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Unsupervised Classification of Multifrequency
and Fully Polarimetric SAR Images Based on the
H/A/Alpha—Wishart Classifier

Laurent Ferro-Famil, Eric PottieMember, IEEEand Jong-Sen Le&ellow, IEEE

Abstract—In this paper, we introduce a new classification polarization of the backscattered wave and establish a relation
scheme for dual frequency polarimetric SAR data sets. A (& 6) petween the medium physical properties and polarimetric
polarimetric coherency matrix is defined to simultaneously take transformations

into account the full polarimetric information from both images. . . .

This matrix is composed of the two coherency matrices and their The use of mulufrequency pOIa”m_eftr'C data Se_ts has shown
cross-correlation. A decomposition theorem is applied to both t0 increase the interpretation capabilities of quantitative remote
images to obtain 64 initial clusters based on their scattering sensing of natural media [13], [14]. Some multifrequency fully
characteristics. The data sets are then classified by an iterative polarimetric classification approaches were developed using
algorithm based on a complex Wishart density function of y44qys types of algorithms and techniques based on neural

the 6 x 6 matrix. A class number reduction technique is then tworks. f iterati lassifi tatistical tai
applied on the 64 resulting clusters to improve the efficiency of NEtworks, 1uzzy iterative classiiiers, staustical segmentation,

the interpretation and representation of each class. An alternative ©tc. [15]-[17]. Statistical classification using multivariate prob-
technique is also proposed which introduces the polarimetric ability density functions (PDFs) permits us to define adaptive
cross-correlation information to refine the results of classification  decision rules to segment data sets into more compact clusters
to a small number of clusters using the conditional probability ;5 unsupervised way. Moreover, a decision rule derived from

of the cross-correlation matrix. These classification schemes are full larimetri tation leads t timal It d
applied to full polarimetric P, L, and C-band SAR images of the a fully polanimetric representation leads to optumal results an

Nezer Forest, France, acquired by the NASA/JPL AIRSAR Sensor Provides information for class type identification by evaluating
in 1989. the underlying physical scattering mechanism [17].

Index Terms—Multivariate statistics, radar polarimetry, syn- _<ongetal.[18] introduced a maximum likelihood (ML) de-
thetic aperture radar (SAR), terrain classification. cision rule based on the multivariate complex gaussian distribu-
tion of the elements of the coherent scattering matrix. In order to
reduce the effects of speckle in polarimetric SAR images, data
are generally processed through incoherent averaging and are

HE backscattering properties of a natural medium vary witiepresented by coherency matrices. le¢@l. [17] introduced

the observation frequency accordingtoits physical featurégg ML decision rule to the incoherent case by using the multi-
suchasitsstructure orits size with respect tothe radar wavelengtriate complex Wishart distribution of sample coherency ma-
The scatteringmechanismmay remain almostunchanged for bigiees. A k-mean algorithm was applied to iteratively assign the
soil observation at L and C-bands, butmay show atotally differepixels of the POLSAR image to one of the classes using the ML
aspect for forestremote sensing at P and C-bands. Incident wade. Leeet al.[19] further improved the classification by using
with different wavelengths interact with different parts of a conthe H-« decomposition theorem [9] to provide an initial guess
plex medium. The purpose of multifrequency analysisis to gathefr the pixel distribution into the classes that produces a better
adequate information from each data set. convergence of the unsupervised classification algorithm.

Many algorithms have been developed to classify naturalln this paper, we propose an unsupervised classification of
media using polarimetric synthetic aperture radar (POLSAR)al frequency POLSAR images by including the polarimetric
data [1]-[5]. Several approaches were derived to directiyformation of both images. A (& 6) coherency matrix is con-
relate some basic characteristics of the targets to elemesitsicted using the single look complex data from the two fre-
of the polarimetric covariance matrix [6]—-[8]. More recentlyguency images. This matrix includes the coherency matrices
polarimetric decomposition theorems were introduced in ordigpm each image as well as their cross-correlation [20], [21].
to investigate the intrinsic physical properties of a naturdlhis matrix is shown to follow a Wishart distribution and a ML
medium by evaluating the underlying scattering mechanisrélgcision rule is derived. Similarly to the single image case, data
[9]-[12]. All these approaches realize an interpretation of tigets are processed through a k-mean classifier after an initial-

ization step consisting of applying the d&l€lassification pro-
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This procedure permits an efficient handling of the classifica¥,,, according to the following decision rule:
tion information by refining an initial classified data set with a

small number of clusters and iteratively creating new classes. k e X, if d(k, X;n) <d(k, X;)Vj #m
The probability density of a sample cross-correlation matrix with
conditionally to the polarimetric information in one image is de- d(k, X)) =kIS Tk + In [S|

rived in order to calculate a distance measure. This distance is .
: " : —In(p (X)) 4)
used to perform an unsupervised splitting of a dual image cluster

into two subsets. ~ with 3, the feature covariance matrix of the cla%s,.

In Section I, single frequency POLSAR data statistics in both pata sets are generally processed using incoherent averaging
coherent and incoherent cases are described. Section Il is fé%hniques of data compression and/or speckle reduction. Mul-
voted to the derivations of dual-frequency POLSAR data signok data result from the averaging of independent single-look
tistics. The PDF of a dual-frequency ¥66) coherency matrix jncoherent representations. Theook sample covariance ma-

ditional PDF of the cross-correlation matrix. Section IV con-

tains unsupervised classification results obtained with single 7 — lz" kiki. (5)
frequency images. In Section V, we introduce two new dual fre- néi=1 !

quency data unsupervised classification schemes. The first Clagras been shown that assuming that the target vectors have a
sification technique relies on a ML distance derived from thgr..(0, %) distribution,Z follows a complex Wishart PDF with

Wishart PDF of the dual frequency {66) coherency matrix. ,, degrees of freedom¥(n, =), defined by [22]
The second classification scheme uses the conditional gaussian

PDF to merge the significant features from each POLSAR data _n? |Z|" exp (—tr (n271Z))

set. These classification schemes are then applied to full polari- nZ) = K(n,q)|Z|"

metric P, L and C-bands SAR images of the Nezer forest ac- with

quired by NASA /JPL AIRSAR sensor (1989). K —21@=D2TT in—it1 6
The classification results obtained with the different seg- (n.q) =m Hv‘:l (n—i+1) ©

mentation schemes are analyzed in Section VI. Specific critemh I'() the gamma function and(E~1Z) the trace o1 Z.

are defined to investigate the correspondence between g, \ariable; represents the number of elements of the target

segmented clusters distribution and the location of the d'ﬁer%ctor Similar to the single-look case, a Bayes ML classifica-

types of natural medium over the scene. These criteria g8, |eads to the definition of a decision rule [17]. Considering

used to evaluate in a quantitative way the performance of ey theq priori probabilities of classes are equal, a sample co-

different classification procedures. variance matrix of a pixel of the SAR image is assigned to the
classX,n if di(Z, Xpn) < dy(Z, X;) ¥ # m, [17], with

Il. SINGLE-FREQUENCY POLARIMETRIC SAR DATA STATISTICS

— —1
For a given measurement configuration, a target is fully char- d1 (Z, Xon) = In | Bn| +tr (2“‘ Z) ) )

acterized by its coherent scattering matsixelating the inci-

dent and scattered Jones vectors. In the general case, this majyixp UAL-FREQUENCY POLARIMETRIC SAR DATA STATISTICS
is composed of four complex variables and is given by

When dealing with dual frequency images, the polarimetric
g _ Sun Suv ) informatiop contained_ in. a resolution cell represents the fully
T | Sva Svv | polarimetric characteristics of both data sets.

Using a straightforward lexicographic ordering of the scatteriy Dual Polarimetric Representation

matrix elements, a complex target vector is obtained In the case of dual-frequency polarimetric data classification,
- it is important to simultaneously take into account the polari-
k=[Sunx Suv Svu Svv] . (2)  metric information from both images
It has been verified that when the radar illuminates an area of w — [kﬂ ®)
random surface of many elementary scattedersan be mod- ko

eled as having a multivariate complex gaussian PRKO, 33)

of the form [18], [22] wherek; andk, are the target vectors belonging to the dif-

ferent images. The vectaw has the dimensiop = 2q. The
exp (~kS-1k) (p x p) n-look covariance matriA summarizes the joint infor-

Sk = i (3) mation from both images and has the following structure:
aw
1 n A1r Aq2
The operatot denotes the conjugate transppseepresents the A :gZFleWjT = {An Ags |’
determinant, an® = E(kk') is the covariance matrix df. with
Kong et al. [18] defined an ML classification procedure based 1 ;
on the density function (3). A vectok is assigned to the class Ars s jzlkrjksj' ©)
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The matricesA 11 = Z, andAa2 = Z, are the standara-look  Ajq 2, A2 andAss, with

(g % ¢) covariance matrices from separate images (= Agl)

is a (g x ¢) complex matrix containing information about the tr (E;lA) :tr[E;il . (A12 — XA, Eg;Azz)
polarimetric cross-correlation betwe&n andks. The target

— — i
vector w follows a complex normal distributioVe(0, =, ) Ay (Arz — Za,, B3 Ans) }
[22], with X, = E(ww') its (¢ x ¢) covariance matrix. The r(s=1 A
. : ; . +1r [y, Az
sample f x p) covariance matriA has a complex Wishart dis- s-1 A 14
tribution W (n, 3y ), characterized by degrees of freedom +r [T, Ar] (14)
™ |A]" P exp (_n tr (2‘;1A)) Inserting (13) and (14) into the Wishart probability function of
p(A) = D (10) A in (10), it can be shown that
K(n,p) |Zwl
with K(n, p) defined in (6). The advantage in using thex p) p(A) = p(A11.2,A12,A22) =p(A112)p(A12,A22)
representation resides in the fact that according to (10), dual data (15)

sets can be simultaneously classified by using the ML distanwéh
measure defined in (11) and without any assumption concerning (nea) (n—g—q)
their independence p(Ar12) = nd("=D |Aqq o

K(n —4.0)| By, """

X exp [—tr (nE;iuAu.z)] (16)

d2(A, X)) = In | D] + tr (T A) (11)

with X, the (p x p) feature matrix of clasx,,,.
and (17), shown at the bottom of the page.

B. Cross-Correlation Matrix Statistics From (15) and (16), it is found that the matik 4 » is inde-

The cross-correlation is highly sensitive to the scattering pHaENdent ofA12 and Az and follows a complex Wishart PDF
nomenon type and its degree of randomness, both of which J/Xﬁ’(” ~ 0¥ A0)- . )
be extracted from this covariance matrix representation. The/'S the sample covariance matrix of the second
probability of A1 may then be taken into account to sepdMade: A2z follows a complex Wishart density func-

rate groups of pixels belonging to the same class but possesdifl§ With » degrees of freedoniVc(n, 2a,,) and since
slightly different dual polarimetric information. p(A12,Azz) = p(Ai12|A22)p(Aa2), the conditional proba-

The properties of the hermitian matri permit to define a Pility density of the polarimetric cross-correlation matr
conditional probability of the polarimetric cross-correlation mefiVen Azz is @ complex normal function, given by the last
trix A12. In order to express the conditional probabilityaf, 1n€ of (17). This complex normal density function may be
given Az, p(A12|Asz), bothA andX,, can be partitioned as formulated as [23]

follows [23]: .
[ ] . P (A12| A22):NC (MA12|A22 ) 2A12|A22) ) with
A — |:A11.2 + §12A22 Asq ilz} MA12|A22:2A122X12A22 and
21 22
b +3 DIPEID) b 2;A12|A22:§;A11,2®A22 = 2A12|A22:2X11,2 © Azz
N - All.2 Al2cip0904A21 Al2 (12) (18)
v Ya21 a2z
With A112 = Agg — A12A5 Az andSag1 2 = Tagq — EQuation (18) can be written under a conventional form using

EA122,§§22A21- By means of an upper-triangular transforthe properties of the Kroneker produgt as shown in (19) at
mation, the determinants of the & p) matrices are then sim- the bottom of the next page.

plified to the following expressions: y = veqAl,) is aq¢? complex element vector obtained
by stacking the columns ofAl, under each other and
|A[ =|Az2|[A11.2| m = veqM} . ). This complex normal density function
and gives, for pixels belonging to the clags,,, the probability of
_ e cross-correlation matrix conditionally to the second image
[Tl = [Tazel [Sarial- (3 I lation matrix conditionally to th d

sample covariance matrix. The logarithm of (19) is used to
After some reductions and combinations, an expression défine a measure of the distance between the actual polarimetric
tr(X,1A) is found as a function of cross-correlatioA 2 and its expected value when observing

ndn |A22|(n_’1)
K(TL, q) |EA22 |n
nt’ exp [—ntr (T3Y, , (A12 — Ban TRk Aze) AZ) (A12 — Tan T3k, Az) )]

s |2A11.2 |(1 |A22|q

p(A12,A22) = exp [-ntr (2K12A22)]

(17)
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the second image polarimetric informatidpe with herency matrix onto its eigenvector bagi¥,) is decomposed
into a weighted sum of three unitary matrices of rank one. Each

ds (Aq2 |[A2z , X)) =n tr<§;zu (A12 — MA12|A22) A;21 represents a pure scattering mechanism

3
X (A12 — MA12|A22)T> <T> = z:)\z‘ViViJr =A\T1+ AT + A3T3 (22)

=1
+qln(|Azz]). 20
aln(|Azz]) (20) with A; theith eigenvalue of T) andv; its related eigenvector.

From this decomposition are extracted two meaningful roll-
IV. SINGLE IMAGE CLASSIFICATION PROCEDURE invariant parameters and H [10].
* « stands for the indicator of the mean scattering mecha-

. . ) ] ] nism. A value close to zero relates surface reflection for
For a reciprocal medium in a monostatic radar configura-  gscattering from a dipole: equalsw/4 and reaches: /2

A. Classification Algorithm

tion, the target vector presented in (3) is modifiedkas = when the target consists in a metallic dihedral scatterer.
(1/v2)[Sun + Svv Sun — Svv 28uv]’, leading to the defi- . The entropy H is an indicator of the random behavior of
nition of the Pauli coherency matrik = E(kpkp'). The use the global scattering. Both H andare strongly related to

of thg coherency matfix instead of the_lex.icographic covariance  tne observed scene geophysical properties and structure.
matrix does not modify the density distribution types and thene nsupervised classification is achieved by projecting the
related equations defined previously [_1_9]' ) , __pixels of an image onto the H-plane which is segmented into
Th_e met_hod used tc_) perform a classification ofasmgle 'mag?ght regions. The interpretation of this segmentation can be
polarimetric data set is based on the use of an iterative k-m&gfjq in [10]. The arbitrarily fixed linear decision boundaries
algorithm and is described in details in [17], [19]. Four optiong,ay not fit the data distribution in the classification plane and

have to be chosen by the user. cause inaccurate results by artificially merging two close types

* The number of classes. of targets like sea and smooth ground at L-band or splitting into
* The initialization of the pixel distribution into then different classes pixels belonging to a complex medium showing
classes. a distribution spread over one or several boundaries. Nonethe-
* The distance measure from a pixel to theclass centers. |ess this classification scheme provides an interpretation of the
* The termination criterion. global scattering leading to an understanding of the relation be-

The number of classes and the data assignment during the ieen the response of a medium and its mean physical charac-
tialization step of the classification are critical points and deteteristics and can be used as a first guess of the different scattering
mine the quality of the entire classification. types.
In [19], Lee et al. proposed to initialize the classes using
the H« classification scheme [9], [10], which provides eigh€. Application to POLSAR Data
classes relating to the underlying physical scattering mechaThe classification technique is applied on the Nezer site sit-
nism. This splitting of the data set gives a stable initial aprated in the Landes Forest in the south-west of France. On Au-
proximation. The distance is estimated using the ML approaghst 16, 1989, full polarimetric data sets have been acquired by
applied on the data statistics mentioned previously. The t§§ASA JPL AIRSAR sensor at P, L and C-bands, with center
mination criterion may be selected from the estimation of thequencies at 0.44 GHz, 1.225 GHz and 5.3 GHz, respectively.
classification quality, when a maximum number of iterationghe pixel spacing is 3 nx 6.6 m.
is reached, or when a sufficiently low number of pixels are The scene contains bare soil areas and many homogeneous
switching classes from one iteration to the next. forested areas of maritime pines. Several tree-age groups are
included from more than 41 years down to 5-8 years of age.
Backscattering from the tree parcels is highly correlated to the
The n-look sample Pauli coherency matriXI) = age of the trees. Fig. 2 shows the span images of the Nezer site
(1/n)2f:1kpka represents a distributed target with itsat P-band. Fig. 3 shows the results of the unsupervised Wishart
rank greater than ¥T) cannot be related to a single scatteringlassification applied on P-band and L-band POLSAR data sets.
matrix S and must be decomposed in order to identify thafter four iterations, the results obtained using the unsupervised
global mean scattering mechanism. Wishart classifier depict an important improvement in the clas-
Cloude and Pottier [19] introduced a polarimetric decompaification accuracy. The P-band classified image shows an inter-
sition theorem based on the projection of the distributed cesting correspondence between the polarimetric classes and the

B. The H« Classification Scheme

p(A1z2]Az2) =p(y|A22)

n? exp [—”(y -m) (3%,,, @ Az2) " (v - m)} (19)
- w5, " Azl |
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Fig. 1. Ground truth of Nezer Forest. This map is a courtesy of CESBIO and
Dr. T. Le Toan.

cl €2 C 4 O o6 7 OB

Fig. 3. Results for (top) P-band and (bottom) L-band data obtained with the
unsupervised Wishart classifier.

V. MULTIFREQUENCY CLASSIFICATION PROCEDURE

We propose different approaches to the classification of sev-

Fig. 2. Span image of the Nezer site at P-band. eral polarimetric data sets simultaneously. Dual frequency po-

larimetric images are classified by means of clustering proce-
ground-truth information. Class 5 represents the clear cut aredisres from the distance measure defined in (11) usingithe)
whereas cells covered with 5-8 years old trees are occupieddoperency matrix representation, or successively (11) and (20)
class 8. Medium age trees, from 11 to 19 years old, are mairfiyhe dual polarimetric information is introduced through the
covered by the polarimetric classes 4 and 7. Older tree celitsnditional probability density of the cross-correlation matrix.
from 20 to more than 41 years old, have a polarimetric behavior
corresponding to classes 1, 2, and 3. A polarimetric class MRY pual Frequency Image ML Classification
spread over more than one type of forest cell.

The L-band classified image does not separate different treel) Classification Algorithm:Both of the separate images
classes accurately. Young trees mainly correspond to classi; classified through the unsupervised Wishart classifier into
while the rest of trees are represented by classes 1, 2, 3, 6, aiglit classes each. The results are further segmented into 64
7. The unsupervised classification at this frequency highlighttasses by simultaneously considering the labels of pixels
differences within the clear-cut regions, which are segment&gdeach image. This way of initializing the pixel distribution
in two different classes, 5 and 8. presents the advantage of giving equal significance to the

This unsupervised classification algorithm modifies the degpolarimetric information interpretation from each image.
sion boundaries in an adaptive way to better fit the natural dis-The initial classified image, made of 64 clusters, is then pro-
tribution of the scattering mechanisms and takes into accowaissed through an unsupervised k-mean clustering algorithm
the whole polarimetric information contained in the coherendyased on the distance measure defined in (11). The use of the
matrix representation. The characterization and interpretationpfx p) dual polarimetric coherency matrix permits to calculate
the different clusters may be achieved by studying the polaii an easy way the distance from a pixel to the different class
metric properties of their center feature matrix from the pararoenter feature matrices. The dual image classification algorithm
eters delivered by the H-« decomposition or other full polari- corresponding to the synopsis, described in Fig. 4, is the fol-
metric analysis techniques [19], [24]. lowing.
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fmage 1 %lgsgll;;nnfsg:d 8¢ sl Class one may find
Image2 g, Wishart 8 classes L
Classification > Combfnanon W; = n |55 +tr(I) = ln |35] + 2. (23)
SO J. Pata Flow The c.onstan.t terme(= 5) corresponds to the trace of the>(6§)
+ — - — > Injtiaization identity mat_rlxI. The distance between cla&s and classy; is
Unsupervised . Flow the mean distance from the elements of each class to the center
Tmage 1 ——  yyichart ) C'?:;’g‘:d feature matrix of the other class. See equation (24), shown at
Image 2 ———pp- Cl;:s’i‘ffgr 64 classes the bottom of the next page.Using the definition of the distance

measure, the average distance between two classes is simplified

Fig. 4. Synopsis of an unsupervised dual frequency POLSAR imaég
classification procedure.

Wik Wt (2;12j + E:Jflz:i)

Bi; = 25
Step 1 Perform the eight-class unsupervised Wishart classifica- ! 2 (25)
tion on both separate polarimetric data sets. Their separability SEY;, X,) is then given by
Step 2 Initialize the class distribution by calculating the com-
bined class number using the following rule: A pixel be- SHXi, X;) = Bi; (26)
9 g

longing to classX; in the first image and to\,; in the W+ w;’
second one is assigned to the combined ckss;;. The
number of classes is then equal to 64.

Step 3For each clas¥;, compute the 6« 6 feature covariance
matrix 3; = (1/N;)Y n, (A) € X;.

Step 4 Assign each pixel to the class minimizing the distan
measurelz({A), X,,) from (11) over the 64 classes.

Step 5 Stop if a termination criterion is met, otherwise go t

Step 3.

Using this definition and considering that the classes to be
merged are those presenting the lowest separability, the class
reduction technique is applied by the way of an iterative
C%Igorithm until a termination criterion is met.

One may use the termination introduced in [19] based on an
&stimation of the classification quality, or consider that the re-
duction procedure may end when an arbitrarily fixed number of
classes is reached so that the classification results can be effi-
ciently handled.

The accuracy, using this initialization, is highly enhanced, |t is important to note the necessity of the intermediate clas-
since pixels are distributed into 64 classes according to the coglfication step concerning the clustering of data in the six di-
bination of the full polarimetric unsupervised Wishart C|aSSiﬁmensiona| space. The merging of Separate|y compact data sets
cation results obtained for separate images. may lead to diffuse classes in the higher dimension space. The

2) Reduction of the Number of Classebhe number of (6 x 6) Wishart ML classification step permits to improve the
classes has to be reduced in order to facilitate the interpretatiimpactness of the combined classes and significantly increases
for each class characteristics as well as the visual representagi@efficiency of the class-number reduction procedure.
of the geographical location of the different clusters. eeal. 3) Application to POLSAR DataThe classification algo-

[19] proposed a merging procedure based on the study of #m is run on P, L, and C-band data set combinations, with
class compactness and separability that is well adapted to he number of classes reduced to 16. The classification results
natural partition of the data. Considering the entire class sgf,p-band and L-band data sets are shown in Fig. 5. When com-
the clusters to be merged are the ones presenting the lowgsing this classification method results with the ones obtained
degree of separability. Two classes can be distinguished, if thgith a single image classification procedure, one finds an im-
are compact and if the mean distance between their elemesdstant improvement in the description of the natural character-
is high. Hence, the separability between clas3gsand X; istics distribution. The initialization step, which simultaneously
is defined as the ratio of their between-class distance to thﬁkes into account both data sets with equa| importance, pro-
within-class dispersion [19]. duces a good discrimination of details like roads or lanes and

Foragivenclasg’;, the within-class dispersidi; is defined  small forest cells. The class number reduction technique per-

as the mean distance from its elements to the @ class center mits to merge classes of close characteristics and produces an

feature matrixs; accurate distribution of the differently aged trees in the forest.
1 The classification map obtained from P and L-band images
W; = FZA d2 [({(A) € X5) , X (22)  shows a good concordance with the parcel distribution given by

the ground-truth information in Fig. 1. The relevant information
Inserting the definition of the distance measure of (11) in (22jtom each data set has been gathered to differentiate the different

Bj; = : (24)
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Wishart | Flow
Classification + N =8 classes

Unsupervised Estimation
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Image 1 ————p»

Image 2 mmgp] (6% 6) Conditional
Classifier Cross-correlation
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Creation

Fig. 6. Synopsis of an unsupervised dual frequency POLSAR image
classification procedure using the polarimetric cross-correlation matrix
conditional probability.

C1 C2 C3 Cd C5 C6 C1 Ch

N T chssequaltd, = (0/N,)T di(AszlAz.X,,) for each

Co CIg C11 12 Ci13 Cia Ci1s Clé A € X,,.The decision rule is defined by

Fig.5. Dualimage unsupervised classification results obtained with P-L-baRr everyA € X,,,, if d3 (Aj2|Aaz, X;n) > dthen
data sets.
A€ X1, elseA € X, 27)

parcel types. Globally, the P-band features permit to discrimfhe class to be splif, is the one presenting the most distant
nate the different forest types, while L or C-bands characteristiggpclasses and verifies

emphasize the roads and lanes as well as the different types of
bare ground areas. The compactness of the different classes is SP( X1, X,2) > SP X1, Xpno) Vs #m (28)
highly enhanced by this dual classification procedure.

It is important to note that no assumptions were madghere SPX,;, X,,) represents the separability between classes
concerning the level of cross-correlation between the differert,; and.X,, and is defined in (26). The classification is initial-
data sets, the classification taking into account this informatigfed with the result of the single image based on the Wishart

during the entire process. classification procedure. The number of classes is iteratively in-
- _ creased till a termination criterion is met.
B. Dual Frequency Image Classification Using the The classification algorithm is defined as follows.

Cross-Correlation Information

1) Classification Algorithm: The procedure described abov
classifies data by reducing a high number of classes obtained
the combination of class labelsineachimage. The qualityofclas- |, imetric data sets. The number of clasagis equal
sification depends on the accuracy of the separability criterion to eight.

mentioned in (26). This top-down approach can be computaticglt-ep 2 Apply the N-class unsupervised dual data sets Wishart

ally intensive since It mampulates_up to 64 classes. classification using the (8 6) polarimetric represent-
A problem linked to the reduction of the number of classes ation. until a termination criterion is met

may be encountered when classifying scenes compose_d of &ep 3ifa general termination criterion is met, go to Step 6.
ious types of scatterers. Inthe case of forest remc_>t_e sensing, p 4For each class, perform a temporary splitting into two
targets or classes corresponding to heterogeneities may be con- subclasses, by applying the criterion defined in (27).

sidered as highly separable clusters, while the response oftheg'g‘ép 5 Effectively split the class verifying (28Y = N + 1, go
ferenttypes of forest parcels may appearto be very close. During ™ - 40 Step 2. ’

the class-number reduction process, the forest parcels may tg?gb 6 Stop.
be merged into classes containing a large number of pixels.

We propose another approach, which instead of initializing
the classification with a high number of classes, begins with Similarly to the dual frequency image classification scheme,
a small amount of classes and iteratively uses the conditiotia¢ general termination criterion may be obtained by evaluating
cross-correlation information to split one class into two sulthe classification global quality from the parameter defined in
classes. The synopsis of this classification scheme is preserji&], or by fixing a maximum number of classes. This procedure
in Fig. 6. The criterion used to choose the class to be sphtless computationally intensive than the former one since the
into two subclasses necessitates the calculation of the separtanber of classes remains inferior or equal to the final one.
bility measure defined in (26). In each class the distance mea2) Application to POLSAR DataThe segmentation of P-L
sure based on the cross-correlation information is calculated &ord P-C-band dual data sets in 16 clusters leads to almost similar
each pixel from (20). The class,,, is temporarily splitinto two results using both dual classification methods. The distribution
sub-classe«,,; and X,,> by comparing the value of the dis-of the classes is slightly different, but leads to an equivalent in-
tance for each pixel with respect to the mean over the enttarpretation of the forest parcels. Due to the merging procedure,

tep 1Initialize the eight-class distribution from the unsuper-
vised Wishart classification on one of the separate po-
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Fig. 7. Dual image unsupervised classification results obtained usiﬁ{?- 8. Dualfrequency image unsupervised classification results obtained with
P-C-band data sets with 12 classes. -C-band data sets, using the cross-correlation matrix conditional probability,

with 12 classes.

the classes produced by the first method are slightly more com-

pact. We apply both classification methods to the dual P-C-ba@te then spread among a wide variety of scattering mechanisms.

data set with a number of classes equal to 12. The more spatially organized information fromthe low center fre-
The ML classification scheme provides a segmentation of tAgency data set permits to obtain compact final clusters.

observed scene which gathers the almost totality of the tree cov-

ered parcels into two classes, classes number 1 and 7, as can be
seen in Fig. 7. VI. ANALYSIS OF THE CLASSIFICATION RESULTS

During the class number reduction process, the polanmetrlcln order to evaluate the performance of the different classifi-

classes corresponding to the various types of forest show, gion schemes, some areas corresponding to six characteristic
low separability, compared to the _pomt targets discriminat es of natural medium are selected in the SAR images as rep-
by C-band data and are merged into two classes so that fi€qneq in Fig. 9. Zones I and Il correspond to bare soil areas
remaining clusters describe the bare soil areas. The joint Y@, gifferent roughness scales. The areas with label Il indicate
of these frequency bands with this classification method, usifg-q|s of young trees, while IV and V correspond to two types

a small nun_1_ber'of classes, does not provide good results gt iermediate age trees. The old tree stands are assigned to the
forest classification. . . type VI. The different areas have been chosen so as to contain

The classification based on the conditional probability pproximately the same number of pixels

the (I:TOSS]:CONEE'OVT/_ r?]atrlx. IS |r_1|t|aI|Ized ,¥,V'th_ eight cllluzters The most representative polarimetric classes are associated,
resulting from the Wishart iterative classification applied og, o ch terrain type and in an exclusive way, in order to con-

one of .the separate data sets and the class splitting Procelilfite the estimated population of the different given kinds of
is run till the number of classes reaches 12. The Class'f'cat'RQturaI medium. The real population of each type of medium is
reSL:]ItS ellre s_?own n F'g',g' b its than th deni %iven by the geographical location indicated in Fig. 9.The eval-
. T ec aSS|d|cat|op dprow gs | egtelr_r?su ts t. an tbose hep|c gtion of the classification performance consists in the compar-
in Fig. 7 and provide good global information about the Ohs ., ‘o aach type of natural medium, of the estimated and real

served scene. The different types of forest parcels can be dis@egulation respectively, ERnd RP
h 1 i L Z-'

native to the ML dual classification, when the reduction proc%’entativity and compactness

dure may merge close classes. Animportantgainin computationr, . descriptivityD; is defined as the percentage of pixels

time was observed too. from the estimated population of a type of terrain effectively

As mentioned previously, the choice of the initial set of clasgelonging to the real population of this kind of medium. It is
center feature matrices has a significant influence on the CIa%%qulated as follows:

fication performance. In a general way, the best classification re-

sults were obtained by initializing the process with the less spa-

tially organized separately segmented data set. In our particular EP. € RP,

multifrequency forest remote sensing case, the degree of spatial D; = T EP, 100. (29)
disorder of the segmented data sets increases with the observa-

tion frequency. It is then recommended to initialize the classifi-he representativity of an estimated populati®ns calculated
cationwiththe highestcenterfrequency dataset. The class centesing the percentage of estimated populations from other types
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TABLE |
— i . CORRESPONDENCE OF THEESTIMATED AND REAL POPULATIONS OF THE
DIFFERENT TYPES OF TERRAIN

Lband fRPI|RP2JRP3| RP4 |RP5 |RP6 | C;
EP1 64213571 0.8 0 081 0 [284

! “ g EP2_ ]106]885] 0 | 0 | 0 | 0 |762
; EP3 0 {02]804] 10 [894]031 o
EP4 0 [ o J237] 725 [23.7] 36 |214
. EP5 0 [ 1 [s63]421]563] 05 0
EP6 0 | 0 [26]587]261[386] 0
D, 53.6[516] 6 | 0 | 0 [342
i Pband | RP1[RP2[RP3] RP4 [RP5|RP6 | C;
B EPI  99.1]991] 28] 0 [0 [ 0 [ 0
- : : - EP2 t971]971]08] 0o J ol of o
Fig. 9. Location of six types of natural medium over the Nezer forest scene. 3 0 o 1758l 221 (221l 0 1273
EP4 0 | o lo2189]879[121] 0
of terrain ER, which also belong to the real population Rd EP5 0 | 0 | 3 1891829:13§ 0
are defined as EP6 o [ ool 18 Jizeol72] 36
D; 2 JoJe] o [ o [695
EP; € RP, .
Ri=D;— Z#i JEpi ~100with 0 < R; < D;. (30) P-C bands [RP1 | RP2 | RP3 | RP4 | RP5 [RP6 | G
EP1 76 12381 0 1 0o 1 o] o 521
If an estimated population is representative of a real population, EP2 g81]s898] 0] o [ o | o fs17
R; is close taD;. On the other hand, when a large proportion of EP3 0 [0 (94415161 0 | O §89.1
estimated populations from other types of terrain belongs to the g‘s‘ 8 g 108'78 1685'299 g‘i ;3 i;'g
real populationR; tends to be equal to zero. £P6 o T o T 0 o2 2271973 947
The last criterion concerns the compactness of an estimated D, 679] 66 | 749 423 | 293] 92
population,C; and can be calculated according to the following
expression:; P-L bands [RP1 [RP2 [RP3 | RP4 [RP5S [RP6 | C
EP, € RP, s Tors o o 1o ot
T J . . .
Ci=Di- Zj;éi EP, *-100with0 < C; < Di. (31) EP3 0 |0 [982] o [o01] o [97.8
. EP4 0 1 o 83|89 3 |27]719
When an estimated population is compatt,is close toD;, EPS 0 | 0 | 151279 /47353 0
while a large amount of pixels from an estimated population EPe 1000 101 1 10719831966
D; 755175.6]74.9] 57 [43.5[90.3

belonging to other types of terrain real populations makes
tend to be null. The different mono- and multifrequency classi-
fication method performance may be estimated from the criteg
contained in Table I.

The numerical values of the descriptivity criteria are locat
on the diagonal of the subtables. Negative valuedfpan C;
are ignored.

The results of the single frequency data classification

a . . . . -

ased on an iterative algorithm using a ML decision rule evalu-
a(tlted from the Wishart density function of thex@) matrix. The

ed.. . .. . e T . S
initialization of this classification is realized a combination of
the H« classification results from each image providing 64 ini-
%i&\l classes. Once the iterative algorithm has converged, a class

L-band show the lowest descriptivity. Classifications at P, P_%utmber reduction technique is applied to improve the represen-

or P-L-bands present similarly high descriptivity values. It catn ion of each class characteristics. The results obtained with

be observed that classifications using a single frequency daqg’ classification show an important improvement in the de-

set lead to clusters whose representativity and compactnscr'ptlon of the different types of natural media encountered in

- . S7orest scene. Parcels containing different types of trees can be
are significantly lower than using dual frequency data. The .~

.~ ; . . ; istinguished and small classes such as roads and small forest
additional information contained in a dual frequency data se

permits to obtain clusters that better describe the differe%?rcels are discriminated. The class number reduction technique

media distribution over the SAR image and then may lead toe(gl\hances the class compactness and improves the interpretation

more efficient and reliable interpretation for SAR data analysPsOSS'.b”mes' . . .
: ) This reduction procedure may, in case of point targets, lead to
and inversion. . . . .
the merging of large areas into a small number of polarimetric
classes. In order to overcome this problem, a second technique
was proposed, which introduces the polarimetric cross-correla-
In this paper, we introduced a new unsupervised classifidion information and refines the results by iteratively creating
tion scheme for dual frequency polarimetric SAR data sets usingw classes during the classification process. This method is an
a (6x 6) polarimetric coherency matrix to simultaneously takefficient alternative to the ML dual classification, when the re-
into account the full polarimetric information from both imagesduction procedure may merge close classes and permits an im-
Two classification methods were proposed. The first one wpertant gain in computation time.

VIl. CONCLUSION
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