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An MMSE Estimator for Speech Enhancement Under
a Combined Stochastic–Deterministic Speech Model

Richard C. Hendriks, Richard Heusdens, and Jesper Jensen

Abstract—Although many discrete Fourier transform (DFT)
domain-based speech enhancement methods rely on stochastic
models to derive clean speech estimators, like the Gaussian
and Laplace distribution, certain speech sounds clearly show a
more deterministic character. In this paper, we study the use
of a deterministic model in combination with the well-known
stochastic models for speech enhancement. We derive a min-
imum mean-square error (MMSE) estimator under a combined
stochastic–deterministic speech model with speech presence un-
certainty and show that for different distributions of the DFT
coefficients the combined stochastic–deterministic speech model
leads to improved performance of approximately 0.8 dB segmental
signal-to-noise ratio (SNR) over the use of a stochastic model
alone. Evaluation with perceptual evaluation of speech quality
(PESQ) shows performance improvements of approximately 0.15
on an MOS scale.

Index Terms—Deterministic speech model, minimum mean-
square error (MMSE), speech enhancement.

I. INTRODUCTION

MANY digital speech communication applications, e.g.,
speech coding and speech recognition, are aimed at

processing of noise-free speech signals. However, in prac-
tice, speech signals are often degraded by acoustical noise.
To overcome degradation, noise can be removed before fur-
ther processing using (single-channel) speech enhancement
methods. An important class of such algorithms are the discrete
Fourier transform (DFT) domain-based methods that work on
a frame-by-frame basis, where relatively good quality can be
obtained with relatively low complexity. Here, criteria like min-
imum mean square error (MMSE) [1] or maximum a posteriori
(MAP) [2] are used to estimate the clean speech DFT coeffi-
cients. The main focus in DFT domain speech enhancement
has been on the derivation of estimators relying completely
on a stochastic model for the clean speech DFT coefficients.
Often, speech DFT coefficients have been assumed Gaussian
distributed [1], [3], although more recently estimators have
been derived which assume Laplacian or Gamma distributed
speech DFT coefficients [4].
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Although most DFT domain enhancement algorithms rely on
stochastic models, it can be observed that certain speech sounds
have a more deterministic character. For example, it is well
known that voiced speech segments may be represented well
by a linear combination of sinusoidal functions with constant
frequency and exponentially decaying amplitude or, as a spe-
cial case, a constant amplitude [5, Ch. 4]. With this signal rep-
resentation, the sequence of DFT coefficients seen across one
particular frequency bin constitutes a completely deterministic
time-series. In [6], a maximum likelihood-based spectral ampli-
tude estimator was derived under a deterministic speech model.
Here, the clean speech DFT coefficients are characterized by
deterministic, but unknown amplitude and phase values, while
the noise DFT coefficients are assumed to follow a zero-mean
Gaussian probability density function (pdf). The use of this es-
timator leads to less suppression as compared to the case where
speech DFT coefficients are assumed stochastic. Obviously, a
deterministic speech model is not always appropriate. For ex-
ample, for noise-like speech sounds, such as /s/, /f/, etc., the
DFT coefficients should rather be represented by a stochastic
model.

Assuming that speech cannot be modeled as either strictly
stochastic or deterministic, we present in this paper an MMSE
clean speech estimator where the speech DFT coefficients are
modeled as a mixture of a deterministic and a stochastic speech
model. Further, we combine this MMSE estimator with a speech
presence uncertainty model, similar to [1], [6].

The remainder of this article is organized as follows. In
Section II, we consider the individual deterministic and sto-
chastic speech models and present their corresponding MMSE
estimators. In Section III, we specify the deterministic model
and and explain how to estimate its parameters. In Section IV,
we derive the MMSE estimator under the combined sto-
chastic–deterministic (SD) speech model. In Section V, we
present experimental results, and finally in Section VI, we draw
some conclusions.

II. STOCHASTIC AND DETERMINISTIC SPEECH MODEL

In this section, we introduce the stochastic and the determin-
istic speech model. We assume the noise process to be additive,
i.e.,

with , , and the noisy speech, clean
speech, and noise DFT coefficient, respectively, at frequency
bin and time frame . Further, we assume that and

are uncorrelated (for the stochastic model) and that the
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noise DFT coefficients have a zero-mean complex Gaussian
distribution.

By deriving an MMSE estimator under an SD speech model,
we exploit the idea that certain speech DFT coefficients can be
better modeled with a deterministic model while others can be
better modeled by a stochastic model. In the following deriva-
tions, we use the complex zero-mean Gaussian distribution as
stochastic representation for the clean speech DFT coefficients.
However, we note that this work is general and can also be ex-
tended to other distributions like the Laplace and Gamma dis-
tribution as shown in the experimental results in Section V.

A. Probability Density Function of Noisy DFT Coefficients

In this section, we consider the probability density functions
of the noisy DFT coefficients under both the stochastic and the
deterministic model, respectively.

• Stochastic Model:
Under the stochastic speech model and using the assump-
tion that clean speech DFT coefficients have a complex
zero-mean Gaussian distribution, the noisy speech DFT co-
efficients have the following zero-mean complex Gaussian
distribution:

(1)

where indicates that speech is produced with a stochastic
model, and where is the variance of the noisy
DFT coefficient which equals the sum of the noise
variance and the clean speech variance, that is

.
• Deterministic Model:

Under the deterministic speech model, we assume that
can be written as the sum of a deterministic

variable (due to ) and a stochastic variable (due
to ). Using the assumed (zero-mean) Gaussian
distribution of the noise DFT coefficients, this leads to a
nonzero mean Gaussian distribution for the noisy DFT
coefficients

(2)

with , and where indicates that
speech is produced with a deterministic model. Apart from
having a nonzero mean, we note that the variance of
under the deterministic model may be significantly smaller
than that of under a stochastic model.

B. MMSE Estimators

In order to derive an MMSE estimator for the clean speech
DFT coefficients under an SD speech model, we first consider
the individual MMSE estimators for stochastic and determin-
istic representations.

• Stochastic Model:

Under the stochastic Gaussian speech model it is well
known that the Wiener filter is the MMSE estimator, that
is

(3)

with
the a priori SNR.

• Deterministic Model:
Under the deterministic speech model, the clean
speech DFT coefficients are assumed to be determin-
istic, but unknown. This means that

with the value of the deter-
ministic clean speech DFT coefficient itself and where

is a delta function. The MMSE estimator then is

(4)

where we observe that .
Notice that both estimators in (3) and (4) are MMSE and
expressed in terms of expected values. Since in practice
these expected values are unknown, estimation is neces-
sary. For estimation of , the decision-directed ap-
proach or maximum likelihood approach is often used [1].
Estimation of will be considered in the next
section.

III. ESTIMATION OF DETERMINISTIC SPEECH

MODEL PARAMETERS

So far, we considered the use of a deterministic speech model;
however, we did not specify the exact model itself. If the clean
speech signal can be represented by a sum of (exponentially
damped) sinusoids with constant frequency, that is

where indicates a time domain sample, is the time
sample index, the amplitude, the phase, the exponen-
tial decay factor, and the frequency of component , then the
DFT coefficients at each frequency bin can be described by
a sum of complex exponentials seen across time. However,
under the assumption of sufficiently long frame sizes, there
will be no more than one dominant exponential, say component

, per frequency bin. Let us, therefore, assume that our deter-
ministic model for a clean speech DFT coefficient is a
single complex exponential, that is

(5)

(6)

with , the analysis window (of length
) used to define the signal frame, the frame

shift and , where is the DFT size ,
and the index of a certain frame. We can write (6) in the form
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, with . If the noise is
wide sense stationary for and if
is sufficiently large with respect to the correlation time of the
noise, then the observed noise sequence for

is white. Estimation of and is then known as
a standard harmonic retrieval problem [7], and estimation of
and can be done from the noisy DFT coefficients using the
ESPRIT algorithm [8].

When is the time span across which
we assume the deterministic model to be valid, then in practice
we can approximate (4) using the relation in (6) as

(7)

(8)

where each term is corrected for the decay in amplitude and
phase shift. The values for and should be chosen such that
the deterministic model is valid. This could be done by using
fixed values such that the deterministic model is valid over the
interval or adaptively, e.g., by using an
adaptive segmentation as in [9]. Note that for we have a
special case of the aforementioned presented model

(9)

(10)

We see that the estimators in (8) and (10) modify magnitude
as well as phase of the noisy DFT coefficient . Further,
notice that when , the estimate of is

.

A. Simulation Examples

To illustrate the idea of using a deterministic speech model,
we conducted two simulation experiments. As a first experi-
ment, we generate a synthetic clean speech signal consisting of
five (deterministic) sinusoidal components and a (stochastic)
autoregressive process. Then we generate a noisy signal by
adding white Gaussian noise at an SNR of 10 dB to the clean
synthetic signal. We now compute DFT coefficients seen across
time and plot in Fig. 1 in the complex plane the values of
with originating from a frequency bin con-
taining only the stochastic components (cloud centered around
the origin) and values of originating from a frequency
bin containing only one of the deterministic components (cloud
with an offset from the origin). The variance of the latter is
smaller than the variance of the first cloud and is only due to
the noise variance in (2). Notice, that for the cloud containing
noisy deterministic components, it is sufficient to compute the
mean of the cloud to estimate the clean deterministic signal
component.

In Fig. 2, we present a second simulation example where the
potential of distinguishing between a stochastic and a deter-
ministic model on a natural speech signal is demonstrated. In
Fig. 2(a) and (b), an original clean speech time domain signal
and its spectrogram are shown, respectively. The signal was de-
graded by white noise at an SNR of 10 dB and enhanced using

Fig. 1. y(k; n)e at a frequency k containing a deterministic
signal component (+) and at a frequency k containing a stochastic signal com-
ponent (�), respectively.

Fig. 2. (a) Clean speech signal. (b) Clean speech spectrogram. (c) Black: de-
terministic model is optimal in terms of local SNR. White: stochastic model is
optimal in terms of local SNR.

two different enhancement systems, one using the stochastic
model and one using the deterministic model. We compute for
each time-frequency point for each method the resulting SNR
and evaluate which of the two models lead to the highest SNR.
This is shown in Fig. 2(c); a preference for the deterministic
model is expressed as a black dot and a preference for the sto-
chastic model as a white dot. As expected, the deterministic
model performs better at the spectral lines that are visible in
the spectrogram (voiced regions), while in the unvoiced speech
regions, the stochastic model is preferred. For this experiment,
we averaged the result over 100 different noise realizations and
used the maximum likelihood (ML) approach [1] to estimate
the a priori SNR , where the number of frames that is used in
the ML approach is set at . We use the ML approach in-
stead of the often-used decision-directed [1] (DD) approach to
overcome a dependency on past frames, as will be the case with
the DD approach. Such dependencies can lead to wrong, biased,
estimates of the suppression gain under the stochastic speech
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model when speech sound changes take place and as a result
can lead to too much suppression or even complete removal of
low energy speech components that only last for a short time.

IV. MMSE ESTIMATION UNDER COMBINED

STOCHASTIC-DETERMINISTIC SPEECH MODEL

To find an MMSE estimator of the clean speech DFT co-
efficients under a combined SD speech model, we present in
this section two different setups: a completely general model
where a soft decision is made based on estimated probabili-
ties between the stochastic and deterministic model and where
speech presence uncertainty is taken into account, abbreviated
with SOFT–SD–U. Second, a special case of the first model
where instead of a soft decision, a hard decision between the
stochastic and deterministic model is made without speech pres-
ence uncertainty, abbreviated with HARD–SD. To do so, we in-
troduce the set . Here , , and
indicate speech absence, that speech was generated with a deter-
ministic model, and that speech was generated with a stochastic
model, respectively. Although all derivations in this section are
per frequency bin and frame index , we leave out these indices
for notational convenience. This means that is
written as .

A. SOFT–SD–U Estimator

To find the MMSE optimal estimator SOFT–SD–U, we com-
pute the conditional expectation . That is

(11)

(12)

where in (11) we used the fact that when . The
conditional probabilities and can be com-
puted using Bayes rule as

(13)

(14)

(15)

(16)

with

and

respectively. Here , , and denote the prior
probabilities, that in a frequency bin speech is absent, that a fre-
quency bin contains speech and is deterministic and that a fre-
quency bin contains speech and is stochastic, respectively. The
values chosen for those a priori probabilities will be discussed
in Section V. Further, is given by

and and are given by (1) and (2), respec-
tively. Computation of (2) can be done by substitution of (10)
in (2). Notice that can efficiently be written in terms of the a
priori and a posteriori SNR and , respectively, as
presented in [1]. For an outline of the SOFT–SD–U algorithm
see the Appendix.

B. HARD-SD Estimator

With the HARD-SD estimator we assume that speech is al-
ways present, that is . The estimator HARD-SD fol-
lows from (12) by setting either equal to 1 (deter-
ministic speech model), or to 0 (stochastic speech model). This
means that

if deterministic speech
if stochastic speech.

(17)

The decision between the deterministic and stochastic speech
model is made by the following hypothesis test:

Under the hypothesis, the stochastic model is chosen
, and under the hypothesis, the determin-

istic model is chosen ). We decide between
and using the Bayes criterion [10], that is

(18)

where the threshold , and and
are the likelihood of the stochastic and deterministic model to
occur, respectively. For an outline of the HARD-SD algorithm
see the Appendix.

In Fig. 3, the hypothesis test to distinguish between a sto-
chastic (Gaussian) and deterministic speech model in (18) is
demonstrated using the same speech signal as used in Fig. 2,
degraded by white noise at an SNR of 10 dB. The top figure
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Fig. 3. Top: clean speech signal spectrogram. Bottom: Outcome of hypothesis
test, Black: speech component is classified as deterministic, White: speech com-
ponent is classified as stochastic.

shows the clean speech spectrogram. The bottom figure shows
in the time-frequency plane the outcome of the hard decision
of (18), where a black dot means that the speech component is
classified as deterministic and a white dot that it is classified as
stochastic. The hypothesis test appears to perform as expected:
DFT coefficients representing harmonics are classified as deter-
ministic, while, e.g., the DFT coefficients in the indicated region
are classified as stochastic.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we compare the proposed SOFT–SD–U and
HARD-SD enhancement methods with a traditional enhance-
ment method which relies on a stochastic speech model alone
with and without speech presence uncertainty, respectively. For
evaluation, we use an extended version of the perceptual evalua-
tion of speech quality (PESQ) measure [11] and segmental SNR
defined as [12]

where and denote frame of the clean speech signal
and the enhanced speech signal, respectively, is the number
of frames within the speech signal in question, and

, which confines the SNR at each frame
to a perceptually meaningful range between 10 and 35 dB. All
objective results presented below are averaged over 24 different
speech signals originating from the TIMIT database.

In all experiments, we use speech fragments sampled at 8 kHz
and frame sizes of 256 samples taken with 50% overlap. To have
good time resolution in the estimation of (4), the DFT samples

, , are computed from frames with
an overlap of 84%. This overlap was chosen based on a tradeoff,
where on one hand, a small overlap is desirable to better satisfy
the assumption made in Section III, i.e., frame shift is suffi-
ciently large with respect to the correlation time of the noise. On
the other hand, a large overlap is necessary when using multiple
samples in (8), i.e., , , because approximation of (4)
by (8) is only valid over relatively short time intervals. In all ex-
periments, noise statistics are measured during silence regions
preceding speech activity.

Initial experiments have shown that in terms of , the
difference between the use of (8) and (10) for estimating

TABLE I
PROBABILITIES USED IN EXPERIMENTS

is negligible. Therefore, we use in all our experiments (10). Fur-
thermore, is chosen based on initial experiments.

Eqs. (13) and (15) require knowledge of the prior probabil-
ities , , and . To compute these probabili-
ties, we assume that for English speech on average speech is
voiced in 78% of the time [13], that the fundamental frequency
of speech is between and Hz [12] and that
for most voiced speech sounds, speech energy is dominantly
present up to approximately Hz. We then can com-
pute the prior probabilities as

(19)

(20)

(21)

where is the window size. For a sample frequency
Hz, window size samples, and a typical fun-

damental frequency of Hz, this leads to the values as
listed in Table I, which are the ones used in the experiments.

Estimation of in (10) is done using the ESPRIT algorithm
as mentioned in Section III. Under very low SNRs, estima-
tion of can lead to insecure estimates and, consequently,
insecure values for (13) and (15). This in turn leads to a
perceptually annoying switching between the deterministic
and stochastic model. To overcome this, we discard the deter-
ministic model when dB and use a stochastic
model alone instead. To estimate the a priori SNR
under the stochastic speech model, the decision-directed ap-
proach [1] is used with a smoothing factor with

dB .
To demonstrate that the proposed method is general and can

also work with other distributions under the stochastic speech
model, we present experimental results for the Gaussian and
Laplace distribution. The reference methods used in the experi-
ments are named: Stoch–Gauss, which is when speech DFT co-
efficients are always assumed to be Gaussian distributed and
speech is always assumed to be present. When speech pres-
ence uncertainty is taken into account, this is referred to as
Stoch–Gauss–U. Similarly, when speech DFT coefficients are
always assumed to be Laplace distributed and speech is always
assumed to be present, this is referred to as Stoch–Lap. When
speech presence uncertainty is taken into account, this is re-
ferred to as Stoch–Lap–U.

A. Objective Results Under Gaussian Stochastic Model

In this section, we present objective results for the proposed
algorithms, where we model the clean speech DFT coefficients
under the stochastic speech model with a Gaussian distribution.

In Fig. 4, we compare the performance of the proposed algo-
rithms with the reference methods in terms of improvement in
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Fig. 4. Performance comparison for Gaussian stochastic model versus com-
bined Gaussian stochastic/deterministic model for speech signals degraded by
white noise in terms of input SNR versus improved SNR .

Fig. 5. Performance comparison for Gaussian stochastic model versus com-
bined Gaussian stochastic/deterministic model for speech signals degraded by
F16-fighter cockpit noise in terms of input SNR versus improved SNR .

when speech signals are degraded by white noise at an
SNR in the range from 5 to 20 dB.

Over the whole range of input SNRs, the proposed methods
improve the performance compared to the use of a stochastic
model alone. In terms of , the performance improvement
of HARD-SD over Stoch-Gauss is approximately 0.82 dB. In-
corporating the soft decision model between speech absence,
the deterministic speech model and the stochastic speech
model, i.e., SOFT–SD–U over HARD–SD leads to an addi-
tional 0.2 dB improvement. The improvement of SOFT–SD–U
over Stoch–Gauss–U is approximately 0.87 dB.

In Fig. 5, objective results are shown for signals degraded by
F16-fighter cockpit noise, where similar performance is shown
as for the white noise case.

In Fig. 6, a performance comparison between SOFT–SD–U
and Stoch–Gauss–U is shown in terms of SNR per frame over
time together with the clean speech signal. The clean speech
signal was degraded by white Gaussian noise at an SNR of

Fig. 6. Performance in terms of SNR per frame, SOFT–SD–U (solid) versus
Stoch–Gauss–U (dotted).

Fig. 7. Performance comparison for Laplacian stochastic model versus com-
bined Laplacian stochastic/deterministic model for speech signals degraded by
white noise in terms of input SNR versus improved SNR .

10 dB. It is clear that using the SD speech model leads to an
increase in performance mainly in voiced signal regions with
improvements in local SNR up to 2.5 dB.

B. Objective Results Under Laplace Stochastic Model

In this section, we present objective results for the proposed
algorithms, for the case that clean speech DFT coefficients are
modeled as Laplace distributed random variables under the sto-
chastic model.

In Fig. 7, we compare the performance of the proposed al-
gorithms with the reference methods in terms of improvement
in , for speech signals degraded by white noise in the
range from 5 to 20 dB. Similarly, as for the Gaussian stochastic
model case also here is improved for the SD-based ap-
proaches with respect to the use of Stoch–Lap and Stoch–Lap–U
over the whole input range of SNRs. In general, the performance
differences are smaller than when a Gaussian distribution is as-
sumed as in Section V-A. We will comment more on this in
Section V-D.
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Fig. 8. Performance comparison for Laplace stochastic model versus combined
Laplace stochastic/deterministic model for speech signals degraded by F16-
cockpit noise in terms of input SNR versus improved SNR .

In terms of , the performance improvement of
HARD-SD over the use of a stochastic Laplacian model alone
is approximately 0.11 dB. Incorporating the soft decision
model between speech absence, the deterministic speech
model and the stochastic speech model, i.e., SOFT–SD–U
over HARD–SD leads to an additional 0.21 dB improvement.
The improvement of SOFT–SD–U over Stoch–Gauss–U is
approximately 0.22 dB.

In Fig. 8, similar objective results are shown, but now for
signals degraded by F16-fighter cockpit noise. The comparison
between SOFT–SD–U and Stoch–Lap–U shows similar perfor-
mance as for the white noise case. The performance difference
between HARD–SD and Stoch–Lap is negligible.

C. PESQ Evaluation

For a further evaluation of the proposed algorithms, we use
an extended version of the PESQ measure [11], which predicts
the subjective quality of speech signals with good correlation
and expresses the quality in a score from 1.0 (worst) up to
4.5 (best). In Fig. 9(a) and (b), we compare PESQ scores
for speech signals degraded by white noise and F16-fighter
cockpit noise, respectively, when it is assumed that speech
is Gaussian distributed under the stochastic speech model.
Both SOFT–SD–U and HARD–SD lead to improved PESQ
scores with respect to Stoch–Gauss–U and Stoch–Gauss.
For signals degraded with white noise SOFT–SD–U and
HARD–SD lead to an improvement of approximately 0.19 and
0.1 over Stoch–Gauss–U and Stoch–Gauss, respectively. For
signals degraded by F16-fighter cockpit noise, the improve-
ment of Soft–SD–U and HARD–SD over Stoch–Gauss–U and
Stoch–Gaus is 0.16 and 0.11, respectively.

In Fig. 10(a) and (b), we compare PESQ scores when it is
assumed that speech is Laplacian distributed under the sto-
chastic speech model. For both white noise and F16-fighter
cockpit noise, the PESQ difference between HARD–SD and
Stoch–Lap is more or less negligible. The PESQ improvement

Fig. 9. Performance comparison in terms of PESQ under a Gaussian stochastic
model for (a) input signals degraded by white noise and (b) input signals de-
graded by F16-fighter cockpit noise.

of SOFT–SD–U over Stoch–Lap–U is 0.08 and 0.05 for sig-
nals degraded with white noise and F16-fighter cockpit noise,
respectively.

Notice that Figs. 9 and 10 show smaller differences in terms of
PESQ score between the several enhancement methods at lower
input SNR (e.g., at 5 dB) than at higher input SNR, while in
Section V-A and V-B, it is shown that over the whole range of
input SNRs, the improvement in terms of is approx-
imately equal. Although PESQ and are both quality
measures, we cannot expect them to measure the same kind of
improvement, since they measure different aspects of quality.

D. Gaussian Versus Laplace Stochastic Model

In this section, we study the difference in performance
between the Gaussian and Laplace stochastic speech model as
demonstrated in the objective results in Section V-A, V-B, and
V-C and explain the smaller performance difference in terms of

and PESQ between SOFT–SD–U and Stoch–Lap–U
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Fig. 10. Performance comparison in terms of PESQ under a Laplace stochastic
model for (a) input signals degraded by white noise and (b) input signals de-
graded by F16-fighter cockpit noise.

TABLE II
COMPARISON BETWEEN THE USE OF A GAUSSIAN AND LAPLACE DISTRIBUTION

than between SOFT–SD–U and Stoch–Gauss–U. To do so, we
compare in Table II the average after enhancement of
speech signals that were originally degraded by white noise at
an SNR of 10 dB. We see from Table II that the use of a Laplace
distribution (Stoch–Lap–U) instead of a Gaussian distribution
(Gauss–Stoch–U) for the speech DFT coefficients leads to
improved . This is in accordance with the results in
[14] where an improvement of approximately 0.5 dB was
reported. Moreover, we see from Table II that also the proposed
SOFT–SD–U method with the Laplace distribution under the
stochastic speech model is slightly better in terms of as
compared to the SD methods where a Gaussian model is used.

However, comparing the results for SOFT–SD–U in Table II,
we see that the difference between SOFT–SD–U under the
two different stochastic models is decreased to approximately
0.1 dB.

Investigation of the Laplace gain function as presented
in [4] and experimental analysis given in this section reveal
that the 0.7 dB performance improvement of Stoch–Lap over
Stoch–Gauss is only partly due to a better speech model, but
that there are other beneficial side effects of using the Laplace
distribution that lead to performance improvement. More
specifically, it can be observed that the better performance is
partly connected to the use of the decision-directed approach
for estimating the a priori SNR. From [4] we know that the gain
function under the Laplace distribution applies less suppression
than the Wiener gain when the a posteriori SNR is
high and the a priori SNR low, a situation that typically
arises for speech onsets. The Wiener gain, using the Gaussian
distribution, on the other hand does not have this mechanism
and will always apply high suppression when is low
independent on the a posteriori SNR. Because the decision-di-
rected approach leads to an underestimated a priori SNR at
speech onsets [15] due to a dependency on previous frames,
the decision-directed based Wiener filter will apply too much
suppression on the onsets. The Laplace based gain function, on
the other hand, applies less suppression, due to the above de-
scribed mechanism, and will thus lead to less distorted speech.
This effect is visualized in Fig. 11(a), where the SNR per frame
after enhancement of a speech signal degraded by white noise
at an SNR of 5 dB is shown, together with the original clean
speech signal. It is clearly visible that especially at the first half
of the speech sound the use of the Laplace distribution leads
to improved SNR. This is where the DD approach leads to an
underestimation of the a priori SNR. In the second half of the
speech sound, there is still some improvement, although much
smaller because the influence on the a priori SNR estimation
of the noise only frames preceding the current speech sound
decreases as time evolves.

To support our discussion of the aforementioned described
mechanism, we show in Fig. 11(b) experimental results aver-
aged over 24 different speech signals degraded by white noise
at an SNR of 10 dB. We compare in terms of , enhance-
ment using Stoch–Lap with Stoch–Gauss, while the a priori
SNR was estimated with both the DD approach and the max-
imum likelihood approach [1], [16]. With the maximum likeli-
hood approach, the a priori SNR is computed based on an aver-
aged noisy speech power spectrum over the current and the two
last frames. The latter approach leads in general to more musical
noise than the DD approach; however, it has a smaller depen-
dency on previous frames. Fig. 11(b) shows that the Laplace dis-
tribution still leads to somewhat better performance, but that by
elimination of the dependency and consequently the previously
described mechanism, the performance gain of the Laplace dis-
tribution over the Gaussian distribution is decreased from 0.7 to
0.15 dB. Moreover, this mechanism also explains why the im-
provements of the SD methods lead to a relatively smaller im-
provement when the Laplace distribution is used. Specifically,
one advantage of the deterministic model is the independence of
the a priori SNR estimation and, therefore, it is independent of
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Fig. 11. Performance comparison in terms of SNR over time between
(a) Stoch–Lap–U (dotted) and Stoch–Gauss–U (solid) and (b) Stoch–Lap–U
versus Stoch–Gauss–U when � is estimated with both the decision-directed
and the maximum likelihood approach.

the use of a decision-directed approach. This overcomes, sim-
ilarly as with the Laplace gain function, an over-suppression
at the start of stationary speech sounds and explains why com-
bining the Laplace model with the deterministic model leads to
a relatively smaller improvement than combining the Gaussian
distribution as a stochastic model with the deterministic speech
model.

VI. CONCLUSION

In this paper, we proposed the use of a combined stochastic-
deterministic speech model for DFT-domain based speech en-
hancement. Under the deterministic speech model, clean speech
DFT coefficients are modeled as a complex exponential across
time. Using the combined speech model, we derived an MMSE
estimator for clean speech where speech presence uncertainty
is taken into account. The use of this estimator leads to less
suppression of voiced speech sounds and less muffled speech
than when a stochastic speech model alone is used. Although

Fig. 12. Block-scheme of proposed algorithms.

the presented method is general and can be extended to be used
with other distributions under the stochastic representation, we
demonstrated the use of the combined stochastic-deterministic
speech model using the Gaussian and Laplace distributions. Ob-
jective experiments showed that the use of the proposed MMSE
estimator leads to improvements over the use of a stochastic
speech model alone. Moreover, evaluation with PESQ demon-
strated an improvement in speech quality. Further, we presented
a discussion on the performance difference between the use of
the Gaussian and the Laplace distribution under the stochastic
speech model.

APPENDIX

In Fig. 12, we outline the steps of the proposed algorithms.
These steps should be performed for each and every DFT coef-
ficient of the noisy input signal.

REFERENCES

[1] Y. Ephraim and D. Malah, “Speech enhancement using a minimum
mean-square error short-time spectral amplitude estimator,” IEEE
Trans. Acoust., Speech, Signal Process., vol. ASSP-32, no. 6, pp.
1109–1121, Dec. 1984.

[2] J. S. Lim and A. V. Oppenheim, “All-pole modeling of degraded
speech,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-26,
no. 3, pp. 197–210, Jun. 1978.

[3] Y. Ephraim and D. Malah, “Speech enhancement using a minimum
mean-square error log-spectral amplitude estimator,” IEEE Trans.
Acoust., Speech, Signal Process., vol. ASSP-33, no. 2, pp. 443–445,
Apr. 1985.

[4] R. Martin, “Speech enhancement based on minimum mean-square
error estimation and supergaussian priors,” IEEE Trans. Speech Audio
Process., vol. 13, no. 5, pp. 845–856, Sep. 2005.

[5] W. B. Kleijn and K. K. Paliwaf, Speech Coding and Synthesis. New
York: Elsevier, 1995.

[6] R. J. McAulay and M. L. Malpass, “Speech enhancement using a soft-
decision noise suppression filter,” IEEE Trans. Acoust, Speech, Signal
Process., vol. ASSP-28, no. 2, pp. 137–145, Apr. 1980.

[7] B. D. Rao and K. S. Arun, “Model based processing of signals: a state
space approach,” Proc. IEEE, vol. 80, no. 2, pp. 283–307, Feb. 1992.

[8] C. W. Therrien, Discrete Random Signals and Statistical Signal Pro-
cessing. Englewood Cliffs, NJ: Prentice-Hall, 1992.

[9] R. C. Hendriks, R. Heusdens, and J. Jensen, “Adaptive time segmenta-
tion for improved speech enhancement,” IEEE Trans. Audio, Speech,
Language Process., vol. 14, no. 6, Nov. 2006, to be published.

[10] S. K. Kay, Fundamentals of Statistical Signal Processing. Upper
Saddle River, NJ: Prentice-Hall, 1998, vol. 2.



HENDRIKS et al.: AN MMSE ESTIMATOR FOR SPEECH ENHANCEMENT 415

[11] J. G. Beerends, “Extending p.862 PESQ for assessing speech intelligi-
bility,” White Contribution COM 12-C2 to ITU-T Study Group 12, Oct.
2004.

[12] J. Deller, J. H. L. Hansen, and J. G. Proakis, Discrete-Time Processing
of Speech Signals. Piscataway, NJ: IEEE Press, 2000.

[13] G. Dewey, Relative Frequency of English Speech Sounds. Cam-
bridge: Harvard Univ. Press, 1923.

[14] R. Martin and C. Breithaupt, “Speech enhancement in the DFT domain
using Laplacian speech priors,” in Proc. Int. Workshop Acoust., Echo
and Noise Control (IWAENC), Sep. 2003, pp. 87–90.

[15] R. C. Hendriks, R. Heusdens, and J. Jensen, “Forward–backward
decision directed approach for speech enhancement,” in Proc. Int.
Workshop Acoust. Echo and Noise Control (IWAENC), Sep. 2005, pp.
109–112.

[16] S. F. Boll, “Suppression of acoustic noise in speech using spectral sub-
traction,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-27,
no. 2, pp. 113–120, Apr. 1979.

Richard C. Hendriks received the B.Sc. and M.Sc.
degrees, both in electrical engineering, from Delft
University of Technology, Delft, The Netherlands,
in 2001 and 2003, respectively. He is currently
pursuing the Ph.D. degree in the Department of
Mediamatics, Delft University of Technology.

His main interests are digital speech and audio
processing, including acoustical noise reduction and
speech enhancement.

Richard Heusdens received the M.Sc. and Ph.D.
degrees from Delft University of Technology, Delft,
The Netherlands, in 1992 and 1997, respectively.

Since 2002, he has been an Associate Professor in
the Department of Mediamatics, Delft University of
Technology. In the spring of 1992, he joined the Dig-
ital Signal Processing Group, Philips Research Labo-
ratories, Eindhoven, The Netherlands. He has worked
on various topics in the field of signal processing,
such as image/video compression and VLSI architec-
tures for image processing algorithms. In 1997, he

joined the Circuits and Systems Group, Delft University of Technology, where
he was a Postdoctoral Researcher. In 2000, he moved to the Information and
Communication Theory (ICT) Group, where he became an Assistant Professor
responsible for the audio and speech processing activities within the ICT group.
He is involved in research projects that cover subjects such as audio and speech
coding, speech enhancement, and digital watermarking of audio.

Jesper Jensen received the M.Sc and Ph.D degrees
in electrical engineering from Aalborg University,
Aalborg, Denmark, in 1996 and 2000, respectively.

From 1996 to 2001, he was with Center for Per-
sonKommunikation (CPK), Aalborg University, as
a Researcher, Ph.D. student, and Assistant Research
Professor. In 1999, he was a Visiting Researcher
at the Center for Spoken Language Research,
University of Colorado, Boulder. Currently, he is
an Assistant Professor at Delft University of Tech-
nology, Delft, The Netherlands. His main research

interests are digital speech and audio signal processing, including coding,
synthesis, and enhancement.


