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Abstract

Visual search is a commonly-used paradigm in psycho-
logical studies of attention. It is well-known that search
efficiency is influenced by a broad range of factors, e.g. the
featural similarity between targets and distractors [4] or
the featural configuration (see [16] for a review). Recently,
a series of paper by Chun and colleagues (see [1] for
a review) has established a new factor the influences
search termed ’contextual cueing’: visual search is more
efficient when targets and distractors are repeated in the
same locations across trials, compared with when they
fall in new locations. In order to simulate this effect we
extended the Selective Attention for Identification model
(SAIM [5, 7]) with a mechanism for contextual learning
(CL-SAIM). The learning mechanism is based on a Hopfield
pattern memory with asymmetric weights. This memory
module integrates two functions: On one hand it stores the
spatial configuration of search displays, and on the other
it improves target detection for already seen displays. In
this paper we will demonstrate that this relatively simple
extension of SAIM is cable of simulating the experimental
findings by [2].

Keywords: Contextual Cueing, perceptual learning,
implicit memory, Hopfield memory

1. Introduction

Visual search is a commonly-used paradigm in psy-
chological studies of attention. In this task, a participant
has to search for a target item among distracting items
and report its presence or absence. The reaction time
(RT) is measured and often shows a linear dependency
with the number of items in the scene. The intercept and

the slope of this linear function are interpreted as indica-
tors of the underlying search mechanism. Shallow search
slopes (0-10ms/items) are frequently taken as evidence of
a nearly parallel search among objects. In contrast a steep
search slope (20-80ms/items) is often interpreted as indi-
cating a serial search through the objects in the field and
is named as a inefficient search (See [16] for a review;
though see [7, 9] for an alternative view). Several mod-
els for visual search have been put forward, for instance,
the Guided Search Model [15], the saliency model of Itti
and Koch [10], MORSEL [14], SEarch via Recursive Re-
jection [SERR] [9] and the biased-competition model by
Deco [3]. Originally, the Selective Attention for Identi-
fication Model (SAIM) set out to model different atten-
tional effects including object-based and space-based atten-
tion along with attentional deficits such as visual neglect
and extinction. Within this class of findings SAIM covers
provides an extensive account of human performance (see
[6] for a discussion). Recently, SAIM has been extended
by [7] to simulate visual search tasks. In that paper the in-
teraction between top-down and bottom-up factors was ex-
amined. In the present paper we focus access the success of
the model when applied to a further factor that has recently
been shown to affect human search: the spatial context pro-
vided by search displays. Chun and Jiang [1, 2] contrasted
search for two sets of displays. In one set, all spatial config-
urations were completely random at any time of the ongoing
experiment (the ’new’ condition); in the other set, the spa-
tial configurations were randomly chosen at the beginning
of the experiment but they were repeated throughout the ex-
periment ( the ’old’ condition). New and old displays ap-
peared at random. Chun and Jiang [2] reported a difference
in RTs between the ’new’ and ’old’ conditions. Participants
were faster on old configurations which is seen as evidence
of a memory process which retrieves learned configurations
and shifts attention towards the target position more quickly
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Figure 1. The new architecture of CL-SAIM
with a contextual memory built-in. The pat-
tern in the selection network illustrates the
result of the learning process. Units at the
target (T) position (back circle) receive exci-
tatory activations from the units at distractor
(L) positions (white circles), whereas units at
target locations inhibit units at distractor po-
sition.

than would otherwise be the case (the ”contextual cueing
effect”). This memory process decreased the slope of the
search function while it did not affect the intercept. Interest-
ingly, participants were not instructed to memorize displays
explicitly and further tests revealed that they could not ex-
plicitly discriminate old and new displays. Thus, contextual
cueing represents an implicit learning process which allows
the memorization of complex information without aware-
ness or intention.
In the present paper we evaluated whether SAIM is able to
capture this pattern of reduced search slopes, if a learning
mechanism is added to the paper. Such a learning process
may provide an important addition to the model, enabling
it to generate efficient search when presented with familiar
environments. The architecture of this contextual learning
version of SAIM (CL-SAIM) is illustrated in Figure 1. The
details of the contextual memory will be explained in the
following section.

Figure 2. Example search display with four
items. Items are arranged in a fixed 3x3 grid

1.1. Overview

Figure 1 gives an overview of SAIM’s architecture and
highlights the different influences on the selection process.
In a bottom-up path, features (pixel intensity and orienta-
tion) are extracted from the visual field and a section is
mapped into the Focus of Attention (FOA). This mapping
process takes place through the ’contents network’, which
itself is modulated by the selection network. By enabling
a mapping into the FOA to be achieved from any region
where a stimulus falls, this interaction between the content
and selection networks enables SAIM to perform transla-
tion invariant object recognition. Multiple soft-constrains
within the selection network lead to a consistent object map-
ping, where just one object is selected and mapped in a way
that it keeps its original shape. These soft constraints are
implemented through competitive and co-operative interac-
tions between units in the selection network. In addition to
being activated in a bottom-up manner, SAIM is also sensi-
tive to top-down activity generated via activity in memory
templates held in a ’knowledge network’. This top-down
activity biases selection towards ’known’ over ’unknown’
objects. These bottom-up and top-down mechanisms were
incorporated into the an earlier version of model [5]. In the
present version we extended the model by incorporating a
learning mechanism into the selection network that could be
sensitive to the relative locations of targets and distractors
in the displays. This ”contextual memory” learns activa-
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Figure 3. Example of the time course of activation in the knowledge network and the FoA. The T
target is selected, based on its template being activated.

tion pattern in the selection network and can retrieve these
patterns when similar or identical displays are processed
again guiding the selection process. These three modula-
tions (bottom-up input, top-down knowledge of particular
objects, learned configural knowledge) influence the com-
petition for selection within the selection network and affect
the model’s reaction time.
The design of SAIM’s architecture follows the idea of soft
constraint satisfaction in neural networks based on energy
minimization [8]. This minimization approach is developed
in the following way: Each module in SAIM aims at a cer-
tain end-state of neuronal activation (e.g. just one knowl-
edge network neuron is activated indicating one object to
be recognized). These end-states form points of minimal
energy in a highdimensional energyfield. These states are
also often referred to as attractor states. To ensure that the
model as a whole satisfies each constrain expressed by the
attractor states, all module energy functions are added to-
gether to form a global energy function. A gradient descent
methods like proposed in [8] is used to find the minima in
the global energy function. In the following section, the en-
ergy functions of each module are descried in detail.

1.2. Feature extraction

The feature extraction stage results in a three dimen-
sional feature vector per pixel. One dimension corresponds
to the pixel intensity (e.g. the grey value) information, the
other two dimensions consist of vertical and horizontal line
detectors. The convolution filter mask for a vertical detector
was:

Kvert =



−1 2 −1
−1 2 −1
−1 2 −1


 (1)

The horizontal filter mask was the transposed version of the
vertical filter mask. The feature vector is noted asfn

ij , with
indicesi and j referring to the locations within the input
display andn to the feature dimension. This feature extrac-
tion process is an approximation of simple cells responses
in V1.

1.3. Contents Network

The energy function for the contents network is

ECN (ySN , yCN ) =
∑

ijlmn

(yCN
lmn − fn

ij)
2ySN

lmij (2)
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Figure 4. CL-SAIM’s reaction time (RT) be-
haviour in a visual search task for a T as target
and L as distractors. The RT slope suggests
a ”serial search” and shows a RT slope ratio
between absent and present displays of 2:1
which is consistent with psychological find-
ings.

whereySN
lmij is the activation of a selection network unit

connecting the location(i, j) within the visual field with the
FOA location at(l, m) andyCN

lmn is the activation of units in
the contents network. The term(yCN

lmn− fn
ij)

2 forbids states
where the contents network does not match the feature val-
ues in the input. This term is multiplied withySN

lmij to ensure
that the FOA just reflects the region selected by the selec-
tion network. Since any location can be routed to the FOA,
an object can appear in the FOA regardless of its position in
the display; the mapping is therefore translation invariant.

1.4. Selection Network

The mapping process between the input display and the
FOA is controlled by the selection network. Here, three
constrains must be met to achieve a consistent object map-
ping:

1. Units in the FOA should receive activity from just one
unit in the visual field.

2. Activity from one location in the visual field should be
mapped only once into the FOA

3. Neighbourhood relations between units in the input
display should be preserved throughout the mapping
process.

2 3 4 
700

720

740

760

780

800

820

840

860

880

900

Intercept: 562.2 ms

items in visual field

present trials
Slope: 77.0 ms/item 

re
ac

tio
n 

tim
e 

[m
s]

Figure 5. RT behaviour of a search for a T
amongst Ls and all displays were ’new’.

The first and second constraints are modelled with the equa-
tions

ESN1
WTA(ySN ) =

∑

ij

(∑

lm

ySN
lmij − 1

)2

(3)

ESN2
WTA(ySN ) =

∑

lm


∑

ij

ySN
lmij − 1




2

(4)

These capture Winner-Take-All behavior, suggested in [13].
The third constraint is implemented via the neighbourhood
function:

ESN3
neightbour(y

SN ) = −
∑

ijlm

S∑
s=−S
s 6=0

R∑
r=−R

r 6=0

gsry
SN
lmijy

SN
i+r,j+s
l+r,m+s

(5)

with gsr being defined by a Gauss function

gsr =
1
A

e−
s2+r2

σ2 (6)

whereA is a normalization factor. This function leads to the
activation of units which map neighbouring locations units
the one currently selected into the FOA and thereby support
a consistent mapping where object shape is preserved.

1.5. Knowledge Network

The energy function for the knowledge network is de-
fined as following

EKN (yKN , yCN ) = aKN

(∑

k

yKN
k − 1

)2
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Figure 6. RT behaviour for ”old” and ”new”
displays with a fixed number of items.

+ bKN
∑

k

(
Ik − I

)
yKN

k (7)

I =
1

K − 1

K∑
k′

k′ 6=k

Ik′

Ik =
∑

lm

(
yCN

lmn − wk
lmn

)2

where the indexk refers to template units whose tem-
plates are stored in the weights (wk

lmn). K is the to-
tal number of templates in the model. The WTA term(∑

k yKN
k − 1

)2
restricts the knowledge network to acti-

vate only one template unit. The term
∑

k

(
Ik − I

)
ensures

that the sum of the knowledge network output is always one
and Ik =

∑
klmn

(
yCN

lmn − wk
lmn

)2
ensures that the best-

matching template unit is activated.aKN andbKN weight
the constraints against each other.

1.6. Contextual Memory

The contextual memory aims at mimicking the exper-
imental effects of contextual cueing. The key finding in
contextual cueing shows that the search for known spatial
configurations of items is faster than search for unknown
configurations. To store spatial configurations in SAIM the
selection network of SAIM was extended by a Hopfield pat-
tern memory for spatial configurations of activations

ECM (ySN ) = −
∑
uvop

wuvopy
SN
ccuvySN

ccop (8)
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Figure 7. RT behaviour for the ”old” and
”new” displays when target and distractor po-
sitions are swaped in repeated ”old” displays.

wherewuvop are the weights storing the spatial patterns and
ySN

ccuv the activation of the selection network’s centre layer.
The pattern memory is only connected to the centre layer
and not to the whole selection network, as the time course
of activation in the center layer is sufficient to determine the
spatial configuration of items in a display.
The weight update rule is a modified covariance learning
rule [12]

wuvop(k + 1) = wuvop(k) + ∆wuvop(k) (9)

∆wuvop(k) = η
(
ySM

ccuv − ySM
ccuv

) ∣∣ySM
ccop − ySM

ccop

∣∣ (10)

wherek are the iteration steps during the selection pro-
cess. At the beginning of the simulations weights are
initialized to zero and the weights are up-dated through
batch learning. Following this learning method the weight
changes are accumulated during the selection process and
come only into effect after the selection process is termi-
nated. The averages over timeySM

ccij andySM
ccij are computed

by a ’sliding average’:

ySM
ccij(k + 1) =

k

k − 1
ySM

ccij(k) +
1
k

ySM
ccij (k) (11)

It is important to note that the expression
(
ySM

ccij − ySM
ccij

)
is mainly positive at selected (target) positions and mainly
negative at deselected (distractor) positions, because at the
target position activation increases and at distractor posi-
tions activation decreases. Now if during the selection pro-
cesses a weight connects a distractor position to a target po-
sition, the weight changes are positive. If the weight con-
nects a distractor position to a target position, the weight
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Figure 8. Search slopes for ”old” and ”new”
displays with 2, 3 or 4 items.

changes are negative. Negative weight changes also apply
to links between distractors. As a consequence of the learn-
ing rule, the stored target-distractor configurations support
the target’s selection and a suppression of the distractor se-
lection. Also distractor-distractor relations are suppressed.
Fig. 1 depicts the positive and negative weight changes
through arrows and line endings with bullet points respec-
tively.
This learning rule is potentially capable of reproducing the
basic findings of [2], as the selection was found to im-
proved when known target-distractor relations were pre-
sented. However, it is unclear at that stage if all experi-
mental findings in [2] (see introduction) can be simulated
with this simple extension. This question will be explored
in the following section.

2. Simulations

Before we attempted to simulate the contextual cueing
experiments by [2], we chose input display and parameters
for SAIM, so that it was able to simulate the basic results
for the search task used by [2]. These parameters were kept
the same throughout the following simulations. The results
on setting up this baseline behaviour are reported in the first
section. In the following section we assess four experiments
from Chun et al.’s paper and will demonstrate that these
findings can be simulated. In the discussion section we will
examine the explanation for the simulation results and give
an outlook on further simulations.
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Figure 9. Search intercepts for ”old” and
”new” displays with 2, 3 or 4 items.

2.1. Visual Search

In their experiments, Chun et.al [2] used a visual search
task where participants had to search for a T among rotated
L-shaped items. Items were randomly colored and the L-
shaped distractors were rotated with four different angles.
This visual search task is considered as inefficient at a slope
around 70ms/item and an intercept around 580 ms. Only
target present trials were used. However, search through
such a display is considered to be highly inefficient. There-
fore, it would be expected to find a reaction time ratio be-
tween absent and present trials of approx. 1:2. These values
(the slope, intercept and present-absent ratios) constrained
our choice of parameters. As SAIM’s processing is nei-
ther rotation-invariant nor does it include colour, we used
non-rotated black L and black T items. Also to reduce com-
puter time the displays contained only two, three or four
items. For each display type (items × absent/present),
ten random spatial configurations were created and simu-
lated, 60 in total. A display had a fixed grid of 3x3 possible
items positions (see Fig. 2 for an four item example). Fig-
ure 3 gives an example for the time course of activations
in the knowledge network and the FOA with a four item
display. The complete simulation results are shown in Fig-
ure 4. The search slope was approx. 77 ms/object and the
intercept was approx. 563 ms. The RT slope was similar
to the experimental findings by [2] as well as the slope ra-
tio of absent/present trials indicating a an inefficient search.
For the target present trials, Figure 5 shows an additional
set of simulations with learning in the contextual memory.
The reaction time behaviour did not change substantially.
These simulations mimicked the situation in a standard vi-
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Figure 10. The efficiency in the visual search
task increases with learning, as indicated by
a decrease in search slope for ”old” displays.

sual search task with its complete random display configu-
rations, where the context in a display is not predictive of
the target location. This simulation used the same learning
parameters as in all following simulations.

2.2. Simulation 1: Displays with fixed item number

In their first experiment, Chun and Jiang [2] investigated
the learning effect when a set of displays (the ’old’ condi-
tion) were repeated among other random displays (the ’new’
condition). All displays in this experiments consisted of 12
items. One learning cycle consisted of 12 different ’old’
and 12 ’new’ displays. There were 30 learn cycles in total
(later arranged in six epochs with five cycles in each epoch
to increase statistical power). The target positions for the
repeated and the novel display groups were mutually exclu-
sive and there were no restrictions for distractor positions.
The results revealed a significant difference between reac-
tion times to ’old’ and ’new’ displays with ’old’ displays be-
coming increasingly fast as the number of epochs increased,
until RTs converged over time.
For the simulation of these experimental findings, four dis-
plays for the ’old’ condition were generated and repeated
for 15 learning cycles. In every cycle, every ’old’ display
was paired with a ’new’ display. Figure 6 shows how the
RT for the ’new’ and ’old’ stimuli evolved over the learning
cycles. With repetition the old displays gained a RT benefit
over the new displays. There was also a saturation effect in
the RT as the epochs increased.

2.3. Simulation 2: Swapping target and distractor
positions

In their second experiment, Chun and Jiang examined
whether that the benefit in the ’old’ condition is a form of
a low-level repetition priming, rather than associative learn-
ing between target location and the distractor context. Ac-
cording to the notion of low-level repetition priming the
global spatial configurations of the displays may be learned,
and the perceptual processing of all terms in repeated dis-
plays is facilitated. According to the associative learn-
ing hypothesis, search is facilitated by participants, more
specifically learning the spatial relations between the target
and the distractors. Through learning, the positions of the
distractors become predictive of the positions of targets. In
their experiment, Chun and Jiang altered the predictive na-
ture of the context in the ’old’ displays. Throughout the
repeat-trials, the target position in a display was swapped
with one of the distractors. Which distractor was chosen
was equally likely, so there was no longer a consistent con-
text between the target and the distractors. In other aspects
the procedure was the same as in the previous experiment.
Chun and Jian found that target-distractor swapping elimi-
nated the contextual learning.
In our simulation of this result the display settings and ar-
rangements were the same as in the previous simulation,
however target and distractor positions were swapped to
match the psychological experiment. Figure 7 shows how
the RTs for the ’old’ and ’new’ conditions evolved over
time. In contrast to the previous simulation, the old dis-
plays no longer benefitted, and there was no evidence for
contextual learning. These findings are consistent with the
psychological experiment. The small overall learning ef-
fect stems from the limited number of ’old’ displays with
swapped target-distractor positions that can be generated for
the given display size. Due to this limitation CL-SAIM be-
gins detecting regularities in the statistics of the displays
leading to an overall learning effect.

2.4. Simulation 3: Displays with variable item num-
bers

In their last experiment, Chun and Jiang looked for more
support for the assumption that context guides spatial atten-
tion towards the target and that the learning effect is not due
to perceputal priming or response priming. They argued
that, if perceptual or motor priming was involved the RT in-
tercept should change significantly between the old and new
conditions. If on the other hand, the learning effect was due
to cueing attention towards the target location, there should
only be a change on search slopes. The same methods as in
the first experiment were used except different numbers of
items in the search display: 8, 12, or 16 items. Chun and



Jiang reported a significant effect on the search slope for
both ’old’ and ’new’ displays with search slopes for ’old’
displays always being smaller. Furthermore, slopes became
shallower as the learning process increased. There was no
significant change of the intercept throughout the learning
process, and also no significant difference in the intercept
for ’new’ and ’old’ displays.
For our simulation, three item set sizes were used: 2, 3, or
4. For every set size, three different displays were created
for the ’old’ condition. The number of learning cycles were
limited to eight due to the lack of enough two-item display
configurations to fill the ’new’ condition display set. Figure
8 shows the slopes for the RT-display size function for the
’old’ and ’new’ conditions. In the case of the ’old’ condi-
tion, the search slope decreased and the search task became
more efficient over time. In contrast, while search in the
’new’ condition stayed at its level of efficiency. Figure 9
shows effects on the intercepts of the search functions. This
suggests a slight difference between the old and new config-
urations but this was constant across time. Finally, Figure
10 shows how contextual cueing increases the efficiency of
a visual search indicated by shallower search slopes emerg-
ing as the number of repetition cycles increased.

3. Discussion

We have demonstrated that the new version of SAIM
becomes more efficient in a visual search task through
learning the context contextual relations between distractors
(CL-SAIM). It was shown that like in [2] with the destruc-
tion of this predictive context, the benefit for old over new
displays vanished. Thus the effect appears due to associa-
tive learning of the target-distractor relation, and not per-
ceptual priming. The learning of selection network activa-
tion pattern was achieved with a Hopfield-like memory with
asymmetric weights. These weights represent observed co-
variations in the occurrence of two spatial locations in the
selection layer rather than a complete spatial configuration
pattern. Further work by Jiang [11] supports the more local
nature of learned associations, local in terms of contextual
learning in search. She found that, if a display is presented
which consists of a mixture of distractor-target pairs from
two other learned display, the contextual cueing effect is
preserved. This suggests that CL-SAIM not only captures
the general pattern of learning in human visual search but
also aspects of learning at a microscopic level. The learn-
ing mechanism also provides a way for SAIM to become
sensitive to spatial contexts in a manner that is independent
of the individual examples occupying the context positions,
and may have utility for developing selective attention in
vision systems in a manner that is sensitive to the familiar
positions of objects in scenes.
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