireless broadband standards
including IEEE 802.16e [38] and IEEE 802.11n [39] include
the possibility of limited feedback. In this paper, simulation re-
sults with a IEEE 802.11n channel model and a minimum mean
square error (MMSE) receiver illustrate the performance of our
approach with channel coding, channel estimation or prediction
error using the performance metric of bit error rate (BER).

This paper is organized as follows. In Section II we present
the overall system model and summarize the principles of nar-
rowband quantized precoding. In Section III we present the de-
tails of our interpolation algorithm including the numerical re-
sults on precoder correlation, the proposed interpolator, opti-
mization of the proposed interpolator, and a discussion on the
derotation codebook. Finally, we present simulation results in
Section IV and wrap up with conclusions in Section V.

II. SYSTEM DESCRIPTION AND BACKGROUND

In this section, we review the MIMO-OFDM system with
linear precoding under consideration. Then we provide back-
ground on the cost functions that are used to determine the pre-
coding matrices. Finally, we encapsulate quantized precoding
for narrowband spatial multiplexing systems, which we will also
employ in our system.

A. System Overview

A spatial multiplexing MIMO-OFDM system with linear
precoding using transmit antennas, receive antennas,
and subcarriers is illustrated in Fig. 1. At the trans-
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mitter, the th subcarrier transmits a -dimensional vector3

, where ,
, and is the th data substream. The vector

is multiplied by an precoding matrix
yielding . We assume that the transmit
power is identically assigned to all subcarriers and that

. We consider precoding ma-
trices with orthonormal columns [37], thus .
We assume that the sampled impulse response of the channel
is shorter than the cyclic prefix. Then the channel for the th
subcarrier after the discrete Fourier transform (DFT) can be
described by a channel matrix whose entries
represent the channel gains experienced by subcarrier . After
the DFT, the received signal at the th subcarrier yields a

-dimensional vector , which is expressed as

(1)

where is a noise vector whose entries have the i.i.d. com-
plex Gaussian distribution with zero mean and variance .

The signal model in (1) is identical to that of a narrowband
MIMO system with linear precoding, thus in (1), can be
chosen by using the criteria proposed for narrowband MIMO
systems with linear precoding [9]–[11], [40]. The received
symbol vector is decoded by a vector decoder assuming
perfect knowledge of .

B. Optimal Precoders With Perfect CSI

Assuming perfect channel knowledge and an appropriate ob-
jective function, the optimal precoding matrix can often be de-
rived. In the case of a maximum likelihood (ML) receiver, how-
ever, a closed form expression for the precoding matrix is not
available, partly due to the coupling between the constellation
and the channel realization in the BER expressions [41]. Since
the complexity of the ML receiver increases exponentially in the
number of substreams, zero-forcing (ZF) and MMSE receivers
become of interest. In this case, a matrix is found under
the desired criteria, applied to the received symbol vector, and
followed by independent detection of each substream

(2)

where means the slicing. For the MMSE criterion

(3)
In the case of a ZF or MMSE receiver, it is shown in [7] that

a bound on the average probability of a vector symbol error is
minimized by maximizing a bound on the minimum substream
signal-to-noise ratio (SNR). Based on this fact, the optimal pre-
coder with orthonormal columns (say ) is derived in

3We use to denote transposition, to denote conjugate transposition, to
denote matrix inversion, the pseudoinverse, I to denote aM �M identity
matrix, k �k to denote the matrix 2-norm, k �k to denote the Frobenius norm,
j � j to denote absolute value, trace(�) to denote the trace of a matrix, det(�) to
denote the determinant of a matrix, to denote theM dimensional complex
vector space, CN (0; � ) to denote complex normal distribution with indepen-
dent real and imaginary parts distributed according to N (0; 1), U(M ;M) to
denote the set of M �M matrices with orthonormal columns, � fAg denotes
the ith largest singular value ofA and card(�) to denote the cardinality of a set.

[22]. Let us denote the singular value decomposition of
as

(4)

where , , and
is an diagonal matrix. Then the optimal precoder de-
noted by where is a submatrix con-
sisting of columns of corresponding to the largest
singular values of . Further, the solution is not
unique since for any is also a solu-
tion.

Another criterion that is used to evaluate linear precoding fol-
lowed by MMSE reception is the MSE. In [10] the optimal pre-
coder is derived by minimizing either the trace or determinant
of the MSE matrix

(5)
It follows that the optimal precoder, restricted to the feasible
set , is again given by and the
unitary invariance property of solution is also retained [10], [22]
since both or are invariant
to the right multiplication of by a unitary matrix.

In systems with near capacity achieving codes, another objec-
tive function of interest is the mutual information (or capacity).
The mutual information has been used to formulate precoder se-
lection criteria [5], [42]. Let us express the mutual information
for a given channel and precoder as

(6)
The optimal precoder that maximizes the mutual information,
restricted to the feasible set , is given by

. Note that in (6) we have not performed waterfilling over
the eigenmodes thus this is not the true capacity with channel
knowledge. As with the other objective functions, the optimal
solution is nonunique and the objective function is in-
variant to a unitary transformation of .

C. Background on Narrowband Precoder Quantization

In this section, consider a narrowband MIMO channel, for
example the th subcarrier of a MIMO-OFDM system. Assume
that CSI is not available at the transmitter and there exists a low-
rate feedback channel to convey the channel information. Also
consider that a pre-determined set of precoding matrices, called
codebook, denoted by is known a priori to
both the transmitter and the receiver. Based on the knowledge of
the channel realization , the receiver chooses an element
of , termed as the codeword, via the codeword selection rule
and the particular index is conveyed to the transmitter through
the feedback channel. Therefore, the feedback data-rate is de-
termined by the cardinality of , specifically bits
per update. The cardinality of is small for practical purposes
and this allows us to search for the optimal codeword by evalu-
ating the objective function (or a simplified version of it) for all
codewords.
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The codeword selection rule depends on the performance ob-
jective, as described in Section II-B. It has been established in
[22] that maximizing the minimum substream SNR for a linear
receiver (ZF or MMSE) leads to a selection rule given by

(7)

where denotes the minimum eigenvalue of
. The selection rules for minimizing the MSE in (5)

with the trace function or maximizing the mutual information
as in (6) are straightforward and are given by

(8)

(9)

It may be mentioned that in the cases of QPSK and square
QAM constellations, quantized precoders that are designed and
chosen based on a BER criterion may result in a slightly better
BER performance. The issues of computational complexity re-
quirements and the structure of an optimal quantized precoder
are unclear and we choose to use MSE as a simpler design
criterion.

The performance of quantized precoding depends on the
design of the codebook . Based on bounds on the average
distortion, defined relative to the performance objective under
consideration, for Rayleigh fading channels it was found
that codebooks should be designed from packings on the
Grassmann manifold [22]. The set of all -dimensional
subspaces spanned by the matrices in is the com-
plex Grassmann manifold, denoted as . Thus, if

, then the column spaces of and ,
denoted by and are elements of . Several
distance metrics can be defined on [43] including,
the projection two-norm

(10)
and the Fubini-Study distance

(11)

The projection two-norm distance depends only on the min-
imum eigenvalue of , while the Fubini-Study distance de-
pends on the product of the eigenvalues of .

It is shown in [22] that the objectives of maximizing
minimum substream SNR and minimizing the MSE lead to
the codebook design criterion of maximizing the minimum
projection two-norm distance between any pair of codewords
belonging to . In contrast, maximizing the mutual information
lead to the design criterion of maximizing the minimum Fu-
bini-Study distance between any pair of codewords. Thus, the
codebooks designed for different objectives result in different
packings of subspaces in . These Grassmannian
codebooks naturally incorporate the unitary invariance property
of and perform well as compared to the case of perfect
channel knowledge at the transmitter (unquantized ) with
a few bits of feedback [22]. Consequently, our solution to the
limited feedback problem for MIMO-OFDM will leverage

Grassmannian codebooks but with an additional twist to reduce
feedback due to adjacent subcarrier correlation.

III. PROPOSED INTERPOLATION BASED PRECODING

In this section, we propose an interpolation algorithm that
allows us to exploit the coherence of adjacent subcarriers and
quantize only a fraction of the precoding matrices. First, we ob-
serve that the channel coherence is related to the precoder coher-
ence. Then we present two methods for improving performance:
one is based on simple clustering and the other is on clustering
followed by interpolation. Our interpolation algorithm is the
natural extension of the spherical interpolation algorithm pro-
posed in [31] but needs a unitary derotation matrix associated
with each precoding matrix to take the unitary invariance prop-
erty into account. We discuss optimization of the interpolation
by choosing a good derotation matrix and then some approaches
for quantizing .

A. Correlation Between Precoding Matrices

Adjacent subchannels in OFDM systems are correlated, by
virtue of the number of subcarriers being much greater than the
length of the cyclic prefix. Since the precoders for each sub-
carrier are determined from the channel matrices, precoders for
adjacent subcarriers are also correlated and we further assume
that the correlation between the precoding matrices is similar to
that between the channel matrices. It may be noted that an op-
timal precoder is derived from the right singular vec-
tors of the channel matrix . In the case of an uncorrelated
Rayleigh fading channel model for , the joint distribution
of the right singular vectors of the channel matrix is indepen-
dent of the number of receive antennas [44]. This observation
implies that the the number of receive antennas does not signif-
icantly affect correlation and we estimate the coherence of the
precoding matrices by the coherence bandwidth of the vector
channel (with one receive antenna) which essentially provides a
conventional measure of coherence bandwidth.

B. Clustered Linear Precoding

As aforementioned, due to correlation among the subcarriers,
the optimal quantization policy for the precoding matrices is
the joint quantization of all the precoding matrices. This is
clearly infeasible due to computation and storage. A simple
approach to take advantage of the correlation in the frequency
domain is to cluster adjacent subcarriers and use the precoder
for the middle subcarrier for the whole cluster. Clustering has
been proposed in various contexts in multicarrier modulation
including efficient adaptive modulation in OFDM [45] and
simplified transmit beamforming in MIMO-OFDM [31].

With clustering, the subcarriers are divided into clusters of
size . Specifically, we consider that the th cluster contains the
carriers from to and . Then
with clustered precoding, (corresponding
to the channel ) is considered to be the op-
timal precoding matrix for the th cluster and this is quantized
to using criteria (7), (8) or (9) as appropriate.
The receiver sends the indices of
back to the transmitter and the transmitter uses this information
for clustered linear precoding. Specifically, is
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used as the precoding matrix for all the subcarriers in cluster
. The feedback requirements are and grow

as the cluster shrinks. We use clustering to provide a baseline
for subsequent comparisons. More sophisticated forms of clus-
tering can be devised, however, this is beyond the scope of this
paper.

C. Proposed Linear Precoding Scheme

Clustering is an efficient quantization strategy that exploits
correlation to reduce feedback requirements. It suffers from
mismatch at the edges of the cluster boundaries because the
subcarriers near the cluster boundary are more likely to ex-
perience mismatch. As a cure, we consider interpolation to
improve the smoothness of the precoder reconstruction at the
transmitter. Given derived according
to (7), (8) or (9) we propose to find by interpolating
between adjacent clusters.

The basic idea of interpolation is not new, e.g., low com-
plexity channel estimators in OFDM based on pilot tones often
use linear interpolation. In the context of linear precoding, the
interpolation problem is more challenging since, based on em-
pirical knowledge, we constrain the interpolated precoding ma-
trices such that they retain their orthogonal structure.

Our approach is to use the fact that if a function is smooth
in the Euclidean space it remains smooth on the Stiefel mani-
fold [46]. We perform the interpolation in Euclidean space then
project the result back to the Stiefel manifold. This approach
has been employed for spherical interpolation (see, e.g., [32])
where the interpolated points are projected back to the surface
of the sphere as well as for solving optimization problems on
manifolds (see, e.g., [47]) where the tangent space is projected
onto the Stiefel or Grassmann manifold.

Previously, we used a similar approach based on spherical
interpolation to solve the special case of beamformer interpo-
lation in [31]. In the case of beamforming, are unit-norm
vectors and the unitary invariance amounts to a complex phase

. The spherical interpolator in [31] takes the weighted sum of
beamforming vectors and normalizes the result to have it the unit
norm. For example, for vectors in the first cluster it computes

(12)

(13)

where are the beamforming vectors (we use lower case
notation to emphasize they are vectors), , and

. The first step in (12) is simply a linear interpo-
lation. The second step in (13) forces the output of the interpo-
lator to be normalized. The phase rotation parameter in (12)
is used to remove the distortion caused by the unitary invari-
ance of the optimal beamforming vector, i.e., the optimal beam-
forming vector can be multiplied by an arbitrary phase rotation.
The phase rotation is optimized, quantized, and conveyed back
to the transmitter.

In the absence of a straightforward algorithm for interpolation
on the Grassmann manifold we propose a simple extension of
the beamformer interpolator as in (12), (13) [31]. In essence, we
perform a linear interpolation with an invariance parameter and
then solve a matrix nearness problem to find the closest precoder

with orthonormal columns. The proposed interpolation strategy
has not been proved to be optimal but provides a practical way
to improve the precoding performance with limited feedback as
shown using simulations in Section IV.

1) Linear Interpolation: To formulate the appropriate linear
interpolation problem, recall the MSE and capacity criteria in
(5) and (6). Given a unitary matrix , both cost func-
tions satisfy and

. In other words, the optimal precoder is not unique
under the criteria, but denoted as a set of matrices. Because the
precoding matrix is calculated independently for each subcar-
rier, the matrix is arbitrarily determined without considering
interpolation. The matrix , however, has a substantial influ-
ence on the performance of an interpolator. Based on this ob-
servation, we propose to interpolate using a simple weighted
average, with an additional unitary matrix as a free param-
eter for interpolation

(14)

where and . We only need to
consider a unitary multiplication of the second term because we
can always factor out the rotation of the first term. We elaborate
on how to choose in Section III-D.

2) Nearest Precoder: After interpolation, our goal is to find
the nearest candidate precoding matrix to (14). This is an ex-
ample of a matrix nearness problem [48]–[50], and this solu-
tion is well known. We summarize the relevant result in the
following.

Theorem 1: Consider a matrix where
and has singular value decomposition . Then

Further, can be computed using .
Proof: See [50, Section III-F] or [51, pp. 431,432].

Equipped with Theorem 1 we propose to solve for the inter-
polated precoders using

(15)

where is the output of (14). Note that efficient al-
gorithms are available for computing the polar factors in [52]
and may be preferred in implementation over (15). It may be
remarked that (14) and (15) provide a simple and bit-efficient
way of customizing the linear interpolator for the orthogonality
constraint using a matrix per cluster. Depending on the com-
plexity and compression requirements, however, more parame-
ters and better parameterizations may be used, which are cur-
rently under investigation.

3) Proposed Interpolator: To summarize, our proposed
interpolator uses to compute

by solving the linear interpolation in (14) followed
by the projection in (15) to enforce . The
parameters of the interpolator are the set of derotation matrices

, which serve to account for the unitary invariance
of the precoder. For the best reconstruction, the derotation pa-
rameters should be optimized based on the same performance
measure used to evaluate precoding.
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D. Optimization of the Proposed Interpolator

In the proposed interpolator, the matrix only contributes
to the calculation of the precoders for a single cluster

. This allows us to optimize each sep-
arately, reducing the complexity of the optimization. There are
many possible criteria for formulating the optimization; for sim-
plicity we focus on improving the performance of the worst sub-
carrier.

Considering that the quantization criterion is (8), we find the
minimizing the maximum MSE as follows:

(16)
where and . Note that
depends on through in (14). The optimization
problem for can be formulated similarly for the quantization
criteria (7).

Because of the projection operation in (15), a closed-form
solution to (16) is difficult. Fortunately, we are quantizing
for limited feedback, thus we can numerically find the best
by selecting a matrix from a codebook of unitary matrices.
We comment on quantization of in Section III-E. Given a
codebook , we can modify (16) to

(17)

Evaluating this optimization requires a search over the unitary
matrices in (17). The performance and complexity are depen-
dent on .

As an alternative to the MSE, we can quantize as
well as optimize based on the capacity criterion. In this case,
we solve for using (9). Then we find the best by
maximizing the sum rate of all OFDM subcarriers in the cluster
under the equal power assumption

(18)

1) Feedback Requirements: The proposed approach re-
quires feedback bits.
Simple clustering and antenna subset selection [7] necessitate

and ,
respectively. Optimal precoding that sends a quantized version
of each precoder to the transmitter requires
feedback bits.

E. Designing Codebooks of Unitary Matrices

For limited feedback implementation, we need quantize the
derotation matrices. Unfortunately, our previous work on Grass-
mannian quantization only addresses quantizing tall matrices
with orthonormal columns and specifically does not provide a
solution when the matrices are square. Consequently, in this sec-
tion, we describe methods of designing the codebook of unitary
matrices . We do not present optimal designs; finding optimal
sets of matrices is a topic for future work.

From a vector quantization perspective, designing requires
the knowledge of the probability distribution of the solution of
(16). In the absence of this distribution, we assume that the solu-

TABLE I
CODEBOOK Q FORM = 2, AND card(Q) = 3

tion of (16) is isotropically random. This is reasonable following
the isotropic invariance of the Rayleigh fading channel. Under
a uniformity assumption the goal of the codebook design is to
choose unitary matrices that are maximally spaced in
some sense.

One approach is to treat as a set of orthonormal bases
(ONB) and to maximize the minimum correlation between any
pair of basis. It is known that for the optimal solution, the max-
imal correlation between elements of different ONBs is equal to

. To make this more formal, two (or more) ONBs
and are said to be mutually unbiased bases (MUB) if
they satisfy [53], [54]

(19)

Each ONB represents a unitary matrix, an element of . Con-
structions of MUBs have been dealt with in [54]–[56]. The ex-
istence of MUBs in where , is an
integer has been shown in [57]. In this paper, we use the con-
struction provided in [54] that leads to an algebraic solution for

for the particular case of given in Table I.
While the algebraic construction of MUBs is appealing, if

the feedback is binary than this construction may not make full
use of all the available feedback bits. Consequently, we also
consider the design of for arbitrary and cardinality. The
strategy is to parameterize the unitary matrices and then quan-
tize the parameter space. We consider the parameterization ob-
tained by decomposing a unitary matrix into Givens rotations.

Proposition 1: (Theorem 1 in [58]) A unitary matrix
can be decomposed as

(20)
where the dimensional diagonal matrix

(21)
is ( ) 1’s, is the Givens matrix which op-

erates in the coordinate plane of the form

(22)

Proposition 1 parameterizes a unitary matrix into
parameters .

A method to quantize the set of unitary matrices is to use
standard algorithms for vector quantizer design, for example,
the Lloyd algorithm [59] to jointly determine the reconstruction
points for all the parameters . Then, the codebook
of unitary matrices, is designed by reconstructing unitary ma-
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TABLE II
CODEBOOK Q FORM = 2, AND card(Q) = 4 (2 BITS)

trices from the quantized parameters . We used the
Linde–Buzo–Gray (LBG) algorithm for vector quantizer design
[60] with a squared error distortion and an example codebook
designed in the case of , is illustrated in
Table II. We show in the simulations that both codebook designs
perform well.

IV. SIMULATION RESULTS

In the simulation, we considered a MIMO-OFDM system
with , , , , and cyclic prefix
length of 16. We used the (correlated) MIMO channel model
provided by the IEEE 802.11 TGn [39] assuming the following
parameters: channel model B for downlink and non line-of-sight
where the channel length in time is 9, antenna spacings at the
transmitter and receiver are and , respectively, where is
the carrier wavelength, and a sampling rate of 20 MHz. We as-
sumed that the channel was fixed during a data burst and ran-
domly changed between data bursts; was i.i.d. zero mean
complex Gaussian; the feedback channel had no delay and no
transmission error; quadrature phase shift keying (QPSK) mod-
ulation and MMSE detection were used for BER simulations;
and the transmit power was uniformly distributed to all sub-
carriers. Every point of the simulation results was obtained by
averaging over more than 500 independent realizations of the
channel and noise.

A. Performance Evaluation for Clustering and Interpolation

Given a limit on the total number of feedback bits, we find
the optimal values for the codebook sizes , ,
and the cluster size through BER simulations based on clus-
tering and interpolation, respectively. Then we present the per-
formance of clustering and interpolation as a function of total
feedback bits. To quantize the precoding matrices, we used the
codebook in [22] (see the authors’ web site to obtain a copy of
the codebooks). We designed the codebook for quantization of
the derotation matrix using the LBG algorithm addressed
in Section III-E. For convenience, we define a new notation

; implies the clustering method with cluster
size and -bit feedback for precoder quantization;
implies the proposed interpolation scheme with cluster size
using -bit feedback for precoder quantization and -bit feed-
back for quantization of the derotation matrix . Accordingly,
we use codebooks with and ,

TABLE III
OPTIMAL CHOICE OF PARAMETERS FOR CLUSTERING AND REQUIRED E =N

TO ACHIEVE BER = 10 WHEN M = 4,M = 2,M = 2, ANDN = 64

respectively, and the total number of feedback bits becomes
.

When the total number of feedback bits is fixed, we can
make several combinations of triple satisfying the
feedback requirements. Table III shows possible combinations
of parameters for the clustering algorithm ( ). In the
table, means that half tones used and the
other half utilized . The table also denotes the optimal
choice of parameters and the corresponding to achieve

which were found by numerical simulations
based on the BER criterion. As expected, the required
for clustering decreased as the total number of feedback bits
increased. Given an -bit codebook , the BER improvement
by reducing the cluster size rapidly decreases when is
smaller than the channel coherence bandwidth. This results in
a tradeoff between and . Note that the optimal pairs of
and are highly dependent on the number of transmit antennas
and the channel length in time. In a manner similar to Table III,
we found the optimal parameters for the proposed interpolator
as shown in Table IV. For the proposed interpolator, was
determined by (17). Comparing to Table III, the optimal cluster
size for interpolation was equal to or slightly greater than that
for clustering. The interpolation scheme required less
than the clustering method when the number of feedback bits
was greater than 24. When the number of feedback bits is small,
the precoding gain is significantly reduced by the feedback
overhead for . Specifically, the interpolation approach pre-
sented 2.0 dB loss over clustering for the total 16-bit feedback.

Fig. 2 compares the BER performance of the interpolator with
that of clustering, when the total number of feedback bits is 32,
48, and 64. for interpolation was determined by (17). This
figure shows the performance gain of interpolation over clus-
tering with the same feedback bits. As the number of feedback
bits increased, the BER curves of clustering and interpolation
approached that of the precoder with perfect CSI which attained

at .

B. Comparison With Existing Precoding Methods

We performed numerical simulations and compared the
proposed interpolation method with the clustering method
and other existing methods (using typical parameters) such as
antenna subset selection [5], [7] and, MMSE detection with
optimal precoding. To quantize the precoding matrices, we
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TABLE IV
OPTIMAL CHOICE OF PARAMETERS FOR PROPOSED INTERPOLATOR AND

REQUIRED E =N TO ACHIEVE BER = 10 WHEN M = 4,
M = 2, M = 2, AND N = 64

Fig. 2. BER performance of clustering and proposed interpolation with various
feedback bits whenM = 4,M = 2,M = 2, andN = 64. For the proposed
interpolator, Q was determined by (17).

used the same type of codebooks used in Section IV-A. We
set the total amount of feedback bits to 48 and selected the
optimal parameters – (3, 0, 4) for clustering and (4, 2, 8) for
interpolation. For comparison purposes, we also considered
antenna subset selection where the best 2 of 4 antennas are
selected per subcarrier according to the same design criterion
as that used for precoder quantization. In this case we required
a total of 192 feedback bits. We used 256 bits for the optimal
quantized precoder with feedback for all subcarriers. As a
bound on achievable performance, we also considered the
optimal precoder without quantization.

1) BER Comparison: The BER performance is illustrated
in Fig. 3. The maximum minimum singular value criterion [7]
was used for antenna subset selection and for the proposed

Fig. 3. Comparison of BER performance when M = 4,M = 2,M = 2,
N = 64, and K = 8. For the proposed interpolator, Q was determined by
(17).

scheme was determined by (17). The proposed method per-
formed better than clustering, yet exhibited some loss in di-
versity order compared to MMSE precoding with quantization.
The reason is that interpolation introduces mismatch with the
optimal precoder. Antenna subset selection, as is typical when
comparing with optimal diversity methods, exhibits array gain
loss. Antenna subset selection, however, is applied to every sub-
carrier and thus achieves the full diversity order as MMSE pre-
coding since there is no interpolation loss (see [61] for example
for a discussion of linear receiver performance with transmit
correlation). As a consequence, the proposed performed better
than antenna subset selection in the low region while
the BER performance was reversed in high region. Note
that the proposed scheme requires only 48 feedback bits, which
is just 25% of the feedback for antenna subset selection.

2) BER Comparison Under Channel Mismatch: In real sys-
tems, in addition to quantization error, there are also errors due
to channel estimation errors at the receiver and/or delays in the
feedback channel. To study this effect, we employ the first-order
autoregressive model given by

(23)

where is the predicted channel at the transmitter,
is the th element of , is i.i.d. com-

plex Gaussian noise with zero mean and unit variance, and
. Then the MSE between and is

denoted as

(24)

With suitable choice of parameters this model accounts for
channel estimation error or delay in the feedback channel.
Fig. 4 illustrates the BER degradation caused by mismatch for

as a function of . As follows from Fig. 3, the
proposed method performed better than clustering and antenna
subset selection, and the BER loss over the optimal MMSE
decreases with MSE of the predictor. Note that clustering and
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Fig. 4. BER degradation by channel prediction error when M = 4,M =

2, M = 2, N = 64, and K = 8. For the proposed interpolator, Q was
determined by (17).

Fig. 5. Comparison of capacity whenM = 4,M = 2,M = 2, N = 64,
andK = 8. For the proposed interpolator,Q was determined by (18).

the proposed method performs better than spatial multiplexing
without precoding even when the MSE approaches 0 dB. This
means precoding has advantages over non-precoding spatial
multiplexing for a substantial amount of channel mismatch.

3) Capacity Comparison: Fig. 5 compares the average
channel capacity. Maximum capacity antenna subset selection
was used [5] and the matrix for the proposed scheme was
determined by (18). The proposed method outperformed clus-
tering and antenna subset selection with performance that is
almost comparable to the optimal precoding. The proposed ex-
hibited 1.5 dB loss at 6 bps/Hz compared to optimal precoding
without quantization, which is the upper bound. We have found
that this gap can be reduced through better quantization of the
precoding matrices.

4) Uncoded BER vs in Time-Varying Channels: The
uncoded BER performance in time-varying channels is shown

Fig. 6. Uncoded BER performance when E =N = 15 dB,M = 4,M =

2,M = 2,N = 64, andK = 8. Channel was time-varying within a frame and
precoding matrices were periodically updated through feedback. The proposed
interpolator was the same in Fig. 3.

in Fig. 6 where denotes the Doppler frequency normal-
ized by the OFDM symbol duration . In the figure, it was
assumed that all the precoding methods use the same feedback
ratio. To make this comparison fair, consequently, we had to use
different frame lengths for each method. Optimal precoding, for
example, uses a very long frame length since it has more bits to
send while clustering can use a very short frame length and thus
update the precoders more often. Taking into account the feed-
back requirements discussed in Section III-C, the frame length
was set as 30, 30, 120, 160 symbols for clustering, the proposed
method, antenna subset selection, and the optimal MMSE, re-
spectively. The proposed method had the lowest BER when

. The BER performance of the optimal
MMSE increases rapidly with because it has the longest
precoder update period.

5) Coded BER in Time-Varying Channels: The coded BER
values in time-varying channels with are presented
in Fig. 7. For channel coding, we used a convolutional code with
generator polynomials and with coding
rate 1/2, along with the interleaver and deinterleaver defined in
[62], and soft Viterbi decoding. The feedback ratio was fixed and
thus the frame length in this simulation was different for each
method as in the previous case according to Fig. 6. Each OFDM
symbol transmitted 128 bits which is a half of the uncoded case.
The proposed scheme outperformed antenna subset selection
and the optimal MMSE precoding, and exhibited 0.9 dB gain
over clustering at .

V. CONCLUSION

We proposed a limited feedback implementation for spatial
multiplexing MIMO-OFDM systems with linear precoding. By
combining quantized precoding with a structured interpolation,
we were able to substantially reduce the amount of feedback
required versus quantizing the precoder for every subcarrier.
Our interpolation introduces a derotation parameter, which is
optimized according to the desired performance metric, e.g.,
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Fig. 7. Coded BER performance whenM = 4,M = 2,M = 2,N = 64,
and K = 8. Channel was time-varying within a frame with f T = 0:01. A
convolutional code with rate 1/2 was used along with interleaving.

MSE or mutual information. Our Monte Carlo simulations illus-
trated the reductions in feedback in a variety of circumstances,
overall resiliance to delay in the feedback channel, and ability
to cope better in moderately fading channels when the feedback
capacity is fixed.

The proposed interpolator was derived by performing a linear
interpolation in Euclidean space then projecting the results back
to the Stiefel manifold. An alternative way to perform interpola-
tion is to work directly in the Grassmann manifold. This would
eliminate the need for a derotation matrix and thus would further
reduce the feedback required. We are currently investigating so-
lutions along these lines.
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