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Abstract—This paper addresses the land-use classification future C-Band ENVISAT ASAR [2] system will have dual-po-
capabilities of fully polarimetric synthetic aperture radar (SAR)  |arization and single polarization modes, and the C-Band
versus dual-polarization and single-polarization SAR for P-, L-, RADARSAT-2 [3] and L-Band ALOS-PALSAR [4], in addi-

and C-Band frequencies. A variety of polarization combinations . . . .
will be investigated for application to crop and tree age classifica- tion to a fully polarimetric SAR mode, will also have the dual

tion. Based on the complex Wishart distribution for the covariance @nd single polarization modes for wider swath selection.
matrix, maximum likelihood (ML) classifiers for all polarization To quantitatively evaluate the classification capability for var-

combinations were used to assess quantitative classificationjoys combinations of polarization, a procedure must be carefully
accuracy. Thus, this allows optimally selecting the frequency and ggiaplished: 1) optimally supervised classification algorithms
the combination of polarizations for various applications. developed from the same concept should be used for all com-
Index Terms—Radar polarimetry, synthetic aperture radar pinations of polarizations; 2) training sets have to be carefully
(SAR), terrain classification. selected from the available ground truth map; and 3) the classifi-
cation reference map to be used for the classification evaluation
|. INTRODUCTION must be reasonable and consistent with the ground truth map
and polarimetric SAR data.

HE selectlon.of radar frequency anq polarlzaup n are wo Comparison of classification accuracies between fully po-
of the most important parameters in synthetic aperturg

dar (SAR) mission desi of iif rimetric, dual polarization and single polarization SAR data
radar ( X ) mission design. DF course, a MURITeqUENGy e heen evaluated for P-Band, L-Band, and C-Band using two
fully polarimetric SAR system is highly desirable, but th

R . "9YPL AIRSAR data sets. Flevoland for crops and Les Landes for
limitations of payload, data rate, budget, requ_lred resolutia ee ages. The availability of these multi-frequency polarimetric
area .Of coverage, etc. frequentlly prevent.multlfrequ_ency. ful AR data enables us to quantitatively compare classification ca-
polarimetric SAR from becoming a reality, especially in bilities of all combinations of polarizations for three frequen-

spaceborne system. For a particular application, it is desiral %S_ Furthermore, we have ground truth maps for both scenes

to op_ﬂmglly select th? frequency gnd qomblnatlon of _I'ne%at facilitate the selections of training sets and reference maps.
polarization channels if a fully polarimetric SAR system is not

possible and to find out the expected loss in classification and
geophysical parameter accuracy. In this paper, we quantitatively 1. PROBABILITY DENSITY FUNCTIONS (PDFs) FOR
compare crop and tree classification accuracies between fully MULTIPOLARIZATION AND POLARIMETRIC SAR DATA
polarimetric SAR and multipolarization SAR for P-, L-, and . . . - .
C-Band frequencies. Using polarimetric P-, L, and C-Band dataA polanmetr.lc SAR measures microwave reflectivity using
from NASA/JPL AIRSAR [1], the correct classification ratesquaq-polarlzannHH, HV’.VH’ and\_/V to_ form a scattgrlng
of crops and tree ages for all combinations of polarizations tr_|x [5]. For mono;tauc radar imaging of a r(.auprocall
compared. Additionally, to understand the importance of phagl,?_d'um’ the three unique elements of the scattering matrix
differences between polarizations, comparisons are also m ggne a complex vector
between complex dual co-polarizatiod$H{ andVV) and two
intensity images Withqut their phase difference. _ h=[Sgg V2Suvy Svv]7” 1)

The methodology introduced should have an impact on

selecting the combinations of polarizations and frequen@ere the superscrif® denotes the matrix transpose. THe
of a SAR for use in various applications. For example, the, the S, term is to ensure consistency in the span (total

power) computation (see Boerradral.[5]). Most SAR data are
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It has been shown that the polarimetric covariance matrix hfiem the class centers given by the ground truth maps, and be-
a complex multivariate Wishart distribution [6], [7]. L&l = cause classes from the ground truth may not correspond to the
E[Z]. The distribution of ther look Z givenC is cluster centers derived from the unsupervised segmentation.
) The ML classifier [11], [12] assigns a sample vector or matrix
" n?" | Z|"" exp[-nTr(C™"Z k to them classwyy if

K(n,q)|C|"
Plwmlk) > P(wj|k),f0r all j # m. (5)
and
. Applying Bayes’ rule
K(n,q) = 7)1 D0 (m) . I(n — g+ 1) (klwm) P(wm)
_ plk|lwm)P(wm
where Plomlk) = (k) (6)
q dimension of the vectak; } .
g=23 reciprocal case: we have the vector or matrik assigned to classyy, if
g =4 Dbistatic case; .
T, trace of a matrix: P(k|wn, )P(wy,) > plk|lw;)P(w;),forall j Zm.  (7)

K(n, ¢g) normalization factor. . . - : .
’ : Co - . P th bability of cl .Inth li-
These theoretical distributions have been verified using actt&%ﬁ;ﬁ) tlﬁ ea zﬁ oF;i”g?oE;%iI?[ielé };r(()a ;sasiar;? d tg beISeZBF;II We

polanme_tnc_ SAR data [7]' L shall discuss the ML classifier for fully polarimetric data first,
The distribution functions for dual polarization can be deF

. ) . o ollowed by classifiers for dual and single polarization data.
rived from this complex Wishart distribution. For example, i W y . ! Ingle polanzat
only complexHH and VV are availableg = 2, and for single 5 Fully Polarimetric SAR Data Classifier

polarizationg = 1, which reduces (3) to the Chi-square distri- i o )
bution with 2n degree of freedom. For terrain or land-use classification, a distance measure [13]

For the dual polarization case without phase difference infof/@s derived based on the ML classifier (7) and the complex
mation, the probability density function (PDF) has been derivédfishart distribution (3)
[7]. Letting R, =< ||S1||* > andRy =< ||S2||* >, we have

ds = In|C,,,| + Tr (C,,' Z) (8)
PRy, Ry) R R whereC,,, = E[Z|w,,] is the mean covariance matrix for class
(R IL)(n:)exp _"(c,, . wm.- It is important to note that this distance measure is in-
* 1=lecI? dependent of the number of looks, Consequently, it can be
= (1) applied to single-look, multilook, and polarimetric speckle-fil-
(CiiCs2) = T(n)( = |pe|?)|p|?1 tered complex data. For supervised classification, training sets
R.R, |p.| are required to estimai@,, for each class. The distance mea-
Ip_y | 20y CoCn i I (4)  sure is then applied to classify each pixel.
where B. Multifrequency Fully Polarimetric SAR Data Classifier
I,() modified Bessel function of thath order; Based on the assumption that speckle is statistically indepen-
Ci1 = E[Ry]; dent between frequency bands, the distance measure (8) can
Cs = E[Ry]. be generalized for the classification using combined multifre-

Maximum likelihood (ML) classification algorithms are devel-quency polarimetric SAR data [13]
oped based on these distributions.

J
_ . . N—Llopis
I1l. M AXIMUM LIKELIHOOD CLASSIFIER dJ - Z {ln|Cm(J)| +T (Cm(J) ZU))} ©)

. , . , J=1
In order to establish a firm foundation for comparison, we

adopt supervised ML classification algorithms based on theorathere

ical speckle distributions of multipolarization and polarimetric J total number of bands;

SAR data [7]. Supervised classification is used, because unsuZ(j) covariance matrix for thg"" frequency band;
pervised classification [8]-[10] may cause clusters to driftaway C,,,(j = E[Z(j)|wm]

n T < |SHH|2 > < \/§SHHS}{V > < SHHS;V >
k=1 <SyvShg >  <V2SyvSiy > <|Svv|? >
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C. Dual Polarization Complex SAR Data Classifier d) combinations of dual polarizations without the
i 2 2 2 2
For classification of dual polarization complex SAR data, the phase d|ﬁ2erence2$I(IH| [VVI9), (IHH[, [HV]?),
(1) has only two elements, e.g. and (HV[%, [VV[*).
e) each individual polarizationHH|?, |VV|?, and
v =[S 8. (10) |[HV|?, for all three bands.
) ) 4) Compute the correct classification rates based on the ref-
The same distance measure (8), with, and Z accordingly erence map.

defined as % 2 matrices, is used for ML classification [14].

D. Single Intensity SAR Data Classifier A. Remarks

A multilook polarimetric SAR image represented by a covari-
. . . nce matrix has nine independent variables. Fully polarimetric
SAR data can be described by the same Wishart dlsmbu“gﬁssification utilizes all nine variables. However, classification

. . 2
‘t’\r']';h d({s;r}é;_?rt]téggﬁle ?of t|r|1§ lsHin ieanglgﬁaiof [g,&grge]{ta based on two polarizations or one polarization is performed in a
comes gie p l%‘Elbspace, which is a prOJec_tlon of t.h(=T nine dimensional space.
Classes that are separable in the original space may not be sep-
d —InCyi + R, (11) araple in the subspace..ln ggneral, the overall gorrect classifi-
! Yoy cation rate for fully polarimetric data should be higher than for
partially polarimetric data. However, this may not be true for
each individual class, because many classes are involved in the

] ~ classification. A pixel may be closer in distance to one class
In the absence of phase difference data, the classificationds fu|ly polarimetric SAR, but to a different class for the dual

based only on two intensities. The magnitude of the complgx single polarization cases. The same also applies when com-

correlation coefficienfp.| of (4) can be derived from two inten- paring classification results between complex dual polarizations
sity images [7]. It has been proved that the correlation coefling two intensities without phase.”

cient computed from intensities equals|? under the assump-
tion of Circular Gaussian distribution. For each cl&ss,, C--,
and |p.| are computed in a training area. A distance measure
can be derived from (4) in a more complex form than (8). This The JPL P-, L-, and C-Band polarimetric SAR dataset of
distance measure does not provide a computational advantdgevoland, The Netherlands, is used for this crop classification
Consequently, the ML classifier is applied directly to the PDstudy. The JPL scene number is Flevoland-056-1. The image
(4). has a size of 1024 750 pixels. The pixel size is 6.6 m in the
slant range direction and 12.10 m in the azimuth direction. The
IV. CLASSIFICATION PROCEDURE incidence angles are 19.@t near range and 44.4t far range.

o ) Most crop fields to be classified are within an°1§pan of in-
Ground truth maps often do not show sufficient detail for gigence angles. The change in polarimetric responses by this

fair evaluation of classification capabilities. Training sets ha\g 4|1 variation of the incidence angle does not influence clas-
to be carefully selected from the ground truth map. Pixels Bication much. Fig. 1(a) is an L-Band image with color com-
training sets are then used for all supervised classifications. J&sed by Pauli matrix representation: red|E — VV|, green
evaluate classification accuracy, the trgining sets may be U?SP|HV| + [VH], and blue fofHH + VV|. Contrasting patches
as the reference class map, if each training set contains a Syffiz gricylture field reveal the capability of L-Band polarimetric
cient number of pixels to obtain statistically significant resultg aR to characterize crops. C-Band and P-Band do not have as
Otherwise, a reference class map may be established using i, contrast between fields as L-Band. This dataset was col-
classification map from gombined multifrequgncy polarimetrig,~ted in mid-August 1989 during the MAESTRO 1 Campaign
SAR data. This alternative reference map will be used for theg) [19]. Calibration to remove the cross-talk and the channel
forest age classification. o imbalance was done by JPL. This image covers a large agricul-
The basic classification procedure is listed as follows. tural area of flat topography and homogeneous soils. The orig-
1) Select training sets from a ground truth map. inal ground truth map is shown in Fig. 1(b). A total of 11 classes
2) Filter polarimetric SAR data using the polarimetric propare identified, consisting of eight crop classes from stem beans
erty preserving filter [15] to reduce the effect of specklgy wheat, and three other classes of bare soil, water, and forest.

As mentioned in Section I, the single polarization intensitg

E. Dual Intensities SAR Data Classifier

V. COMPARISON OFCROP CLASSIFICATION

on the classification evaluation. The color coded class label is given in Fig. 1(e) .
3) Apply ML classifiers to: To obtain refined training sets, the ground-truth map was
a) combined P-, L-, and C-Band fully polarimetricmodified by eliminating the roads and all border pixels. We also
data. observed bright noisy strips in P-Bakd/ [shown in Fig. 1(c)]
b) each individual P-Band, L-Band, or C-Band fullyand HV images (not shown) probably due to radio frequency
polarimetric data. interference [19]. To obtain a common training set and establish

c) combinations of dual polarization complex data common reference map to compare classification accuracies
with phase differences, complelH, VV), (HH, for all three bands, we masked out pixels on and near the bright
HV)and HV, VV). strips from the ground truth map. The refined map shown in
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B. Dual Polarization Crop Classification Results

Correct classification rates for combinations of two polariza-
tion images with and without phase differences were calculated.
Since correlation between co-polarizatidl andV'V is higher
than between cross-polarization and co-polarization, we found
that the phase difference betwedH andVV is an important
factor for crop classification. Fig. 3(a) shows L-Band classifica-
tion result using the compleldH andV'V. Fig. 3(b) shows the
result usingdH andVV intensities only. The total correct clas-
sification rate of compledH andVV at 80.91% is only slightly
inferior to that using fully polarimetric data. However, when the
phase difference is not included in the classification, the rate
drops to 56.35%. Phase differences are induced by differences
in penetration depths betweétH andVV. The difference in
scattering centers betwe#ri andVV generates important dis-

Pr— ' (50 Traiiag ens o mioonas o criminating signatur(_as shown in Fig. 3(c). Fig. 3(d) shows his-
tograms of phase difference for each class. It reveals that all
=2'"" — classes, except stem beans and the forest, have their phase dif-
Foizicas [ Pem ference highly concentrated near peaks, and most peaks do not
Hieerne [ G coincide. In particular, the class of stem beans and forest have
nral | BT . . . .
s San peaks located at roughlyr /2 andr /4 respectively, indicating

that they are easily separated by phase differences.

The phase differences between co-polarization terms and
Fig. 1. L-Band polarimetric SAR image of Flevoland, The Netherlands, al ¢ oss-polarlzatlon terms are no_t as_ Important as that petV\_/een
its ground truth map for crop classification. (a) Original L-Band image with1H and VV, because Co'pOIanzat'_On ?nd_ cross-polarization
color composition by Pauli matrix representation: red {68 — VV|, green terms are generally uncorrelated in distributed targets. The
for |HV| + |VH]|, and blue fofHH + VV|. (b) Original ground-truth map. ot i iati
A total of 11 classes are identified. (c) P-BaidV| image. Bright noisy strips classification results reflect this Ch.araCte”Stlc' Fror.n. Ta.ble I,
are probably due to radio frequency interference. (d) Modified training set. ()€ L-Band complexV'V: and HV with correct classification
Color-coded class label. rate of 64.72% is only somewhat better than for the intensities

with a rate of 60.12%.
Fig. 1(d) was then co-registered with SAR image and used for € results of P-Band are similar except with lower overall
training and for computing classification accuracies. classification rates showp in Tabloe I. The total c(I)aSS|f|cat|on rate

The Flevoland data were originally processed with four-loofe” ComplexHH andVV'is 69.25%, and 59.37% fdiH and

average in Stokes matrix [1]. Al three bands of polarimetriXV intensities. The classification rates for the forest class for

data were speckle filtered by applying the polarimetric properfyyBand are much better than L-Band and C-Band, but P-Band

preserving filter [15] using a standard deviation to mean ratio §f POOT in separating the grass class from other crop classes.
0.5. The classification procedure was then applied. The corrd&{eSe results are expected, because P-Band has higher penetra-
classification rates for P-Band, L-Band, and C-Band are list8@n Power. The overall classification rates for C-Band are not

in Tables I-I1l, respectively. The classification results using @ 900d; as shown in Table Ill. The phase difference between
single polarization are shown in Table IV. Discussions on the§d1 @ndVV is also important in C-Band classification, but the

classification results measured against the crop reference rfilggsification rate for the forest class is inferior to L-Band and
are given in the following. P-Band, except that the grass class is better.

TEF Ol Lmisd

A. Fully Polarimetric Crop Classification Results C. Single Polarization Data Crop Classification Results

Using fully polarimetric SAR data, the classification results The classification accuracies for single polarization data, as
are shown in Fig. 2. The classes are coded with the color @fpected, are much worse than those from two polarizations.
Fig. 1(e). The L- Band has the best total correct classificatigthe overall correct classification rates are given in Table IV for
rate of 81.65%, shown in Fig. 2(b). P-Band is the next witp. |- and C-BandHH|?, [HV|? and|VV|2. For L-Band and

71.37% shown in Fig. 2(c). C-Band is the worst with 66.53%g-Band, the cross polarizatidhV has the highest rate, but for
shown in Fig. 2(a). L-Band radar, with wavelength of 24 cm, has Band,vV has the best rate.

the proper amount of penetration power, producing better distin-

guished scattering characteristics between classes. C-Band %egummary

not have enough penetration, while P-Band has too much pen-

etration. When all three bands are used for the classificationFor crop classification, it is clear that, if fully polarimetric
the correct classification rate increases to 91.21%, as showrdata is not available, the combination of compled andVV

Fig. 2(d). It is apparent that multifrequency fully polarimetrigolarizations is preferred. The contribution of co-polarization
SAR is highly desirable. phase differencesto classification is highly significant. The clas-
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TABLE |
P-BAND CROP CLASSIFICATION RESULTS FORFULLY POLARIMETRIC AND DUAL POLARIZATION DATA. THE CORRECT CLASSIFICATION RATES
ARE IN PERCENTAGES THE RESULTS FROM SINGLE POLARIZATION ARE LISTED IN TABLE IV

P-Band Fully Complex Intensity Complex Iintensity Complex Intensity

Crops Polarimetric HH, HV [HH|2,JHV|? HH, VV [HHIZ jvV|? VV, HV IVV]3,|HV|?
Stem Bean 70.72 23.70 21.51 67.43 39.57 43.89 45.53
Forest 92.33 89.64 89.50 92.75 88.80 90.84 90.63
Potatoes 90.90 83.13 83.75 76.52 71.03 | 9064 90.55
Lucerne 93.04 87.91 90.45 86.68 83.11 83.35 80.97
Wheat 54.34 30.39 28.39 53.71 37.69 43.64 36.43
Bare Soil 96.07 - 91.46 91.07 94.08 87.66 92.64 92.76
Beet 89.09 47.12 39.72 85.70 70.75 60.03 55.87
Rape Seed 59.13 10.80 22.85 61.60 60.27 41.22 42.80
Peas 82.04 32.98 28.24, 84.69 66.17 65.63 67.07
Grass 25.01 17.77 16.19 11.35 5.59 49.77 48.95
Water 100. 86.19 86.48 100 98.51 99.43 99.36
TOTAL 71.37 46.06 46.84 69.25 59.37 61.33 59.31

TABLE I
L-BAND CROP CLASSIFICATION RESULTS FORFULLY POLARIMETRIC AND DUAL-POLARIZATION DATA. THE CORRECT CLASSIFICATION RATES
ARE IN PERCENTAGES THE RESULTS FROM SINGLE POLARIZATION ARE LISTED IN TABLE IV

L-Band Fully Complex Intensity Complex Intensity Complex Intensity
Crops Polarimetric HH, HV [HH|%,JHV|? HH, W |HH[Z,[VVI2 | VV,HV [VV]3,|HV|?
Stem Bean 95.32 51.16 63.27 90.64 61.73 35.97 31.29
Forest 81.07 66.73 68.39 75.75 33.83 60.05 60.91
Potatoes 82.89 67.53 66.36 81.52 49.35 54.40 59.15
Lucerne 97.91 39.29 38.23 99.26 65.15 67.49 65.30
Wheat 64.80 49.77 44.27 68.02 53.72 49.43 41.65
Bare Soil 99.36 90.04 82.86 98.42 93.15 90.93 63.74
Beet 89.26 68.80 66.36 86.22 81.98 75.94 74.77
Rape Seed 89.05 55.01 53.23 87.18 49.85 82.31 77.12
Peas 86.47 50.77 39.25 84.59 65.21 81.82 79.59
Grass 91.05 66.44 65.06 90.13 71.08 75.36 75.19
Water 100 90.39 87.33 100 99.86 96.30 70.53
TOTAL 81.63 59.16 55.38 80.91 56.35 64.72 60.12

sification results using P-Band and C-Band data are inferior RESBIO and Dr. T. Le Toan, is shown in Fig. 4(b). A compar-

those using L-Band. ison of Fig. 4(a) and 4(b) reveals the backscattering coefficients
) - increasing roughly with tree ages.
E. Comparison of Tree Age Classification The ground-truth map is not sufficiently detailed, and inho-

For tree age classifications, we use JPL AIRSAR P-, L-, affdogeneous areas, which are revealed in polarimetric SAR im-
C-Band polarimetric SAR data of Les Landes Forest, Frandges, are not shown in the map. These discrepancies forced us
from the MAESTRO 1 Campaign. The pixel size is 6.66 m itp select other means to create a tree class reference map for
the slant range direction and 12.10 m in the azimuth directidie evaluation of classification accuracy. The procedure involves
An area of 620< 503 pixels containing the forested areas of theareful selection of the smaller training sets shown in Fig. 4(c).
ground truth map was extract from the original image. The scelidias been shown in our crop classification and by others [9]
contains bare soil areas and many homogeneous forested affe@isclassification based on all three bands (P-, L-, and C-Band)
of maritime pines. Six tree-age groups are included from 5ad polarimetric data has the highest classification rate. Conse-
years to more than 41 years of age. A P-Band color compodgiently, the combined P-, L-, and C-Band classification map is
image with red fotHH|, Green forlHV| and blue forfVV| are used as the reference map for computing classification accura-
shown in Fig. 4(a). The available ground-truth map, courtesy @es. The color coded class label is shown in Fig. 4(d).
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TABLE Il
C-BAND CROP CLASSIFICATION RESULTS FORFULLY POLARIMETRIC AND DUAL POLARIZATION DATA. THE CORRECT CLASSIFICATION RATES
ARE IN PERCENTAGES THE RESULTS FROM SINGLE POLARIZATION ARE LISTED IN TABLE IV

C-Band Fully Complex Intensity Complex | Intensity Compiex Intensity
Crops Polarimetric [ HH, HV | |HH]%|HV]? HH, VV | |HH]3,|vV]? VV, HV IVVI3|HV|?

Stem Bean 66.55 24.45 12.50 57.73 22.47 53.74 55.43
Forest 46.53 36.82 37.68 43.67 35.86 34.31 26.32
Potatoes 58.09 38.18 34.16 55.28 42.02 53.60 58.73
Lucerne 92.08 83.94 84.18 81.09 75.87 89.13 ' 88.81
Wheat 60.36 63.29 39.16 33.58 25.19 53.77 34.68
Bare Soil 95.64 95.66 95.86 95.70 80.47 95.75 96.02
Beet 48.32 48.54 50.78 48.47 42.50 27.20 24.70
Rape Seed 77.99 67.79 68.13 67.60 23.55 73.12 74.01
Peas 67.37 5§3.22 49.62 60.96 29.92 64.24 62.71
Grass 97.37 96.34 96.44 94,14 75.66 89.24 97.62
Water 100 100 100 100 100 100 100

TOTAL 66.53 56.39 51.54 55.00 37.22 59.72 53.72

TABLE IV
P-, L-, AND C-BAND SINGLE POLARIZATION CROP CLASSIFICATION RESULTS
THE OVERALL CORRECTCLASSIFICATION RATES ARE IN PERCENTAGES

[HHI? [HV|? v
P-Band 28.31 28.31 34.76
L-Band 32.49 44.81 25.74
C-Band 26.15 39.24 26.28
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Fig. 3. Comparison of dual polarization crop classification with and without
phase difference information. (a) L-Band classification results using complex
HH and VV. The overall correct classification rate is 80.91%. (b) L-Band
|HH|? and|VV|? (without phase difference) classification result. The overall
rate drops to 56.35%. (c) The phase difference image betdderand VV
displayed in gray scale betweear and+x . (d) Histograms of phase
difference for each class using the training set.

for P-Band. For comparison, the classification result using
three bands simultaneously is shown in Fig. 5(d). Fig. 5(d)
Fig. 2. Comparisons of fully polarimetric SAR crop classification results. (hows a good agreement with the parcel distribution given
C-Band fully polarimetric classification result. The overall correct classificatio y the ground truth map of Fig. 4(b). Classification rates for
rate is 66.53%. (b) L-Band fully polarimetric classification result with overal . ’ ’

rate of 81.63%. (c) P-Band fully polarimetric classification result with overa@Ch class are shown in Table V. As expected, P-Band data

rate of 71.37%. (d) Combined P-, L-, and C-Band classification with overall ralkas much higher overall correct classification rate at 79.16%

Fo P Dt Fa iy pabriecny i chusflominn 900 Carablaa P LB Rl it sl

at91.21%. than L-Band at 64.67%. C-Band at 42.96% is not acceptable
) . o for forest classification. All three bands can separate bare soil
F. Fully Polarimetric Tree Age Classification Results from trees. For forest, however, the scattering mechanisms

The classification results using fully polarimetric SAR dat&rom trees are much more complex [16]. Leaves, branches,
are shown in Fig. 5(a) for C-Band, 5(b) for L-Band, and 5(dyunks and the ground create volumetric scatterings of single
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Fig. 5. Comparisons of fully polarimetric tree age classifications. (a) C-Band

) ) . ) fully polarimetric classification result. The overall correct classification rate
Fig. 4. P-Band polarimetric SAR image of Les Landes, France, and {542 .96%. (b) L-Band fully polarimetric classification result with the overall

ground-truth map for tree age classification. (a) Original P-Band image witlyrrect classification rate of 64.67%. (c) P-Band fully polarimetric classification

color composition: red fofHH]|, green for|HV| + [VH]|, and blue fofVV|. " yesult with the overall correct classification rate of 79.16%. (d) Combined P-,

(b) Original ground-truth map courtesy of CESBIO and Dr. T. Le Toan. Atotal- and C-Band classification map. This map is used as reference in computing
of seven classes are identified. (c) Small training set carefully selected freRa classification accuracies for all other results.

the ground truth map. (d) Color-coded class label.

. . . TABLE V
bounce, double bounces, and multiple bounces, especially in  p. |- anp C-BAND TREE AGE CLASSIFICATION RESULTS FOR

P-Band. The L-Band has less penetration than P-Band, and its FuLLY POLARIMETRIC DATA. THE CORRECT CLASSIFICATION RATES
backscattered signal tends to saturate in older tree parcels. For ARE IN PERCENTAGES
C-Band, the dominating scattering is mainly from treetops,

. . . LY . Bands P-BAND L-BAND C-BAND
resulting in poor discriminating for tree ages. Tree Age Fully Fully Fully
Polarimetric | Polarimetric | Polarimetric
. . . . Bare Soil 95.86 96.64 83.27
G. Dual Polarization Tree Age Classification Results
5-8 Years 81.72 77.52 30.51
For P-Band, the combination 8fH andHV performs better 8-11 Years 47.57 36.39 26.45
thanHH andV'V as shown in Fig. 6 and Table VI. Phase differ- 11-14 Years 86.78 49.05 33.63
ences are less influential on the classification because scattering  1s.19 vears 72.43 40.65 34,55
mechanisms in tree areas are very random. Consequently, phase 3314 vears 56.64 973 19.57
dlffer(_a_nce; between polarizations are very noisy. The correct 41 Yoars 5707 P 2100
classification rates for P-Band are given in Table VI. The overall
. . on i TOTAL 79.16 64.67 42.96
classification accuracy for complékH andVV of 68.56% is

very close to that foHH and VV intensities of 65.30%. This

difference is much less than that from crop classification. The L L

complexHH and HV classification accuracy is much highet - Single Polarization Tree Age Classification

at 75.95, and thélH and HV intensity classification is only  The overall tree age classification accuracies for single po-

slightly less at 75.44%. The difference between using and natization are much better than those for crop classification.

using phases is negligible for all three dual polarization modd3:BandHV has the overall classification rate of 68.88%&] of

We also notice that the use 8H andHV can achieve results 58.31% and/V of 53.89%. Classification rates for single polar-

nearly as good as that of fully polarimetric SAR. This is bezation are very close to those for dual polarization for all three

cause of high correlation between P-Bail polarization and bands. It indicates highly correlated radar returns between po-

tree branch biomass [20]. larizations. Applying target decomposition of Cloude and Pot-
Classification for L-Band is similar but somewhat inferiortier [17] to fully polarimetric SAR images, we found that the

The performance of C-Band is much worse due to the inadmtropies are very high for all forest areas, revealing random

guate penetration of its shorter wavelength. To save space, shattering mechanisms. In other words, the backscattered sig-

C-Band and L-Band rates are not listed. nals are very depolarized. Consequently, the polarization effect
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These optimal classifiers, developed on the same foundation,
ensure a fair comparison of classification capabilities.

We found that L-Band fully polarimetric SAR data are best
for crop classification, but P-Band is best for forest age classifi-
cation, because longer wavelength electromagnetic waves pro-
vide higher penetration. For dual polarization classification, the
HH andVV phase difference is important for crop classification
but less important for tree age classification. Also, for crop clas-
sification, the L-Band compledH and VV can achieve cor-
rect classification rates almost as good as for full polarimetric
SAR data, and for forest age classification, P-BaitlandHV
should be used in the absence of fully polarimetric data. In all
cases, we have demonstrated that multifrequency fully polari-
metric SAR is highly desirable. The methodology introduced
in this paper should have an impact on the selection of polar-
izations and frequencies in current and future SAR systems for
various applications.
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[2

TABLE VI
P-BAND TREE AGE CLASSIFICATION RESULTS FORFULLY POLARIMETRIC
AND DUAL POLARIZATION DATA. THE CORRECT CLASSIFICATION [3]
RATES ARE IN PERCENTAGES
P-Band Complex Intensit Compl 1 ity Comy Intensity [4]
Tree Age HH, HVY [HHIZ[HVEZ | HH, WV | [HHZIVVIZ | YV HY | VYR YR
. [6]
Bare Soit 94.49 94.38 95.69 92,47 93.31 93.36
5-8 Years 77.58 77.31 83.51 75.46 76.85 76.60
8-11 Years 35.65 36.66 46.62 44.36 52.14 53.68 [6]
11-14 Years 80.33 79.98 61.73 57.86 87.01 86.93
15-19 Years 76.96 75.66 41.05 4413 76.19 76.15 [7]
33-44 Years 53.93 54.74 42.92 4192 21.36 21.79
>41 Years 49.48 44.62 53.74 49.47 25.11 20.48
TOTAL 75.95 75.44 68.56 65.30 71.64 71.37
(8l
is less significant. The reason why cross-polarizatin pro- [9]

duces better classification results thdH and V'V is because
the volumetric scattering in forest areas enhances the cross—p[%]
larization returns.

VI. CONCLUSION [11]

A procedure has been developed to quantitatively evaluate the
classification capabilities for fully polarimetric combinations
of dual polarization and single polarization SAR. Quantitative[13]
comparison has been made for crop and forest age classifica-
tions for P-Band, L-Band, and C-Band frequencies. The fully[l4]
polarimetric and partially polarimetric classification algorithms
are developed based on the principle of the ML classifier. All
PDFs are derived from the complex Wishart distribution undePs]
the circular Gaussian assumption for complex polarimetric data.

Metric SAR data.
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