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Abstract

We investigate the influence of environmentally induced cavity length fluctuations on the energy and phase noises of

an optical pulse train generated by an actively mode-locked erbium-doped fibre laser that is operated in the second-

order rational harmonic mode-locking regime. Using a simple model that was recently proposed to describe this

particular regime, we identify the specific nature of these energy and phase noises, and we demonstrate that their values

averaged over two consecutive pulses in the train can be measured directly by implementing the time-domain de-

modulation technique. For a known cavity length variation, we compare the values of the average energy and phase

fluctuations that are obtained both theoretically, using the model, and experimentally, through time-domain demod-

ulation. This study brings out a mechanism of coupling between the energy and phase fluctuations that appears when

cavity length fluctuations are at play. This coupling is caused by the periodic intracavity amplitude modulation and

strongly depends on the average detuning of the cavity length. Through the measurement of the cross-correlation

between energy and phase noises, we identify environmental perturbations as a major source of the noises that affect a

pulse train generated through second-order rational harmonic mode locking.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is now widely accepted that actively mode-

locked erbium-doped fibre lasers are valuable

sources of high-speed picosecond pulse trains that
deserve a foreground status in applications such as

fast optical telecommunications and all-optical

analog-to-digital conversion. In order to reach the

multigigahertz repetition rates that are required by

these applications, this type of laser must be driven

at a modulation frequency fm corresponding to a
large integer multiple N of the cavity resonance

Optics Communications 213 (2002) 103–119

www.elsevier.com/locate/optcom

*Corresponding author. Tel.: +32-65-37-41-44; fax: +32-65-

37-41-99.

E-mail address: pottiez@telecom.fpms.ac.be (O. Pottiez).

0030-4018/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0030-4018 (02 )02074-6

mail to: pottiez@telecom.fpms.ac.be


frequency, or free spectral range (FSR), which lies

typically in the megahertz range only. When this

very common technique, called harmonic mode

locking, is used, the repetition rate fp of the gen-
erated pulse train is always equal to fm, so that the
ultimate limitation to the repetition rate is imposed
by the electrical bandwidth of the driving elec-

tronics, including the radio-frequency (RF) gen-

erator, the electrooptic modulator, and other RF

elements. This situation becomes particularly

harmful when repetition rates of several tens of

gigahertz or more are targeted. In order to over-

come this limitation, the technique of rational

harmonic mode locking (RHML) was introduced
[1]. Indeed, when this technique is employed, the

repetition rate of the generated pulse train is an

integer multiple P of the modulation frequency,

i.e., fp ¼ P � fm. This can be easily achieved in
practice by slightly detuning the modulation fre-

quency from its optimal harmonic mode-locking

value, by a quantity corresponding to a fraction of

the FSR, so that fm ¼ ðN þ R=P ÞFSR, where R

and P are integers having no common divisiors. In

these conditions, only P � fm and its harmonics
match cavity resonance modes, whereas frequency

components at all other multiples of fm (including
the spur at fm itself) tend to vanish, and a pulse
train at fp ¼ P � fm is produced. Apart from this

modulation frequency adjustment, RHML basi-

cally does not require any particular disposition of
the set-up, which outlines the extreme versatility of

this technique.

Through the use of RHML, repetition rate

multiplications up to a factor P ¼ 22 were

achieved [2], and repetition rate values as high as

200 GHz were reached [3]. Unfortunately, an in-

herent drawback of this technique is the existence

of a strong pulse-to-pulse amplitude fluctuation in
the train [3], which corresponds in the spectrum to

imperfectly suppressed components at fm and its
unwanted harmonics. Such an amplitude fluctua-

tion is unacceptable for most applications. Hence,

this intrinsic defect of RHML considerably re-

duces its practical interest in most cases. Never-

theless, it was recently demonstrated that, in the

particular case P ¼ 2ðR ¼ 1Þ, and if fm is precisely
tuned to a half-integer multiple of the FSR, the

pulse-to-pulse amplitude fluctuation of the repeti-

tion-rate-doubled pulse train vanishes [4,5].

Therefore, and in spite of the modest twofold

multiplication that is achieved, second-order

RHML appears as the most attractive technique

for applications.

Most applications employing high-speed pico-
second pulse sources show extremely limited tol-

erance for the noise characteristics of the pulse

train [6,9], whereas fibre lasers are very sensitive to

external perturbations. For this reason, the mea-

surement of the noises affecting these sources has

long been a commonly addressed issue. Now, al-

though it is usually observed that RHML en-

hances the sensitivity of fibre lasers to
perturbations, the study of noises in this regime

has received very few consideration so far. An

important task thus consists in measuring accu-

rately these noises, in order to investigate the

processes underlying their formation, whose

knowledge is likely to give hints for their reduc-

tion.

The measurement of the phase noise affecting
the envelope of optical pulses in a train (or

equivalently, the pulse timing jitter) has always

benefited from a particular attention in the litera-

ture. Recent developments account for specific

techniques relying on optical cross-correlation

[10,11], time-interval analysis [12,13] and phase-

encoded optical sampling [7]. On the other hand,

fluctuations of the pulse intensity (i.e., amplitude
noise) are sometimes characterised in a very nat-

ural way by envelope detecting, using a Shottky

diode, the train of current pulses from a photo-

detector illuminated by the optical pulse train

[6,8,9], or by measuring variations of the baseband

(DC) component of this current pulse train [14].

The most popular techniques for characterising

the noises of a pulse train are those that allow the
measurement of both amplitude and phase noises.

A famous example in this category is offered by the

widespread spectral analysis technique, which was

originally proposed by von der Linde in the mid-

eighties [15]. In this technique, amplitude and

phase noises are determined from the measure-

ment of the noise skirts surrounding two har-

monics in the radio-frequency spectrum of the
detected pulse train. This was made possible by

observing that, in each of these skirts, the phase
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noise contribution scales as the square of the

harmonic number, whereas the amplitude noise

contribution is the same at all harmonics. Unfor-

tunately, this assertion relies on several assump-

tions, like the smallness of amplitude and phase

noises, and is no longer valid when high-order
harmonics are considered [16].

There is an alternative technique that allows to

measure both amplitude and phase noises of a

pulse train. This technique relies on the homodyne

downconversion of one harmonic of the pulse

train detected by a photodetector. Its principle

results from the observation that, in a sinusoidal

carrier, small AM and PM modulations corre-
spond, in first approximation, to in-phase and in-

quadrature components, respectively [14]. We will

now have a closer look at this technique. Obvi-

ously, if the detected pulse train shows up some

amplitude noise eðT Þ and some phase noise /ðT Þ,
then its first harmonic V1ðt; T Þ is modulated in
amplitude by eðT Þ, and in phase by /ðT Þ, i.e.,
V1ðt; T Þ ¼ V0½1þ eðT Þ� cos½2pfpt � /ðT Þ�: ð1Þ

Note that, in Eq. (1), e and / do not depend on t,

but on T, which is defined as a coarse-grained time

that evolves at the scale of many cavity round-
trips. This is valid if only low-frequency noises,

which fluctuate very slowly at the scale of pulse

duration or pulse train period, are considered. In

order to determine in-phase and in-quadrature

components of V1ðt; T Þ, which will yield eðT Þ and
/ðT Þ, V1ðt; T Þ is mixed with a sinusoidal reference
signal at the same frequency fp (i.e., the pulse train
repetition rate), either in phase or in quadrature. If
we neglect the noise of the reference signal (as-

suming that a low-noise oscillator is used), after

low-pass filtering, the output of the mixer is given

by

VreðT Þ ¼
a
2
V0Vref ½1þ eðT Þ� cos½/ðT Þ� ð2Þ

for in-phase input signals, and

VimðT Þ ¼
a
2
V0Vref ½1þ eðT Þ� sin½/ðT Þ� ð3Þ

for in-quadrature input signals, where a is the

mixer conversion constant and Vref is the magni-
tude of the reference signal. Eqs. (2) and (3) show

that VreðT Þ and VimðT Þ depend on both eðT Þ and

/ðT Þ. However, assuming that eðT Þ and /ðT Þ 	1,
we find that VreðT Þ 
 a=2V0Vref [1+eðT Þ] and

VimðT Þ 
 a=2V0Vref/ðT Þ give good approximations
of amplitude and phase fluctuations, respectively,

in the time domain. Through the use of a spectrum
analyser, these time-domain signals can be ob-

served in the frequency domain, which is usually

more convenient for their analysis.

The technique presented above is of very com-

mon practice mostly for phase noise measurement,

and is called in this case the phase detector method

[17]. In particular, when the reference oscillator

used for in-quadrature detection is the generator
that drives the actively mode-locked laser, this

technique allows to measure the so-called residual

phase noise of the pulse train, which is the phase

noise from which the contribution of the mode

locker, /mlðT Þ, has been taken out [8,9,17–23].
Indeed, if the reference signal includes a sub-

stantial amount of phase noise /refðT Þ, then /ðT Þ
has to be replaced by /ðT Þ � /refðT Þ in Eq. (3)
(and in Eq. (2)). Now using again the small-noise

approximation, we find that VimðT Þ 
 a=2V0Vref
[/ðT Þ � /refðT Þ], so that VimðT Þ yields the residual
phase noise /ðT Þ � /mlðT Þ when the reference

signal is taken from the mode locker. This proce-

dure allowing to wipe away the effect of the mode

locker is extremely useful, as this trivial source of

phase noise usually brings the largest contribution
to the pulse train phase noise [6,24,25], and ob-

scures thereby the contributions of more discrete,

although more fundamental physical processes. In

particular, the measurement of residual phase

noise can be used to determine the phase noise

quantum limit of actively mode-locked laser sys-

tems [20,23].

As said before, the amplitude noise eðT Þ can be
obtained from VreðT Þ, which is measured at the
output of the mixer when its input ports are fed

with in-phase pulse train and reference signals.

This of course results from small-noise approxi-

mation, as VreðT Þ also depends on /ðT Þ, strictly
speaking (see Eq. (2)). It is possible, however, to

suppress /ðT Þ from the measurement of eðT Þ in a
very simple way, by using the first harmonic of the
detected pulse train itself as the reference signal

[19,26]. Indeed, by in-phase mixing V1ðt; T Þ with
itself, the phase noise contribution in the output
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signal cancels out, whereas the sensitivity of VreðT Þ
to amplitude noise is enhanced. More precisely,

Eq. (2) then becomes (neglecting the term in e2):

VreðT Þ ¼
a
2
V 20 ½1þ 2eðT Þ�: ð4Þ

Unfortunately, things are not that simple in the

case of phase noise measurement. Indeed, there is

no way to isolate completely /ðT Þ from eðT Þ by the
measurement of VimðT Þ through in-quadrature

detection of V1ðt; T Þ (see Eq. (3)). Therefore, care
must always be taken that eðT Þ be small enough
for the approximation VimðT Þ / /ðT Þ to remain
valid. In practice, it is usual to observe that the

spectrum of the phase noise obtained this way

includes some features that are recognised as a

residual signature of amplitude noise [6,23].
The imperfect uncoupling between amplitude

and phase noises operated by the homodyne

downconversion technique arises from the fact

that eðT Þ½/ðT Þ� is derived from the sole quantity

VreðT Þ½VimðT Þ�, which requires small-noise approx-
imation. If now VreðT Þ and VimðT Þ are measured at
the same time (i.e., over the same time interval),

through simultaneous in-phase and in-quadrature
detection of the input signal (this requires of

course a second mixer), then eðT Þ and /ðT Þ can be
obtained without small-noise approximation. In-

deed, using Eqs. (2) and (3), we find that

/ðT Þ ¼ tan�1 VimðT Þ
VreðT Þ

� �
; ð5Þ

and

eðT Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2reðT Þ þ V 2imðT Þ

p
� a
2
V0Vref

a
2
V0Vref

: ð6Þ

Like previously, these noises are more conve-

niently analysed in the frequency domain, through

the calculation of their power spectral densities
(PSDs) Seðf Þ and S/ðf Þ, respectively. In addition
to this, as eðT Þ and /ðT Þ cover the same time in-
terval, it is possible to compute the cross-spectral

density (XSD) between these two noises, Se/ðf Þ.
This quantity, which is not available using classical

noise measurement techniques, is extremely useful

to assess the degree of correlation between the

noises in different frequency ranges. The technique
presented here allows to infer more precise infor-

mation about amplitude and phase noises than the

conventional homodyne downconversion tech-

nique, and thus constitutes a substantial im-

provement of the latter. This technique is known

as the time-domain demodulation technique, and

was first used by Tsuchida to characterise the
noises of passively and hybridly mode-locked

lasers [13,27,28].

In this paper, we investigate, both theoretically

and experimentally, the influence of environmen-

tally induced cavity length variations on the noises

affecting an optical pulse train generated by a fibre

laser in the second-order RHML regime. In Sec-

tion 2, we determine theoretically this influence, on
the basis of a simple although instructive model

that was recently proposed. In Section 3, we show

how the signals obtained through time-domain

demodulation of the detected pulse train must be

interpreted in the particular case of second-order

RHML. A comparison is then performed in Sec-

tion 4 between theoretically predicted and experi-

mentally measured energy and phase fluctuations
that take place in the pulse train under the effect of

a voltage-controlled cavity length variation. In

Section 5, we use the time-domain demodulation

technique to characterise experimentally energy

and phase noises affecting the pulse train from a

fibre laser in normal second-order RHML oper-

ating conditions. Finally, general conclusions are

drawn in Section 6.

2. Effect of environmental perturbations on a

repetition-rate-doubled pulse train

In this section, we study theoretically the effect

of a change in the cavity length by using a recently

proposed model of pulse train generation in the
second-order RHML regime [4,5]. Although this

model, based on the self-consistency of the pulses

after two consecutive round-trips in the cavity,

does not take into account dispersive and non-

linear effects, we believe that it will be helpful to

understand the mechanisms through which cavity

length variations result in the energy and phase

fluctuations that will be measured in the detected
pulse train.

In the case of a harmonically mode-locked la-

ser, a pulse train is generated at a repetition rate
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that is equal to the modulation frequency, which is

ideally chosen to be an integer multiple of the

cavity fundamental frequency, or FSR. As a con-

sequence, every modulation period, only one pulse

circulating in the cavity crosses the modulator, at

the time when its transmittance is maximal. In
contrast, through second-order RHML, it be-

comes possible to generate a pulse train whose

repetition rate is twice the modulation frequency.

In this case, two pulses in the cavity cross the

modulator every modulation period. As a conse-

quence, both pulses cannot be clocked at the

maxima of transmittance (more generally, for any

order of RHML, it is impossible that all pulses be
clocked at these maxima). The aforementioned

model was used to accurately reveal the pulse

timing relationship in the second-order RHML

regime. It showed in particular that, if the modu-

lation frequency is perfectly tuned to a half-integer

multiple of the FSR (case of optimal second-order

RHML), the intracavity pulses cross the modula-

tor at times corresponding roughly to the quad-
rature points, which are located half way between

maximal and minimal transmittance (see curve TA
in Fig. 1). We note that there are two quadrature

points within each modulation period. This result

shows in particular that pulses do not alternate at

the maxima and minima of the periodic transmit-

tance, contrary to a formerly commonly held idea.

At first glance, it might seem surprising that
pulses be able to maintain themselves at times

where the slope of the transmittance curve is

maximal (instead of zero in the case of harmonic

mode locking). Indeed, round-trip after round-trip,

this loss gradient across the pulses should tend to

shift their positions progressively towards maximal

transmission. In order to raise this incoherence,

one has to consider that, in second-order RHML,
the cavity round-trip time corresponds to a half-

integer multiple of the modulation period. As a

consequence, after each round-trip, the transmit-

tance is shifted by half a period (curve TB in Fig. 1),
so that pulses once located at the rising edge will be

clocked at the falling edge after one round-trip, and

conversely. At the quadrature points, the slopes of

the transmittance and of its p-shifted counterpart
are equal and opposite, so that after two round-

trips, their cumulated effect on the pulses position

cancels out, and the pulses can maintain themselves

at these positions in regime. Moreover, as it ap-

pears that a cycle in the laser is not made of one,

but of two round-trips in the second-order RHML

regime, one should consider the transmittance
curve that results of two consecutive round-trips in

order to determine the pulse positions in regime.

This curve, which is invariant from cycle to cycle, is

obtained by making the product of two consecutive

one-round-trip transmittances, and is a periodic

function of time that oscillates at twice the modu-

lation frequency (curve TAB in Fig. 1). We observe
that the maxima of this resulting transmittance
correspond to the quadrature points of the one-

round-trip transmittance curves. Hence, in the

second-order RHML regime as well as in the usual

harmonic mode locking regime, pulses are clocked

at the maxima of the transmittance experienced by

the pulses during each cycle.

Up to now, we considered that the round-trip

time, fixed by the cavity length, equals precisely a

Fig. 1. Temporal evolution of the transmittance in an actively

mode-locked fibre laser in the second-order RHML regime.

This transmittance alternates between TA and TB (the p-shifted
version of TA) during successive round-trips. When the cavity
length is properly tuned, pulses 1 and 2 (solid lines) are clocked

approximately at the quadrature points of the transmittance (TA
or TB). These positions correspond to the maxima of the effec-
tive transmittance TAB ¼ TA � TB. If the laser length is slightly
increased from its optimal value, the pulses undergo a positive

phase shift (arrows), and stabilise at a position where the slope

of the effective transmittance is negative (dashed lines).

xp ¼ 2pfp and fp is the pulse train repetition rate (twice the
modulation frequency fm).
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half-integer multiple of the modulation period or,

in other words, that the cycle time is an (odd) in-

teger multiple of this period. If now the cavity

length is slightly detuned from its optimal value,

the time required by the pulses to run one cycle is

changed. Therefore, cycle after cycle, the pulses
progressively walk off from the modulation max-

ima. If it is not compensated, this walk-off will

result in the loss of mode locking. However, for

very small values of the detuning, this walk-off is

eventually equilibrated by a pushing or pulling

effect that is due to the slope of the transmittance

curve TAB off its maximum. When the slope be-
comes sufficient, the pulses position is thus stabi-
lised with respect to the transmittance curve, and a

regime is reached (see Fig. 1 in the case of a po-

sitive cavity length detuning). This adaptation of

the pulses phase consequent to a small detuning is

not a property specific to second-order RHML, as

it also occurs in the harmonic mode-locking

regime [29].

The model presented in [4,5] can be used to
refine this intuitive description of second-order

RHML. This model allows in particular to deter-

mine the position of the pulses (in regime) for any

value of cavity length detuning. Fig. 2 shows the

phases /1 and /2 (modulo 2p) of two consecutive
pulses, together with their average value /0, as
functions of the relative cavity length detuning.

These curves were calculated using parameters of
the experiments described in Sections 4 and 5. As

expected from the above discussion, the pulses

positions stabilise for any value of small cavity

length detuning, and their phases grow monoto-

nously with detuning. Both curves do not super-

impose, however: this means that the phase shifts

of pulses 1 and 2 consecutive to the same detuning

are not rigorously identical. This asymmetry be-
tween pulses 1 and 2 seems to be in contradiction

with the periodicity of the resulting modulation

TAB, which is equal to that of the pulse train, so
that the action of TAB on both pulses is identical
(see Fig. 1). Even at zero detuning, the pulses

phases are still slightly different, and their posi-

tions do not match exactly the maxima of TAB, i.e.,
the quadrature points of TA and TB, where / ¼ 0
(see Fig. 2, inset). This can be understood by no-

ticing that the effective frequency-doubled trans-

mittance TAB results from the product of two

transmittances that do not have the periodicity of

the pulse train (thus affecting differently pulses 1

and 2), and whose actions on each pulse are not

simultaneous, but consecutive. In particular,

round-trip after round-trip, the slope of the

transmittance (TA or TB) experienced by the pulses
is alternately positive and negative, and triggers an
alternation in the position of each pulse between

two slightly different values. For example, if de-

tuning is zero, the pulses oscillate between two

positions equidistant from the quadrature points

of the one-round-trip transmittance. In Fig. 2, we

considered that the last transmittance experienced

by pulses 1 and 2 prior to detection was TA. Given
the respective signs of the slope of TA about pulses
1 and 2, it comes that /1ð0Þ is slightly positive,
whereas /2ð0Þ is slightly negative (the average
phase /0ð0Þ ¼ 0, for reasons of symmetry). Fig. 2

Fig. 2. Evolution of the phases /1 and /2 (modulo 2p) of two
consecutive pulses, and of their average value /0, as functions
of the relative cavity length detuning in the second-order

RHML regime. These curves were obtained using the model

described in [4,5], with parameters measured from the experi-

mental setup described in Section 4. The electric-field trans-

mittance of the Mach–Zehnder modulator writes as

TAðtÞ ¼ sin½w0 þ pR sinð/=2Þ�, where / ¼ xpt ¼ 2xmt, w0 is the
phase factor, and R ¼ VM=Vp where VM is the amplitude of

the modulation voltage and Vp is the half-wave voltage of the

modulator. We measured that w0 ¼ 0:29p and R ¼ 0:19. In
addition, we considered a modulation frequency fm ¼ 1:297
GHz, and we measured the FSR ¼ 1:437 MHz, the 3-dB
bandwidth of the tuneable optical bandpass filter Dk ¼ 2:2 nm,
and ks ¼ 1 (ks is a parameter fixed by the finesse of the filter,
which is assumed to be a Fabry–Perot in the model).
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also shows that the pulse-to-pulse phase difference,

/1 � /2 ¼ 2D/, is not constant versus detuning. It
has to be noted, however, that D/ remains very

small compared to /0, and a slight divergence
between the curves in Fig. 2 appears only for ra-

ther large values of detuning. In summary, when
cavity length detuning takes place in a laser op-

erated in the second-order RHML regime, not

only the average phase /0 of the pulses is modified,
but also the pulse-to-pulse phase difference, 2D/.
The latter never strictly vanishes, even for zero

detuning.

The model also allows to infer information

about the energy of the pulses. It predicts in par-
ticular that an energy difference between pulses 1

and 2 appears when the cavity length is detuned

from its optimal value. Indeed, in the presence of

some detuning, the average phase /0 is no longer
zero, so that the positions of pulses 1 and 2 are

shifted in the same direction with respect to their

zero-detuning positions. As a consequence, the

loss undergone through the modulator is different
for both pulses. Let us consider the case of a po-

sitive detuning (Fig. 1). This positive detuning

generates a positive phase shift of both pulses, so

that the transmittance is either higher (TA) or lower
(TB) for pulse 1 than for pulse 2. As a consequence,
round-trip after round-trip, the energy of pulse 1 is

alternately higher and lower than that of pulse 2,

but always different (whereas the average energies
of these two pulses over two consecutive round-

trips are always equal). The modules of this dif-

ference increases with detuning. For zero detuning,

however, both pulses experience the same loss

through either TA or TB, and this energy difference
vanishes.

In addition to this pulse-to-pulse energy differ-

ence, the average energy of the pulses (or equiva-
lently, the average pulse train power) also varies

with detuning. Indeed, for increasing detuning, the

global transmittance experienced by the pulses

after two consecutive round-trips (TAB) diminishes,
so that the overall intracavity loss, and thereby the

average power of the generated pulse train, vary

with detuning (see Section 4). In summary, when

cavity length detuning takes place in a laser op-
erating in second-order RHML regime, both the

average energy of the pulses and their pulse-to-

pulse energy difference are modified. Note that the

model predicts a substantial increase in the dura-

tions of the pulses when detuning appears. As a

consequence, the pulse energy fluctuations that we

consider here account for fluctuations of both the

amplitude and the duration of the pulses.

3. Effect of environmental perturbations on the pulse

train harmonics

In the previous section, we have seen that, in the

second-order RHML regime, cavity length detun-

ing affects the average energy and phase of the
pulses, as well as the pulse-to-pulse energy and

phase differences. As a consequence, it is impor-

tant to understand which impact these four fluc-

tuations affecting the repetition-rate-doubled pulse

train have on the amplitude and on the phase of its

harmonics, which are the quantities that will be

accessed using the time-domain demodulation

technique. We consider that variations of cavity
length, and thus energy and phase fluctuations are

very slow compared to the pulse train period, so

Fig. 3. Deviation from the ideal picture (upper trace) of a

repetition-rate-doubled pulse train obtained by second-order

RHML of a fibre laser in the presence of cavity length detuning.

For the simplicity of this symbolic representation, fluctuations

of the pulses amplitude are labeled as fluctuations of their en-

ergy (g0 and Dg). In reality, however, energy fluctuations also
include a contribution from the fluctuations of the pulse width

(or duration).
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that they can be described as functions of the

coarse-grained time T. An ideal train of identical

and regularly spaced pulses at the repetition rate

fp ¼ 2fm (Fig. 3, up) can be expanded in Fourier
series as

pðtÞ ¼
Xþ1

n¼�1
h

t � nTp
q

� �

¼
Xþ1

k¼0
Ak cos kxpt

� 	
;

with A0 ¼
1

Tp
qHð0Þ and Ak ¼

2

Tp
qHðkqxpÞ

for k > 0; ð7Þ
where hðfÞ is the temporal profile of the pulse
power, q is the pulse duration, Tp ¼ 1=fp is the
pulse train period, xp ¼ 2pfp and HðXÞ is the
Fourier transform of hðfÞ. Now, including in Eq.
(7) the four perturbations introduced above (Fig.

3, down), we obtain

pðtÞ ¼ p1ðtÞ þ p2ðtÞ

¼
Xþ1

n¼�1
ð1þ a1Þh

t� 2nTp � t0 �Dt
qð1þ s1Þ

� �

þ
Xþ1

n¼�1
ð1þ a2Þh

t� ð2nþ 1ÞTp � t0 þDt
qð1þ s2Þ

� �
;

ð8Þ
where a1 and a2 are the relative amplitude fluctu-
ations of pulses of type 1 and 2, respectively, s1
and s2 are the relative fluctuations of their dura-
tion, t0 ¼ /0=xp is the average timing fluctuation

of both types of pulses, and Dt ¼ D/=xp is half the

pulse-to-pulse period variation. In order to sim-
plify notation, the dependence of all these pa-

rameters on the coarse-grained time T was not

indicated in Eq. (8). Eq. (8) expresses that pðtÞ is
not a perfect repetition-rate-doubled pulse train,

but instead a superposition of two temporally

shifted pulse trains each having the repetition rate

fm. In the general case of non-zero cavity length
detuning, the amplitudes, durations and phases of
the pulses are different between these two pulse

trains. When detuning vanishes, the amplitudes

and durations of the pulses in both trains become

equal, although a slight phase difference remains

ðDt 6¼ 0Þ, so that the time separating consecutive

pulses is never strictly equal to the (average) pulse

train period Tp. As a consequence, strictly speak-
ing, an optical pulse train obtained through sec-

ond-order RHML can never be written as Eq. (7).

Using Eq. (7), assuming small fluctuations and
considering that qxp 	 1 so thatH ½kqð1þ siÞxp� 

Hð0Þ 
 HðkqxpÞ, we find, after some calcula-

tion,

pðtÞ ¼ ð1þ g0Þ
Xþ1

k¼0
Ak cosð2kxmDtÞ

� cos½2kxmðt � t0Þ� þ Dg
Xþ1

k¼0
Ak

� sinð2kxmDtÞ sin½2kxmðt � t0Þ�

þ 2ð1þ g0Þ
Xþ1

k¼0
B2kþ1 sinðð2k þ 1ÞxmDtÞ

� sin½ð2k þ 1Þxmðt � t0Þ�

þ 2Dg
Xþ1

k¼0
B2kþ1 cosðð2k þ 1ÞxmDtÞ

� cos½ð2k þ 1Þxmðt � t0Þ�;

with Bk ¼
2

2Tp
qHðkqxmÞ; ð9Þ

where g0 ¼ ðg1 þ g2Þ=2 ¼ ða1 þ s1 þ a2 þ s2Þ=2 is

the average pulse energy fluctuation, and Dg ¼
ðg1 � g2Þ=2 ¼ ða1 þ s1 � a2 � s2Þ=2 is half the

pulse-to-pulse energy fluctuation. Again, the de-

pendence on T of the fluctuations was omitted in

the equation. Eq. (9) shows that pulse-to-pulse
fluctuations Dt and Dg generate odd-order har-
monics of the modulation frequency xm ¼ xp=2,
which correspond to the last two terms in the

right-hand-side of the equation. The sum of these

odd-order components never vanish, but is mini-

mal when detuning is zero (in this case, Dg ¼ 0 and
Dt is minimal) [4,5]. On the other hand, it appears
from Eq. (9) that all fluctuations, t0, Dt, g0 and Dg
affect even-order harmonics of xm, both in am-

plitude and in phase, in a very intricate way, so

that it is impossible in general to determine any of

these fluctuations from time-domain demodula-

tion of one of these harmonics. This difficulty can

be overcome, however, by considering only small

fluctuations (in particular, Dt is extremely small),
so that we can neglect second-order terms. Let us
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consider in particular the first harmonic of

xp ¼ 2xm, corresponding to the first two terms of

the right-hand-side in Eq. (9), for k ¼ 1. Expand-
ing in Taylor series the cosine and the sine func-

tions, and keeping only first-order terms in the
small fluctuations, we readily obtain

h1ðt; T Þ 
 A1½1þ g0ðT Þ� cosfxp½t � t0ðT Þ�g: ð10Þ

Comparing Eq. (10) with Eq. (1), we observe that

applying the time-domain demodulation technique

to the first harmonic (at xp) of the repetition-rate-

doubled pulse train yields the average pulse energy

fluctuation g0ðT Þ and the average phase fluctua-
tion /0ðT Þ ¼ xpt0ðT Þ. In summary, looking at the
spectrum of a pulse train generated through sec-

ond-order RHML of a fibre laser subject to cavity

length fluctuations, we can say in first approxi-

mation that even-order harmonics of the modu-

lation frequency contain information about the

average fluctuations of the pulses, whereas odd-

order harmonics are the signature of pulse-to-
pulse fluctuations.

4. Comparison of theory and experiment

In Section 2, we have seen that, using the model

proposed in [4,5], it is possible to predict the

characteristics of a pulse train generated by a fibre
laser in second-order RHML regime, and in par-

ticular the average phase /0 and energy g0 of the
pulses, for any given value of the cavity length

detuning. On the other hand, we demonstrated in

Section 3 that /0 and g0 can be determined

through time-domain demodulation of the first

harmonic of the repetition-rate-doubled pulse

train. In this section, we compare the evolutions of
g0 and /0 that are obtained theoretically on the
basis of the aforementioned model, and experi-

mentally through time-domain demodulation, for

the same temporal evolution of the detuning.

In order to control the cavity length detuning,

which will drive phase and energy fluctuations, we

consider that a sinusoidal dithering at 10 Hz is

imposed to the cavity length. We assume that the
magnitude of this dithering is significantly larger

than that resulting of environmental perturba-

tions, so that the latter can be neglected. As the 10-

Hz dithering is extremely slow at the scale of

mode-locking dynamics (�MHz), we may consider
that a regime is reached for each instantaneous

value of the detuning. Hence, knowing the bias

and the magnitude of the periodic dithering, we

can compute, using Fig. 2, the temporal evolution
(versus T) of the pulses phase. This dithering is

thus responsible for a periodic phase fluctuation of

the pulses. Fig. 4 shows the evolution of the phases

of pulses 1 and 2, as well as that of the average

phase /0, when a 10-Hz dithering is applied. The
one-round-trip electric field transmittance TAð/Þ,
calculated for parameters of the experiment (see

legend of Fig. 2), is also represented, in corre-
spondence with these curves. In Fig. 4(a), the de-

tuning bias is zero, whereas in Figs. 4(b) and (c), it

is slightly different from zero (being, respectively,

positive and negative), and is equal to half the

amplitude of the periodic detuning. The phases /0,
/1 and /2 oscillate at the same frequency as the
sinusoidal dithering, although the curves that are

obtained are not pure sine waves, due to the
saturation observed in Fig. 2 for large values of

detuning.

The curves M1ðT Þ and M2ðT Þ in Fig. 4 represent
the electric-field transmittance as a function of T

for pulses 1 and 2, resulting from the oscillation of

their positions on the rising and falling edges of the

transfer function TA, respectively. We have seen in
Section 2 that, during successive round-trips, the
position of each pulse alternates between the rising

and falling edges of the transmittance. Therefore,

for each value of the time T, /1ðT Þ and /2ðT Þ
represent the positions occupied by every pulse in

the train for two consecutive passes through the

modulator. At these two positions, the values ta-

ken by the transmittance TA are generally different,
as shown by M1ðT Þ and M2ðT Þ. Now, because of
the large fluorescence time of erbium in silica (�10
ms), which is much larger than the round-trip time

in the cavity, gain saturates at a value fixed by the

average intracavity loss, which is proportional to

the average loss through the modulator. The av-

erage intracavity power (or equivalently, the av-

erage output power), which is fixed by this value of

the gain, is thus related to the average loss, or to its
inverse, the average transmittance, of the modu-

lator. Considering only small fluctuations, we may
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suppose that the average power of the generated

pulse train evolves linearly with the average in-
tensity transmittance. From the above, it comes

that the temporal evolution of this intensity

transmittance, averaged over two consecutive

round-trips, is the product of the individual elec-

tric-field transmittances M1ðT Þ and M2ðT Þ. This
average intensity transmittance is materialised in

Figs. 4(a)–(c). This function gives thus a picture of

the evolution of the average pulse train power or,
equivalently, of the average pulse energy, g0, as a
function of time T. As each value of the average

phase /0 corresponds to defined values of /1 and
/2 (see Fig. 2), there is a one-to-one correspon-
dence between /0 and the average intensity

transmittance (or g0). As a consequence, it is
possible to construct an effective transfer charac-

teristic g0 ¼ TEð/0Þ, by joining all points whose
coordinates are given by a value of /0 and the
corresponding value of g0. This effective trans-
mittance, which is represented in Fig. 4, will help

us to understand the relation between phase and
energy fluctuations when second-order RHML is

employed.

Fig. 4. Periodic variation of the pulses position and energy consecutive to a 10-Hz cavity length dithering for a fibre laser operated in

the second-order RHML regime. The detuning bias is DL=L ¼ 0 (a), 8:15� 10�7 (b), and �8:15� 10�7 (c), and the amplitude of the
periodic detuning is set to DL=L ¼ 1:63� 10�6 in all cases. The one-round-trip electric field transmittance TA ¼ sin½w0 þ pR sinð/=2Þ�,
and the values of all the parameters that were used in the model are given in the legend of Fig. 2. The filled circles in curve TA for / ¼ 0
and / ¼ 2p indicate the positions of the quadrature points. The phases /1 and /2 of the pulses, as well as their average value /0,
oscillate around a value corresponding to the detuning bias (dashed-dotted vertical lines). They are presented as functions of a coarse-

grained time T, which describes phenomena that evolve slowly at the scale of the cavity round-trip time. Through TA, phase fluctu-
ations induce the transmittance fluctuations M1ðT Þ ¼ TA½/1ðT Þ� and M2ðT Þ ¼ TA½/2ðT Þ þ 2p�, which affect pulses 1 and 2, respectively.
These fluctuations are responsible for a fluctuation of the average pulse energy g0ðT Þ / M1ðT Þ �M2ðT Þ. In practice, it is more con-
venient to consider that g0ðT Þ results from the fluctuation of /0ðT Þ through an effective transmittance characteristic TEð/Þ.
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As it appears from Fig. 4, TE shows a maximum
at /0 ¼ 0 (i.e., at zero detuning), and is symmetric
about this point. Therefore, when the detuning

bias is equal to zero (Fig. 4(a)), g0 oscillates at
twice the dithering frequency, i.e., at 20 Hz. This

oscillation occurs at 10 Hz, however, when a non-
zero bias is present (Figs. 4(b) and (c)). If this bias

is positive (Fig. 4(b)), the slope of TE is negative, so
that g0 is p-shifted with respect to /0. In contrast,
both curves are in phase in the case of a negative

bias, due to the positive slope of the transfer

characteristic in this region (Fig. 4(c)). In sum-

mary, the model predicts that, when an actively

mode-locked fibre laser is operated in the second-
order RHML regime and undergoes cavity length

fluctuations, the action of the intracavity ampli-

tude modulator is responsible for a strong corre-

lation between the average energy and phase

fluctuations of the generated pulse train. Qualita-

tively, this happens in the same way as in the case

of harmonic mode locking [30].

In our experiment, we used an erbium-doped

fibre laser in a sigma configuration (Fig. 5). Such a

laser associates a unidirectional polarisation-

maintaining ring (right on Fig. 5) and a double-

pass, non-polarisation-maintaining branch, which

is ended by a Faraday mirror (left) [31]. This
structure benefits from the advantages of a polar-

isation-maintaining ring laser, while maintaining

the possibility to insert non-polarisation-main-

taining components in the structure. The effective

length of the laser was about 143 m (correspond-

ing to a FSR of 1.437 MHz). A 9.7-m erbium-

doped fibre pumped by a 980-nm laser diode (150

mW maximal power) was used as the gain me-
dium. To be consistent with the model, non-linear

effects were minimised through the use of a mod-

erate 50-mW pump power. Also, in order to

compensate for the anomalous intracavity disper-

sion, a 8-m piece of dispersion compensating fibre

(D 
 �80 ps/nm/km at 1530 nm) was inserted in

the non-polarisation-maintaining branch of the

Fig. 5. Actively mode-locked erbium-doped fibre sigma laser with cavity length stabilisation scheme (dashed frame in the figure). The

latter is based on the minimisation of the average interpulse noise that is measured at output 2 of the dual-output Mach–Zehnder

amplitude modulator [32]. The correction voltage, together with a small 10-Hz sinusoidal voltage, is applied to a piezo drum on which

a section of fibre is wound, thus adjusting the cavity length proportionally. This electronic feedback loop can be operated in both

harmonic and second-order RHML regimes [33]. The 10-Hz dithering signal, which is normally used in the feedback loop to determine

the sign of the correction voltage to be applied, is also used, in our experiments, when the feedback loop is turned off (in this case, the

switch after the integrator is opened).
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laser. Through the measurement of the dependence

of the optimal modulation frequency on the op-

erational wavelength (fixed by the central fre-

quency of the tuneable optical filter), the total

intracavity dispersion was estimated to be about

)0.07 ps/nm at 1530 nm. In an attempt to reduce
roughly environmental perturbations, the laser

was placed in a foam plastic box. The modulation

frequency was set to 1.297 GHz, i.e., 902.5 times

the FSR, resulting in the generation of a 2.594-

GHz optical pulse train. The average optical in-

tracavity power was estimated to be 5–10 mW at

the output coupler. From a background-free au-

tocorrelation measurement, the pulse duration was
determined to be 23 ps, a value that is very close to

the theoretical value of 22.6 ps obtained by the

model in the absence of cavity length detuning.

Using an optical spectrum analyser, the optical

bandwidth was measured to be about 0.15 nm.

The slightly normal intracavity dispersion ensured

the generation of gaussian-like pulses, as it was

confirmed by a time-bandwidth product of 0.44,
which corresponds to transform-limited gaussian

pulses.

In this experiment, the cavity length stabilising

feedback loop described in Fig. 5 was not used,

except that a 10-Hz sinusoidal voltage was applied

to the piezo drum, so as to generate a sinusoidal

length dithering at this frequency. The magnitude

of the voltage oscillation was set high enough so as
to make this forced dithering take over environ-

mental perturbations. When the laser was placed

in the foam plastic box, this resulted in a detuning

amplitude of DL=L ¼ 1:63� 10�6, which can be
compared to the relative length variation caused

by about 1 �C temperature change (this means that
temperature varied by much less than 1 �C over
our measurement time of a few dithering periods).
The generated optical pulse train was detected at

the laser output by a 25-GHz photo detector, and

the photocurrent was fed into a vector signal

analyser, or VSA (Agilent Technologies, model

89441A), which performed amplitude and phase

demodulation of its first harmonic (at 2.594 GHz).

The time series of g0 and /0 were then readily
obtained.
It has to be stressed that, for this experiment, a

particular care was taken for the choice of the RF

generator used to operate the laser in the second-

order RHML regime. Indeed, in an actively mode-

locked fibre laser, the phase noise of the RF

generator used as mode locker is often the domi-

nant source of the pulse train phase noise. In fact,

in many cases, the PSD of the latter literally
mimics that of the generator phase noise [6,25]. As

a result, the effect of other potential noise sources,

in particular cavity length fluctuations, is masked.

In contrast, the mode locker only slightly affects

the energy noise of the pulse train. Therefore, the

mode locker is not likely to generate a significant

correlation between energy and phase noises of

the pulse train, contrary to cavity length fluctua-
tions. Hence, in order to show evidence of the

influence of cavity length variations, in particular

through the observation of the aforementioned

correlation, one must get rid of the mode locker

phase noise. One solution is to use the mode

locker signal as the reference in the double de-

modulation process (see Section 1). As this was

not achievable in our practical implementation
(using the VSA), we used a low-noise generator

(Hewlett Packard, model 83732A) as the mode

locker.

The curves of Fig. 6 show g0ðT Þ and /0ðT Þ,
which were determined both experimentally by

time-domain demodulation, and theoretically us-

ing the model. From (a) to (e), the detuning am-

plitude DL=L ¼ 1:63� 10�6 was kept constant,
while its bias was varied between �DL=L and

DL=L. The amplitudes of the theoretical curves
were adjusted so as to fit at best the experimental

results. A good agreement is then observed be-

tween the curves. In the case of g0 (Fig. 6(I)), this
agreement confirms that the average energy fluc-

tuations determined experimentally are propor-

tional to the average transmittance predicted
theoretically. In the case of /0, Fig. 6(II) shows
that the phase fluctuation determined theoretically

is proportional in each case to the experimental

data, but the proportionality coefficient is sub-

stantially smaller than unity, which denotes a

quantitative discrepancy between the model and

experimental results. Similarly to [4,5], we attri-

bute this discrepancy to the increasing error of the
theoretical model with increasing modulation fre-

quency detuning, and also to the fact that this
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Fig. 6. Temporal evolution of the average pulse energy g0(I) and of the average phase /0(II) of a pulse train generated by a fibre laser
operated in the second-order RHML regime and whose length is modulated sinusoidally at 10 Hz. The values of the detuning bias that

we considered are DL=L ¼ �1:63� 10�6 (a), �8:15� 10�7 (b), 0 (c), 8:15� 10�7 (d) and 1:63� 10�6 (e), for a detuning amplitude
DL=L ¼ 1:63� 10�6 in all cases. Solid lines are the experimental data, obtained by time-domain demodulation of the first harmonic of
the detected pulse train, and dashed lines are theoretical curves, whose magnitudes have been fitted to experimental data, using the least

square method.
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model does not take into account intracavity dis-

persion (although its total value is close to zero,

several sections of the laser show up a substantial

amount of dispersion) and the Kerr non-linearity,

which may have some influence on the pulse pa-

rameters. In spite of these limitations of the model,
the qualitative agreement between theoretical and

experimental data is very good, and the relation

between phase and energy fluctuations due to the

action of the modulator, which were predicted in

Fig. 4, are clearly observed experimentally. In

particular, when the detuning bias is zero, g0 os-
cillates at 20 Hz, i.e., at twice the frequency of /0,
which corresponds to the dithering frequency (Fig.
6(c)). In contrast, g0 has a 10-Hz component when
some bias appears. When this bias is negative, g0
and /0 are in phase, whereas g0 is p-shifted with
respect to /0 in the case of a positive bias (compare
Figs. 6(a) and (e), (b) and (d)).

5. Measurement of energy and phase noises

In this section, we measure, using the time-do-

main demodulation technique, energy and phase

noises affecting a pulse train generated by the

sigma laser in the second-order RHML regime, as

well as the cross-correlation between these noises.

The latter in particular will be very useful to assess

the influence of environmentally induced cavity
length fluctuations on the measured noises. For

this study, the laser length was stabilised against

long-term drifts through the implementation of the

electronic feedback loop described in Fig. 5. In

order to make environmental perturbations the

dominant cause of cavity length fluctuations, the

magnitude of the 10-Hz dithering was reduced to

the minimal value that still ensures proper opera-
tion of the feedback loop. Like in the previous

section, the laser was mode-locked at 1.297 GHz,

resulting in the generation of a 2.594-GHz pulse

train. The detected pulse train was fed into the

VSA, which performed amplitude and phase de-

modulation of its first harmonic. The time series of

average energy and phase noises, g0ðT Þ and /0ðT Þ,
respectively, were then retrieved from the analyser,
and their PSDs, Sg0ðf Þ and S/0ðf Þ, as well as their
XSD, Sg0/0ðf Þ, were calculated using a FFT-based

algorithm. We also measured the PSDs of ampli-

tude and phase noises of the RF generator signal.

These results are presented in Fig. 7.

In Figs. 7(a) and (b), it appears clearly that both

energy and phase noises of the pulse train exceed

those of the generator. This means that other
physical processes than the generator noise per-

turb the pulse train more significantly. Contrary to

the previous experiment (see Fig. 6), the influence

of the 10-Hz dithering was not easy to identify

from the direct examination of the time series

g0ðT Þ and /0ðT Þ, due to its very low magnitude. Its
impact on amplitude and phase fluctuations can be

observed, however, in the PSDs Sg0ðf Þ and S/0ðf Þ
(Figs. 7(a) and (b)), where spurs are visible at 10

Hz and its harmonics. Referring to the previous

section, Sg0ðf Þ should include spurs only at 20 Hz
and its harmonics if the laser length was properly

tuned. The existence in Sg0ðf Þ of a spur at 10 Hz
(and at its odd-order harmonics) indicates that, in

spite of the use of a feedback loop to avoid cavity

length drifts, the detuning bias is not precisely
maintained to zero. In fact, this is not surprising if

we consider that a change in the modulation fre-

quency as small as a few tens of hertz from the

optimal mode locking frequency (corresponding to

a detuning Dfm=fm 
 10�8 only) suffices to gener-
ate a peak at 10 Hz in Sg0ðf Þ, as it was observed
when the feedback loop was turned off (although

the 10-Hz dithering was maintained). Such small
detuning values lie in the range of the precision

attained by the feedback loop. Note that, whereas

the 10-Hz dithering voltage that is applied is a pure

sine wave, a rather large number of harmonics of

10 Hz are visible in both Sg0ðf Þ and S/0ðf Þ. In the
case of S/0ðf Þ (Fig. 7(b)), high-order harmonics
may be due to the non-linear phase-versus-detun-

ing characteristic (Fig. 2). They may also originate
from some non-linearity in the voltage-extension

characteristic of the piezo drum that adjusts the

cavity length. In the case of Sg0ðf Þ (Fig. 7(a)), the
presence of high-order harmonics is mainly caused

by the existence of such harmonics in S/0ðf Þ, and
by the non-linearity of the effective transfer char-

acteristic g0 ¼ TEð/0Þ (Fig. 4). Finally, let us

mention that the wide spur around 50 kHz in
Sg0ðf Þ (Fig. 7(a)) is the signature of relaxation
oscillations.
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Fig. 7(c) shows the coherence function of g0 and
/0. The coherence function is the square modules
of the XSD normalised to the PSDs, i.e.,

c2g0/0ðf Þ ¼
j Sg0/0ðf Þ j2
Sg0ðf ÞS/0ðf Þ

: ð11Þ

This function is very useful, as it allows to quantify

the degree of correlation at each frequency by
values included between 0 and 1. From Fig. 7(c), it

appears that a strong correlation exists between g0
and /0 on a wide frequency range, which extends
continuously up to several kHz, and is thus not

restricted to a few discrete frequencies corre-

sponding to the successive harmonics of the 10-Hz

dithering. As the XSD Sg0/0ðf Þ is generally a
complex quantity, additional information is pro-
vided by its argument, which is shown in Fig. 7(d).

We observe that, in the frequency range where the

coherence function shows up significant values (up

to a few kHz), the argument of Sg0/0ðf Þ is ap-
proximately equal to p. Hence, Sg0/0ðf Þ is essen-
tially real and negative at these frequencies. This is

not a rule, however. Indeed, after making several

noise measurements in the same conditions as

for Fig. 7, we observed that, at frequencies

where substantial coherence was measured,
Sg0/0ðf Þ was real in all cases, but either positive
(arg½Sg0/0ðf Þ� ¼ 0) or negative (arg½Sg0/0ðf Þ� ¼ p).
In some cases, however, the coherence essentially

vanished over the whole frequency range.

These observations can be explained very easily

by considering the effect of environmental per-

turbations. Indeed, like the 10-Hz sinusoidal

dithering that is applied to the piezo drum, envi-
ronmental perturbations (temperature changes

and mechanical vibrations) slightly modify the

Fig. 7. PSD of g0 (a), PSD of /0 (b), coherence function (c) and argument of the XSD Sg0/0 ðf Þ (d) measured from a 2.594-GHz optical
pulse train generated by the fibre sigma laser in the second-order RHML regime. The PSDs of amplitude (energy) and phase noises of

the RF generator are also represented. Frequency span: 1 Hz–500 kHz. Each curve combines data from five measurements with

different spans (50 Hz, 500 Hz, 5 kHz, 50 kHz and 500 kHz) and resolutions (0.1 Hz, 1 Hz, 10 Hz, 100 Hz and 1 kHz, respectively).
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cavity length (in a random way in the latter case).

All these slow length variations induce fluctuations

of the average phase /0 of the generated pulses
(Fig. 2). These phase fluctuations are then turned

into amplitude fluctuations, through the mediation

of the effective transmittance characteristic, TE
(Fig. 4). In the PSDs Sg0ðf Þ and S/0ðf Þ (Figs. 7(a)
and (b)), the deterministic dithering appears as a

series of spurs at 10 Hz and its harmonics, whereas

the signature of random environmental perturba-

tions is a continuous noise pattern that essentially

rolls off for increasing frequencies, down to the

measurement floor. Depending on the value of the

detuning bias, the correlation between phase and
energy noises as measured by the coherence func-

tion can be very different. First, if this bias is zero,

then all phase fluctuations are frequency-doubled

in the phase-to-energy-noise conversion process,

because of the symmetry of the effective trans-

mittance TE (Fig. 4(a)). In particular, the 10-Hz
phase variation yields a 20-Hz energy fluctuation

of the pulses. As a consequence, the coherence
function is close to zero at all frequencies. In

contrast, if the detuning bias is slightly different

from zero, phase fluctuations generate amplitude

fluctuations at the same fundamental frequency.

In particular, the 10-Hz phase variation yields a

10-Hz energy fluctuation of the pulses. In the case

of a positive bias, the average position /0 of the
pulses appears preferentially on the falling edge of
the effective transmittance TE (Fig. 4(b)). The slope
of TE being negative, g0ðT Þ is p-shifted with respect
to /0ðT Þ, and Sg0/0ðf Þ is negative. In contrast, if
the bias is negative, the average pulse position

appears on the rising edge of TE (Fig. 4(c)). The
slope being positive, g0ðT Þ is in phase with /0ðT Þ,
so that Sg0/0ðf Þ is positive. In summary, this

section showed that random environmental
perturbations are an important source of both

energy and phase noises affecting a pulse train

generated by a fibre laser in the second-order

RHML regime.

6. Conclusions

In this paper, we studied both theoretically

and experimentally the noise properties of an

optical pulse train generated by an actively mode-

locked erbium-doped fibre laser operated in the

second-order rational harmonic mode locking

regime. In particular, we investigated the effect of

cavity length variations on the phase and energy

fluctuations of the pulse train. Using a simple
model of second-order rational harmonic mode

locking, which was recently proposed, we showed

that, when the cavity length changes, the average

values of energy and phase, as well as the pulse-

to-pulse energy and phase differences, fluctuate.

Then we demonstrated that average energy and

phase fluctuations can be measured simply by

time-domain demodulation of the first harmonic
of the detected pulse train. Through the appli-

cation of a forced dithering to the cavity length,

we were able to compare the average energy and

phase fluctuations that were measured by time-

domain demodulation with those predicted by the

model. We observed a good qualitative agreement

between theoretical and experimental results. This

study showed in particular that average phase
fluctuations are converted into energy fluctua-

tions through the mediation of the modulator

transmittance. The modalities of this conversion

strongly depend on the value of the detuning

bias. This mechanism of coupling between phase

and energy noises of a repetition-rate-doubled

pulse train obtained by rational harmonic mode

locking is qualitatively very similar to the one
that takes place in a harmonically mode-locked

fibre laser. Finally, we measured, using the time-

domain demodulation technique, the power

spectral densities of the average energy and phase

noises affecting the pulse train, as well as their

cross-spectral density and coherence function.

Our study showed that, when the phase noise of

the RF generator is small enough, environmen-
tally induced cavity length variations are the

dominant source of both energy and phase noises

of the pulse train. In many cases, we measured

large coherence values, denoting the existence of

a residual length detuning, which remains in

spite of the implementation of an accurate sta-

bilisation scheme. This demonstrates the extreme

sensitivity of fibre lasers to environmental per-
turbations in the rational harmonic mode-locking

regime.
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