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Abstract—In this paper, we introduce a new classification
scheme for dual frequency polarimetric SAR data sets. A (6 6)
polarimetric coherency matrix is defined to simultaneously take
into account the full polarimetric information from both images.
This matrix is composed of the two coherency matrices and their
cross-correlation. A decomposition theorem is applied to both
images to obtain 64 initial clusters based on their scattering
characteristics. The data sets are then classified by an iterative
algorithm based on a complex Wishart density function of
the 6 6 matrix. A class number reduction technique is then
applied on the 64 resulting clusters to improve the efficiency of
the interpretation and representation of each class. An alternative
technique is also proposed which introduces the polarimetric
cross-correlation information to refine the results of classification
to a small number of clusters using the conditional probability
of the cross-correlation matrix. These classification schemes are
applied to full polarimetric P, L, and C-band SAR images of the
Nezer Forest, France, acquired by the NASA/JPL AIRSAR Sensor
in 1989.

Index Terms—Multivariate statistics, radar polarimetry, syn-
thetic aperture radar (SAR), terrain classification.

I. INTRODUCTION

T HEbackscatteringpropertiesofanaturalmediumvarywith
theobservationfrequencyaccordingto itsphysical features,

suchas itsstructureor itssizewithrespect totheradarwavelength.
Thescatteringmechanismmayremainalmostunchangedforbare
soilobservationatLandC-bands,butmayshowatotallydifferent
aspect for forest remote sensing at P and C-bands. Incident waves
with different wavelengths interact with different parts of a com-
plexmedium.Thepurposeofmultifrequencyanalysis is togather
adequate information from each data set.

Many algorithms have been developed to classify natural
media using polarimetric synthetic aperture radar (POLSAR)
data [1]–[5]. Several approaches were derived to directly
relate some basic characteristics of the targets to elements
of the polarimetric covariance matrix [6]–[8]. More recently,
polarimetric decomposition theorems were introduced in order
to investigate the intrinsic physical properties of a natural
medium by evaluating the underlying scattering mechanisms
[9]–[12]. All these approaches realize an interpretation of the
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polarization of the backscattered wave and establish a relation
between the medium physical properties and polarimetric
transformations.

The use of multifrequency polarimetric data sets has shown
to increase the interpretation capabilities of quantitative remote
sensing of natural media [13], [14]. Some multifrequency fully
polarimetric classification approaches were developed using
various types of algorithms and techniques based on neural
networks, fuzzy iterative classifiers, statistical segmentation,
etc. [15]–[17]. Statistical classification using multivariate prob-
ability density functions (PDFs) permits us to define adaptive
decision rules to segment data sets into more compact clusters
in an unsupervised way. Moreover, a decision rule derived from
a fully polarimetric representation leads to optimal results and
provides information for class type identification by evaluating
the underlying physical scattering mechanism [17].

Kong et al. [18] introduced a maximum likelihood (ML) de-
cision rule based on the multivariate complex gaussian distribu-
tion of the elements of the coherent scattering matrix. In order to
reduce the effects of speckle in polarimetric SAR images, data
are generally processed through incoherent averaging and are
represented by coherency matrices. Leeet al. [17] introduced
the ML decision rule to the incoherent case by using the multi-
variate complex Wishart distribution of sample coherency ma-
trices. A k-mean algorithm was applied to iteratively assign the
pixels of the POLSAR image to one of the classes using the ML
rule. Leeet al. [19] further improved the classification by using
the H- decomposition theorem [9] to provide an initial guess
of the pixel distribution into the classes that produces a better
convergence of the unsupervised classification algorithm.

In this paper, we propose an unsupervised classification of
dual frequency POLSAR images by including the polarimetric
information of both images. A (6 6) coherency matrix is con-
structed using the single look complex data from the two fre-
quency images. This matrix includes the coherency matrices
from each image as well as their cross-correlation [20], [21].
This matrix is shown to follow a Wishart distribution and a ML
decision rule is derived. Similarly to the single image case, data
sets are processed through a k-mean classifier after an initial-
ization step consisting of applying the H-classification pro-
cedure to each separate image. A class number reduction tech-
nique is then applied to the 64 resulting clusters to improve
the efficiency of the interpretation and representation of each
class’ characteristics. An alternative approach is also proposed
based on the introduction of the second image polarimetric in-
formation through the cross-correlation conditional statistics.
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This procedure permits an efficient handling of the classifica-
tion information by refining an initial classified data set with a
small number of clusters and iteratively creating new classes.
The probability density of a sample cross-correlation matrix
conditionally to the polarimetric information in one image is de-
rived in order to calculate a distance measure. This distance is
used to perform an unsupervised splitting of a dual image cluster
into two subsets.

In Section II, single frequency POLSAR data statistics in both
coherent and incoherent cases are described. Section III is de-
voted to the derivations of dual-frequency POLSAR data sta-
tistics. The PDF of a dual-frequency (66) coherency matrix
is introduced. This result is used to derive the gaussian con-
ditional PDF of the cross-correlation matrix. Section IV con-
tains unsupervised classification results obtained with single
frequency images. In Section V, we introduce two new dual fre-
quency data unsupervised classification schemes. The first clas-
sification technique relies on a ML distance derived from the
Wishart PDF of the dual frequency (66) coherency matrix.
The second classification scheme uses the conditional gaussian
PDF to merge the significant features from each POLSAR data
set. These classification schemes are then applied to full polari-
metric P, L and C-bands SAR images of the Nezer forest ac-
quired by NASA /JPL AIRSAR sensor (1989).

The classification results obtained with the different seg-
mentation schemes are analyzed in Section VI. Specific criteria
are defined to investigate the correspondence between the
segmented clusters distribution and the location of the different
types of natural medium over the scene. These criteria are
used to evaluate in a quantitative way the performance of the
different classification procedures.

II. SINGLE-FREQUENCYPOLARIMETRIC SAR DATA STATISTICS

For a given measurement configuration, a target is fully char-
acterized by its coherent scattering matrixrelating the inci-
dent and scattered Jones vectors. In the general case, this matrix
is composed of four complex variables and is given by

(1)

Using a straightforward lexicographic ordering of the scattering
matrix elements, a complex target vector is obtained

(2)

It has been verified that when the radar illuminates an area of
random surface of many elementary scatterers,can be mod-
eled as having a multivariate complex gaussian PDF
of the form [18], [22]

(3)

The operator denotes the conjugate transposerepresents the
determinant, and is the covariance matrix of.
Kong et al. [18] defined an ML classification procedure based
on the density function (3). A vector is assigned to the class

according to the following decision rule:

if

with

(4)

with the feature covariance matrix of the class .
Data sets are generally processed using incoherent averaging

techniques of data compression and/or speckle reduction. Mul-
tilook data result from the averaging of independent single-look
incoherent representations. The-look sample covariance ma-
trix is obtained from independent target vectorsas follows:

(5)

It has been shown that assuming that the target vectors have a
distribution, follows a complex Wishart PDF with

degrees of freedom, , defined by [22]

tr

K
with

K (6)

with the gamma function and tr the trace of .
The variable represents the number of elements of the target
vector. Similar to the single-look case, a Bayes ML classifica-
tion leads to the definition of a decision rule [17]. Considering
that thea priori probabilities of classes are equal, a sample co-
variance matrix of a pixel of the SAR image is assigned to the
class if , [17], with

tr (7)

III. D UAL-FREQUENCYPOLARIMETRIC SAR DATA STATISTICS

When dealing with dual frequency images, the polarimetric
information contained in a resolution cell represents the fully
polarimetric characteristics of both data sets.

A. Dual Polarimetric Representation

In the case of dual-frequency polarimetric data classification,
it is important to simultaneously take into account the polari-
metric information from both images

(8)

where and are the target vectors belonging to the dif-
ferent images. The vector has the dimension . The

-look covariance matrix summarizes the joint infor-
mation from both images and has the following structure:

with

(9)
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The matrices and are the standard-look
( ) covariance matrices from separate images.
is a ( ) complex matrix containing information about the
polarimetric cross-correlation between and . The target
vector follows a complex normal distribution
[22], with its ( ) covariance matrix. The
sample ( ) covariance matrix has a complex Wishart dis-
tribution , characterized by degrees of freedom

tr

K
(10)

with K defined in (6). The advantage in using the ( )
representation resides in the fact that according to (10), dual data
sets can be simultaneously classified by using the ML distance
measure defined in (11) and without any assumption concerning
their independence

tr (11)

with the ( ) feature matrix of class .

B. Cross-Correlation Matrix Statistics

The cross-correlation is highly sensitive to the scattering phe-
nomenon type and its degree of randomness, both of which can
be extracted from this covariance matrix representation. The
probability of may then be taken into account to sepa-
rate groups of pixels belonging to the same class but possessing
slightly different dual polarimetric information.

The properties of the hermitian matrix permit to define a
conditional probability of the polarimetric cross-correlation ma-
trix . In order to express the conditional probability of
given , , both and can be partitioned as
follows [23]:

(12)

with and
. By means of an upper-triangular transfor-

mation, the determinants of the ( ) matrices are then sim-
plified to the following expressions:

and

(13)

After some reductions and combinations, an expression of
tr is found as a function of

and , with

tr tr

tr

tr (14)

Inserting (13) and (14) into the Wishart probability function of
in (10), it can be shown that

(15)
with

K

tr (16)

and (17), shown at the bottom of the page.
From (15) and (16), it is found that the matrix is inde-

pendent of and and follows a complex Wishart PDF
.

As the sample covariance matrix of the second
image, follows a complex Wishart density func-
tion with degrees of freedom and since

, the conditional proba-
bility density of the polarimetric cross-correlation matrix
given is a complex normal function, given by the last
line of (17). This complex normal density function may be
formulated as [23]

with

and

(18)

Equation (18) can be written under a conventional form using
the properties of the Kroneker product, as shown in (19) at
the bottom of the next page.

vec is a complex element vector obtained
by stacking the columns of under each other and

vec . This complex normal density function
gives, for pixels belonging to the class , the probability of
the cross-correlation matrix conditionally to the second image
sample covariance matrix. The logarithm of (19) is used to
define a measure of the distance between the actual polarimetric
cross-correlation and its expected value when observing

K
tr

tr
(17)
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the second image polarimetric information with

tr

(20)

IV. SINGLE IMAGE CLASSIFICATION PROCEDURE

A. Classification Algorithm

For a reciprocal medium in a monostatic radar configura-
tion, the target vector presented in (2) is modified as

, leading to the defi-
nition of the Pauli coherency matrix . The use
of the coherency matrix instead of the lexicographic covariance
matrix does not modify the density distribution types and the
related equations defined previously [19].

The method used to perform a classification of a single image
polarimetric data set is based on the use of an iterative k-mean
algorithm and is described in details in [17], [19]. Four options
have to be chosen by the user.

• The number of classes.
• The initialization of the pixel distribution into the

classes.
• The distance measure from a pixel to theclass centers.
• The termination criterion.

The number of classes and the data assignment during the ini-
tialization step of the classification are critical points and deter-
mine the quality of the entire classification.

In [19], Lee et al. proposed to initialize the classes using
the H- classification scheme [9], [10], which provides eight
classes relating to the underlying physical scattering mecha-
nism. This splitting of the data set gives a stable initial ap-
proximation. The distance is estimated using the ML approach
applied on the data statistics mentioned previously. The ter-
mination criterion may be selected from the estimation of the
classification quality, when a maximum number of iterations
is reached, or when a sufficiently low number of pixels are
switching classes from one iteration to the next.

B. The H- Classification Scheme

The -look sample Pauli coherency matrix
represents a distributed target with its

rank greater than 1. cannot be related to a single scattering
matrix and must be decomposed in order to identify the
global mean scattering mechanism.

Cloude and Pottier [19] introduced a polarimetric decompo-
sition theorem based on the projection of the distributed co-

herency matrix onto its eigenvector basis. is decomposed
into a weighted sum of three unitary matrices of rank one. Each
represents a pure scattering mechanism

(21)

with the th eigenvalue of and its related eigenvector.
From this decomposition are extracted two meaningful roll-

invariant parameters and H [10].

• stands for the indicator of the mean scattering mecha-
nism. A value close to zero relates surface reflection for
scattering from a dipole equals and reaches
when the target consists in a metallic dihedral scatterer.

• The entropy H is an indicator of the random behavior of
the global scattering. Both H andare strongly related to
the observed scene geophysical properties and structure.

The unsupervised classification is achieved by projecting the
pixels of an image onto the H-plane which is segmented into
eight regions. The interpretation of this segmentation can be
found in [10]. The arbitrarily fixed linear decision boundaries
may not fit the data distribution in the classification plane and
cause inaccurate results by artificially merging two close types
of targets like sea and smooth ground at L-band or splitting into
different classes pixels belonging to a complex medium showing
a distribution spread over one or several boundaries. Nonethe-
less this classification scheme provides an interpretation of the
global scattering leading to an understanding of the relation be-
tween the response of a medium and its mean physical charac-
teristics and can be used as a first guess of the different scattering
types.

C. Application to POLSAR Data

The classification technique is applied on the Nezer site sit-
uated in the Landes Forest in the south-west of France. On Au-
gust 16, 1989, full polarimetric data sets have been acquired by
NASA JPL AIRSAR sensor at P, L and C-bands, with center
frequencies at 0.44 GHz, 1.225 GHz and 5.3 GHz, respectively.
The pixel spacing is 3 m 6.6 m.

The scene contains bare soil areas and many homogeneous
forested areas of maritime pines. Several tree-age groups are
included from more than 41 years down to 5–8 years of age.
Backscattering from the tree parcels is highly correlated to the
age of the trees. Fig. 2 shows the span images of the Nezer site
at P-band. Fig. 3 shows the results of the unsupervised Wishart
classification applied on P-band and L-band POLSAR data sets.
After four iterations, the results obtained using the unsupervised
Wishart classifier depict an important improvement in the clas-
sification accuracy. The P-band classified image shows an inter-
esting correspondence between the polarimetric classes and the

(19)
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Fig. 1. Ground truth of Nezer Forest. This map is a courtesy of CESBIO and
Dr. T. Le Toan.

Fig. 2. Span image of the Nezer site at P-band.

ground-truth information. Class 5 represents the clear cut areas,
whereas cells covered with 5–8 years old trees are occupied by
class 8. Medium age trees, from 11 to 19 years old, are mainly
covered by the polarimetric classes 4 and 7. Older tree cells,
from 20 to more than 41 years old, have a polarimetric behavior
corresponding to classes 1, 2, and 3. A polarimetric class may
spread over more than one type of forest cell.

The L-band classified image does not separate different tree
classes accurately. Young trees mainly correspond to class 4,
while the rest of trees are represented by classes 1, 2, 3, 6, and
7. The unsupervised classification at this frequency highlights
differences within the clear-cut regions, which are segmented
in two different classes, 5 and 8.

This unsupervised classification algorithm modifies the deci-
sion boundaries in an adaptive way to better fit the natural dis-
tribution of the scattering mechanisms and takes into account
the whole polarimetric information contained in the coherency
matrix representation. The characterization and interpretation of
the different clusters may be achieved by studying the polari-
metric properties of their center feature matrix from the param-
eters delivered by the H-- decomposition or other full polari-
metric analysis techniques [19], [24].

Fig. 3. Results for (top) P-band and (bottom) L-band data obtained with the
unsupervised Wishart classifier.

V. MULTIFREQUENCYCLASSIFICATION PROCEDURE

We propose different approaches to the classification of sev-
eral polarimetric data sets simultaneously. Dual frequency po-
larimetric images are classified by means of clustering proce-
dures from the distance measure defined in (11) using the ()
coherency matrix representation, or successively (11) and (20)
if the dual polarimetric information is introduced through the
conditional probability density of the cross-correlation matrix.

A. Dual Frequency Image ML Classification

1) Classification Algorithm:Both of the separate images
are classified through the unsupervised Wishart classifier into
eight classes each. The results are further segmented into 64
classes by simultaneously considering the labels of pixels
in each image. This way of initializing the pixel distribution
presents the advantage of giving equal significance to the
polarimetric information interpretation from each image.

The initial classified image, made of 64 clusters, is then pro-
cessed through an unsupervised k-mean clustering algorithm
based on the distance measure defined in (11). The use of the
( ) dual polarimetric coherency matrix permits to calculate
in an easy way the distance from a pixel to the different class
center feature matrices. The dual image classification algorithm
corresponding to the synopsis, described in Fig. 4, is the fol-
lowing.
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Fig. 4. Synopsis of an unsupervised dual frequency POLSAR image
classification procedure.

Step 1: Perform the eight-class unsupervised Wishart classifica-
tion on both separate polarimetric data sets.

Step 2: Initialize the class distribution by calculating the com-
bined class number using the following rule: A pixel be-
longing to class in the first image and to in the
second one is assigned to the combined class . The
number of classes is then equal to 64.

Step 3: For each class , compute the 6 6 feature covariance
matrix .

Step 4: Assign each pixel to the class minimizing the distance
measure from (11) over the 64 classes.

Step 5: Stop if a termination criterion is met, otherwise go to
Step 3.

The accuracy, using this initialization, is highly enhanced,
since pixels are distributed into 64 classes according to the com-
bination of the full polarimetric unsupervised Wishart classifi-
cation results obtained for separate images.

2) Reduction of the Number of Classes:The number of
classes has to be reduced in order to facilitate the interpretation
for each class characteristics as well as the visual representation
of the geographical location of the different clusters. Leeet al.
[19] proposed a merging procedure based on the study of the
class compactness and separability that is well adapted to the
natural partition of the data. Considering the entire class set,
the clusters to be merged are the ones presenting the lowest
degree of separability. Two classes can be distinguished, if they
are compact and if the mean distance between their elements
is high. Hence, the separability between classesand
is defined as the ratio of their between-class distance to their
within-class dispersion [19].

For a given class , the within-class dispersion is defined
as the mean distance from its elements to the (66) class center
feature matrix

(22)

Inserting the definition of the distance measure of (11) in (22),

one may find

tr (23)

The constant term ( ) corresponds to the trace of the (66)
identity matrix . The distance between class and class is
the mean distance from the elements of each class to the center
feature matrix of the other class. See equation (24), shown at
the bottom of the next page.Using the definition of the distance
measure, the average distance between two classes is simplified
to

tr
(25)

Their separability Sp is then given by

Sp (26)

Using this definition and considering that the classes to be
merged are those presenting the lowest separability, the class
reduction technique is applied by the way of an iterative
algorithm until a termination criterion is met.

One may use the termination introduced in [19] based on an
estimation of the classification quality, or consider that the re-
duction procedure may end when an arbitrarily fixed number of
classes is reached so that the classification results can be effi-
ciently handled.

It is important to note the necessity of the intermediate clas-
sification step concerning the clustering of data in the six di-
mensional space. The merging of separately compact data sets
may lead to diffuse classes in the higher dimension space. The
(6 6) Wishart ML classification step permits to improve the
compactness of the combined classes and significantly increases
the efficiency of the class-number reduction procedure.

3) Application to POLSAR Data:The classification algo-
rithm is run on P, L, and C-band data set combinations, with
the number of classes reduced to 16. The classification results
of P-band and L-band data sets are shown in Fig. 5. When com-
paring this classification method results with the ones obtained
with a single image classification procedure, one finds an im-
portant improvement in the description of the natural character-
istics distribution. The initialization step, which simultaneously
takes into account both data sets with equal importance, pro-
duces a good discrimination of details like roads or lanes and
small forest cells. The class number reduction technique per-
mits to merge classes of close characteristics and produces an
accurate distribution of the differently aged trees in the forest.

The classification map obtained from P and L-band images
shows a good concordance with the parcel distribution given by
the ground-truth information in Fig. 1. The relevant information
from each data set has been gathered to differentiate the different

(24)
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Fig. 5. Dual image unsupervised classification results obtained with P-L-band
data sets.

parcel types. Globally, the P-band features permit to discrimi-
nate the different forest types, while L or C-bands characteristics
emphasize the roads and lanes as well as the different types of
bare ground areas. The compactness of the different classes is
highly enhanced by this dual classification procedure.

It is important to note that no assumptions were made
concerning the level of cross-correlation between the different
data sets, the classification taking into account this information
during the entire process.

B. Dual Frequency Image Classification Using the
Cross-Correlation Information

1) Classification Algorithm:Theproceduredescribedabove
classifies data by reducing a high number of classes obtained by
the combinationof class labels ineach image.Thequalityof clas-
sification depends on the accuracy of the separability criterion
mentioned in (26). This top-down approach can be computation-
ally intensive since it manipulates up to 64 classes.

A problem linked to the reduction of the number of classes
may be encountered when classifying scenes composed of var-
ious types of scatterers. In the case of forest remote sensing, point
targets or classes corresponding to heterogeneities may be con-
sidered ashighlyseparable clusters, while the response of thedif-
ferent types of forest parcels may appear to be very close. During
the class-number reduction process, the forest parcels may then
be merged into classes containing a large number of pixels.

We propose another approach, which instead of initializing
the classification with a high number of classes, begins with
a small amount of classes and iteratively uses the conditional
cross-correlation information to split one class into two sub-
classes. The synopsis of this classification scheme is presented
in Fig. 6. The criterion used to choose the class to be split
into two subclasses necessitates the calculation of the separa-
bility measure defined in (26). In each class the distance mea-
sure based on the cross-correlation information is calculated for
each pixel from (20). The class is temporarily split into two
sub-classes and by comparing the value of the dis-
tance for each pixel with respect to the mean over the entire

Fig. 6. Synopsis of an unsupervised dual frequency POLSAR image
classification procedure using the polarimetric cross-correlation matrix
conditional probability.

class equal to for each
.The decision rule is defined by

For every if then

else (27)

The class to be split is the one presenting the most distant
subclasses and verifies

Sp Sp (28)

where Sp represents the separability between classes
and and is defined in (26). The classification is initial-

ized with the result of the single image based on the Wishart
classification procedure. The number of classes is iteratively in-
creased till a termination criterion is met.

The classification algorithm is defined as follows.

Step 1: Initialize the eight-class distribution from the unsuper-
vised Wishart classification on one of the separate po-
larimetric data sets. The number of classesis equal
to eight.

Step 2: Apply the -class unsupervised dual data sets Wishart
classification using the (6 6) polarimetric represent-
ation, until a termination criterion is met.

Step 3: If a general termination criterion is met, go to Step 6.
Step 4: For each class, perform a temporary splitting into two

subclasses, by applying the criterion defined in (27).
Step 5: Effectively split the class verifying (28) , go

back to Step 2.
Step 6: Stop.

Similarly to the dual frequency image classification scheme,
the general termination criterion may be obtained by evaluating
the classification global quality from the parameter defined in
[19], or by fixing a maximum number of classes. This procedure
is less computationally intensive than the former one since the
number of classes remains inferior or equal to the final one.

2) Application to POLSAR Data:The segmentation of P-L
and P-C-band dual data sets in 16 clusters leads to almost similar
results using both dual classification methods. The distribution
of the classes is slightly different, but leads to an equivalent in-
terpretation of the forest parcels. Due to the merging procedure,
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Fig. 7. Dual image unsupervised classification results obtained using
P-C-band data sets with 12 classes.

the classes produced by the first method are slightly more com-
pact. We apply both classification methods to the dual P-C-band
data set with a number of classes equal to 12.

The ML classification scheme provides a segmentation of the
observed scene which gathers the almost totality of the tree cov-
ered parcels into two classes, classes number 1 and 7, as can be
seen in Fig. 7.

During the class number reduction process, the polarimetric
classes corresponding to the various types of forest show a
low separability, compared to the point targets discriminated
by C-band data and are merged into two classes so that the
remaining clusters describe the bare soil areas. The joint use
of these frequency bands with this classification method, using
a small number of classes, does not provide good results for
forest classification.

The classification based on the conditional probability of
the cross-correlation matrix is initialized with eight clusters
resulting from the Wishart iterative classification applied on
one of the separate data sets and the class splitting procedure
is run till the number of classes reaches 12. The classification
results are shown in Fig. 8.

The classification provides better results than those depicted
in Fig. 7 and provide good global information about the ob-
served scene. The different types of forest parcels can be distin-
guished and the bare soil areas as well as the major part of the
forest lanes are discriminated. This method is an efficient alter-
native to the ML dual classification, when the reduction proce-
dure may merge close classes. An important gain in computation
time was observed too.

As mentioned previously, the choice of the initial set of class
center feature matrices has a significant influence on the classi-
fication performance. In a general way, the best classification re-
sults were obtained by initializing the process with the less spa-
tially organized separately segmented data set. In our particular
multifrequency forest remote sensing case, the degree of spatial
disorder of the segmented data sets increases with the observa-
tion frequency. It is then recommended to initialize the classifi-
cationwiththehighestcenter frequencydataset.Theclasscenters

Fig. 8. Dual frequency image unsupervised classification results obtained with
P-C-band data sets, using the cross-correlation matrix conditional probability,
with 12 classes.

are then spread among a wide variety of scattering mechanisms.
Themorespatiallyorganizedinformationfromthe lowcenter fre-
quency data set permits to obtain compact final clusters.

VI. A NALYSIS OF THE CLASSIFICATION RESULTS

In order to evaluate the performance of the different classifi-
cation schemes, some areas corresponding to six characteristic
types of natural medium are selected in the SAR images as rep-
resented in Fig. 9. Zones I and II correspond to bare soil areas
with different roughness scales. The areas with label III indicate
parcels of young trees, while IV and V correspond to two types
of intermediate age trees. The old tree stands are assigned to the
type VI. The different areas have been chosen so as to contain
approximately the same number of pixels.

The most representative polarimetric classes are associated,
for each terrain type and in an exclusive way, in order to con-
stitute the estimated population of the different given kinds of
natural medium. The real population of each type of medium is
given by the geographical location indicated in Fig. 9.The eval-
uation of the classification performance consists in the compar-
ison, for each type of natural medium, of the estimated and real
population, respectively, EPand RP.

The segmentation performance is investigated using three cri-
teria aiming to evaluate the different clusters decriptivity, repre-
sentativity and compactness.

The descriptivity is defined as the percentage of pixels
from the estimated population of a type of terrain effectively
belonging to the real population of this kind of medium. It is
formulated as follows:

EP RP
EP

(29)

The representativity of an estimated populationis calculated
using the percentage of estimated populations from other types
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Fig. 9. Location of six types of natural medium over the Nezer forest scene.

of terrain EP, which also belong to the real population RPand
are defined as

EP RP
EP

with (30)

If an estimated population is representative of a real population,
is close to . On the other hand, when a large proportion of

estimated populations from other types of terrain belongs to the
real population, tends to be equal to zero.

The last criterion concerns the compactness of an estimated
population, and can be calculated according to the following
expression:

EP RP
EP

with (31)

When an estimated population is compact,is close to ,
while a large amount of pixels from an estimated population
belonging to other types of terrain real populations makes
tend to be null. The different mono- and multifrequency classi-
fication method performance may be estimated from the criteria
contained in Table I.

The numerical values of the descriptivity criteria are located
on the diagonal of the subtables. Negative values foran
are ignored.

The results of the single frequency data classification at
L-band show the lowest descriptivity. Classifications at P, P-C,
or P-L-bands present similarly high descriptivity values. It can
be observed that classifications using a single frequency data
set lead to clusters whose representativity and compactness
are significantly lower than using dual frequency data. The
additional information contained in a dual frequency data set
permits to obtain clusters that better describe the different
media distribution over the SAR image and then may lead to a
more efficient and reliable interpretation for SAR data analysis
and inversion.

VII. CONCLUSION

In this paper, we introduced a new unsupervised classifica-
tion scheme for dual frequency polarimetric SAR data sets using
a (6 6) polarimetric coherency matrix to simultaneously take
into account the full polarimetric information from both images.
Two classification methods were proposed. The first one was

TABLE I
CORRESPONDENCE OF THEESTIMATED AND REAL POPULATIONS OF THE

DIFFERENTTYPES OFTERRAIN

based on an iterative algorithm using a ML decision rule evalu-
ated from the Wishart density function of the (66) matrix. The
initialization of this classification is realized a combination of
the H- classification results from each image providing 64 ini-
tial classes. Once the iterative algorithm has converged, a class
number reduction technique is applied to improve the represen-
tation of each class characteristics. The results obtained with
this classification show an important improvement in the de-
scription of the different types of natural media encountered in
a forest scene. Parcels containing different types of trees can be
distinguished and small classes such as roads and small forest
parcels are discriminated. The class number reduction technique
enhances the class compactness and improves the interpretation
possibilities.

This reduction procedure may, in case of point targets, lead to
the merging of large areas into a small number of polarimetric
classes. In order to overcome this problem, a second technique
was proposed, which introduces the polarimetric cross-correla-
tion information and refines the results by iteratively creating
new classes during the classification process. This method is an
efficient alternative to the ML dual classification, when the re-
duction procedure may merge close classes and permits an im-
portant gain in computation time.
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A quantitative analysis of the different classification scheme
performance showed that the use of multifrequency data sets
improved in a significant way the descriptivity, representativity
and compactness of the segmentation results.

Since no assumptions were made concerning the nature of the
data, the dual unsupervised classification approaches may be ap-
plied to any data sets acquired at different time, frequency or inci-
denceanglewithoutmodificationofthesegmentationalgorithms.
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