
Phaser: Phased
methodology for modeling
the system-level effects
of soft errors

J. A. Rivers
P. Bose

P. Kudva
J.-D. Wellman

P. N. Sanda
E. H. Cannon

L. C. Alves

This paper presents an overview of Phaser, a toolset and
methodology for modeling the effects of soft errors on the
architectural and microarchitectural functionality of a system. The
Phaser framework is used to understand the system-level effects of
soft-error rates of a microprocessor chip as its design evolves
through the phases of preconcept, concept, high-level design, and
register-transfer-level design implementation. Phaser represents a
strategic research vision that is being proposed as a next-
generation toolset for predicting chip-level failure rates and
studying reliability–performance tradeoffs during the phased design
process. This paper primarily presents Phaser/M1, the early stage
of the predictive modeling of behavior.

Introduction
As the trend toward smaller device and wire dimensions

continues, we are entering an era of increased chip

integration, reduced supply voltages, and higher

frequencies. An inescapable consequence of this

development is the fact that transient, or soft, errors will

continue to be a serious threat to the general technology

of robust computing. Soft errors may be caused by

various events including neutrons from cosmic particle

incidence, alpha-particles from trace radioactive content

in packaging materials, and inductive noise effects

(Ldi/dt) on the chip supply voltage resulting from

aggressive forms of dynamic power management.

As technology scales from 65 nm toward 45 nm and

beyond, current soft-error rate (SER) projections for

SRAM cells and latch and logic elements are noteworthy.

As Borkar [1] has discussed, the SER per-bit rate for

SRAM cells appears to be leveling off, but the bit count

per chip is increasing exponentially in accordance with

Moore’s Law; latch SER is catching up with SRAM per-

bit rates with a steeper slope of increase; and logic

combinational SER is projected to increase at a much

faster pace, although the absolute numbers are

significantly smaller than SRAM or latch numbers at the

present time. For silicon-on-insulator technology, going

forward from 65 nm to 45 nm, the latch SER per-bit rate is

predicted to increase from two to five times [2], and the

number of latches per chip is expected to increase with

integration density. Again, storage-cell SER will still

dominate, and latch errors will also be of increasing

relevance at 45-nm technologies and beyond.

Chip design must begin with a consideration of system-

level mean-time-to-failure (MTTF) targets, and the

design methodology must be able to estimate or set

bounds for chip-level failure rates with reasonable

accuracy in order to avoid in-field system quality

problems. A balanced combination of circuit- and logic-

level innovations and architecture- and software-level

solutions is necessary to achieve the required resiliency to

single-event upsets (SEUs). In particular, there is the need

for a comprehensive understanding of the vulnerabilities

associated with various units on the chip with regard to

workload behavior. When such information is available,

appropriate approaches—such as selective duplication,

SER-tolerant latch design adoption, and error-correcting

code (ECC) and parity protection of SER hotspots1—

may be used for efficient error resiliency.

Our motivation for this presilicon modeling work,

therefore, hinges on the premise that an accurate

methodology driven by target workloads would enable

�Copyright 2008 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied by any means or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

1SER hotspot refers to a region of the chip that is deemed to be highly vulnerable to bit
flips in an element (latch, combinational logic, or SRAM). An upset in this region is
much more likely to cause a program failure than other adjoining areas. The SER
hotspot profile across the chip floorplan may vary with the executing workload;
however, it is quite likely that some of the SER hotspots may be largely invariant with
regard to the workload. For example, portions of the instruction decode unit (through
which all program instructions must pass) may well turn out to be SER hotspots
across a wide range of input workloads.

IBM J. RES. & DEV. VOL. 52 NO. 3 MAY 2008 J. A. RIVERS ET AL.

293

0018-8646/08/$5.00 ª 2008 IBM

cost-effective SER solutions during the design process. In

this paper, we present the Phaser modeling approach to

enable early estimation of SER. This toolset and

methodology is helpful for deriving the following:

� SER vulnerability maps of the chip that can be

optionally visualized as color-coded chip floorplans

that indicate the SER hotspot regions of the chip.
� Iteratively improved designs as the chip goes through

design phases, successively enhancing the protection

level of the most vulnerable units.
� Design guidance to enable investment in error

detection and recovery hardware for optimal error

resiliency.

During the concept phase, the integration of

device-level and component-level SER analysis with

microarchitecture-level performance analysis tools would

enable us to study key tradeoffs between performance,

power, and reliability. In particular, besides projecting

derating2 factors and overall SER sensitivity values for

the chip and its various components, this framework

allows us to undertake what-if evaluations and

comparisons of the soft-error sensitivities of various

latches and cells.

It also enables the architecture definition team to

decide on the exact style and level of microarchitectural

redundancy that may be needed to achieve the per-chip

SER targets. In later stages, as the register-transfer-level

(RTL) model becomes available, the chip SER profile is

refined as more accurate information about the unit-wise

latch distributions, latch types, and SER vulnerabilities of

logic and latch elements becomes available. In these later

design phases, major microarchitecture paradigm changes

are generally not possible, but the Phaser-derived analysis

can help adjust the relative protection level and latch

types across highlighted units.

Figure 1 is a high-level view of the phased SER

evaluation methodology pursued by the Phaser approach.

The particular models around which the modeling is

targeted at various design phases are the M0 model at the

preconcept phase; the M1 model at the concept phase; the

M2 model during the high-level design (HLD) phase; and

the M3 model during the RTL implementation phase.

Typically, the M0 model is an analytical (spreadsheet)

performance model or a very early cycle-approximate

simulator that is adapted from an earlier-generation M1

cycle-accurate performance model. As the definition

progresses to the concept phase, the architecture team

arrives at a more definite view of the core and chip-level

microarchitecture; at this time, Phaser makes use of the

M1 cycle-accurate performance model of the core to build

the SER analysis tool. Later, during the HLD phase, the

M1 performance model is replaced by a latch-accurate

M2 model in which the inter-unit interfaces are accurately

Figure 1

High-level view of Phaser.

Phaser/M0

Phaser/M1

Phaser/M2

Phaser/M3

Awan

High-level microarchitectural preconcept

thoughts

Preconcept-phase feedback, analysis

Concept-phase microarchitectural

specification

HLD-phase microarchitecture and logic

definition specification

HLD-phase feedback, iterative

microarchitecture definition process

RTL implementation-phase feedback,

tuning latch type, placement, parity, ECC

Final (frozen) microarchitecture and

logic specification

SFI-based validation

Final presilicon

SER projection

Phase-by-phase

progressively

accurate SER

projections

M0 model

M1 model

M2 model

M3 model

(RTL/VHDL)

2As used here, derating refers to the portion of time a microprocessor unit or structure
(whether logic or storage) is not in use or operation in a manner that affects program
correctness; therefore, it can be said that it is not potentially susceptible to errors. For
example, a unit with a derating factor of 75% over a program run implies that such a
unit is susceptible to errors 25% of the total execution time of the program run.

J. A. RIVERS ET AL. IBM J. RES. & DEV. VOL. 52 NO. 3 MAY 2008

294

modeled in terms of the exact latch counts. The intra-unit

execution semantics are still written in a behavioral

format using C/Cþþ language types, as in the M1 model.

During this stage of the design, Phaser/M2 is able to

model the inter-unit error propagation effects more

accurately because the interface latches and their

switching activities are directly observable during the

simulation of specific workloads. During the RTL

implementation phase, Phaser SER analysis moves over

to link up with the RTL M3 model that contains detailed

logic, latch, and timing information for the full processor.

In addition to VHDL (Very high-speed integrated circuit

Hardware Description Language) cycle-accurate software

simulation (which is rather slow), we have the facility of

using significantly accelerated Awan [3, 4] hardware

simulation of the RTL, which enables us to run full

benchmarks if necessary at RTL detail. At this stage of

the design, as the RTL approaches full functionality, the

Phaser methodology makes use of validation and

calibration support from statistical fault injection (SFI)

[5] approaches.

Background

Li et al. [6] present a microarchitecture-level technique,

SoftArch, for modeling and estimating architectural

masking, which leads to derating, in a microprocessor. In

that work, the authors adopt a methodology that tracked

and assigned a probabilistic failure rate attribute to every

useful variable as the variable traveled through and

resided in the various units and structures in the

processor pipeline. The accumulated probabilistic failure

rate of the given variable as it tracked through the

microprocessor pipeline and datapaths to a committed

execution stage, including program outputs and

permanent memory state, was used to project and

calculate the microprocessor error sensitivity values

(along with the corresponding unit-wise derating factors).

In later work [7], it was shown that for practical ranges of

the native per-bit SERs observable at sea level and for

modeled systems with tens of components (units), a

simpler, post-processing approach can yield sufficiently

accurate per-unit and total system SER. Such an

approach is based on two steps: first estimating a per-unit

average architectural vulnerability factor (AVF) [8] and

multiplying that by the unit maximum (unmasked3) SER

to project the real (derated) SER of the unit as actually

manifested in program behavior; second, adding unit-

level error rates to derive the chip-level SER value, which

is referred to generally as the sum of failure rates (SOFRs)

[7, 8]. However, it is important to stress that the accuracy

of the unit-wise and total manifested failure rates depends

on how the AVFs are collected.

In Phaser, we use such a post-processing approach

wherein a simulator software code is modified with

inserted monitoring instructions to yield all required

average residency statistics at the end of a workload run;

those statistics are then combined with the detailed

information of per-unit latch distributions of specific

types and protection levels, along with native

technological data related to raw per-bit SER values. The

AVF/SOFR approach estimates the SER of a processor

or system in two steps, as shown in Figure 2(a). The first

step, the AVF step, estimates the SER of the individual

components under the basic assumption that the

probability of failure is uniform across a program

execution. Hence, the SER of a given component in a

processor is simply the fraction of time it holds useful

work multiplied by the raw SER of the component. We

refer to that fraction of time as the component value of

data residency. The second step, the SOFR step, estimates

Figure 2

(a) AVF/SOFR approach for estimating SERs. (b) Phaser/M1 method-

ology overview. (AVF: architectural vulnerability factor; SOFR: sum

of failure rate; RES: residency; RAS: reliability, availability, and

serviceability.)

AVF step: SERunit � RES � rawSER
SOFR step: SERprocessor � SERuniti

Processor failure rate

Components

RES1
RES2 RES3

Raw

error rate

Raw

error rate

Raw

error rate

Phaser/M1

(modeling and

processing)

(workload

residency

statistics)

M1 simulation

environment

1. Microarchitecture derating factors

2. SER and MTTF data

(latch and cell

types and count)

Vtiming tool

SER

device team

(latch, gate,

and cell

types and

vulnerabilities)
(types and

count of logic

gate levels)

RAS

and power team

database

i

(a)

(b)

3We use the terms unmasked SER, native SER, and raw SER interchangeably
throughout this paper. Any of these terms can be used to mean the maximum SER
that would manifest in the absence of any derating at all.

IBM J. RES. & DEV. VOL. 52 NO. 3 MAY 2008 J. A. RIVERS ET AL.

295

the SER of the entire processor or system by adding

together the individual SER values of the constituent

components under the general assumption that the inter-

arrival time for failures is exponentially distributed.

Depending on the particular design phase, the

methodology derives the RES factors from the

corresponding simulation model (M0, M1, M2, or M3;

see Figure 1).

Phaser [Figure 2(b)] uses methods to calculate the

architectural derating factors that are different from the

prior published methods [8, 9] and can be implemented

more practically while preserving accuracy. For example,

a systematic method to monitor only useful register file

residencies (i.e., those that contribute to actual instruction

completion and modification of the architected register

and memory state) is implemented. (Architected state

refers to the state components of the machine that are

accessible by software, including memory, register files,

and special-purpose registers.) The measured residency

data is combined with the various latch, logic, and cell

raw SERs of the targeted chip in a systematic manner to

project the derating factors as well as the overall SER. We

use the term residency (RES) in this paper where prior

work [8] has used the term AVF, but for all practical

purposes, the intent in estimating this entity is the same:

namely, to arrive at a derated SER value for a given

modeled component or unit in the system. However, the

conceptual differences in how the estimate is derived led

to our decision to use RES in preference to AVF.

As Figures 2(a) and 2(b) show, a considerable amount

of data and a number of factors from various sources

must be factored together to achieve a realistic SER and

derating prediction model. Generally, our framework

revolves around two major approaches: estimating the

raw SER of the targeted chip or system, and deriving the

average residency of the typical workload executing on

the same system.

Methodology
As shown in Figure 1, Phaser is a multistage evaluation

and estimation framework of soft-error vulnerability

through the various stages or phases of system design.

The main methodology behind each of the phases in the

framework is similar except that as we move from the

preconcept phase to the later phases, the information

available and its accuracy improve, making it possible for

the overall modeling accuracy to also improve. Since the

various design phases are not fundamentally different and

only the modeling detail is refined over time, we

illustrate the methodology of the framework by

discussing a single phase in depth. We focus our

discussion on Phaser/M1 in which it is assumed that the

design has an M1-level cycle-accurate microarchitecture

performance simulator and possibly some preliminary

design VHDL code available. It is also assumed that we

have clear knowledge and choices of the various circuit

elements: latches, combinational logic, and memory cells

along with the technology parameters that govern their

behavior.

As already indicated, we define the raw SER of the

microarchitecture or chip as the expected total SER

assuming that the microarchitecture or chip is busy 100%

of the time and that every bit upset that occurs during its

operation leads to a manifested error. Accurate raw SER

modeling of a chip or its components requires an in-depth

knowledge of the constituent latches, array cells, and

combinational logic with respect to counts and types as

well as their associated vulnerabilities to soft errors. We

obtain latch count and type data from the design

database, estimate combinational logic-level gate counts

from available design RTL with the Vtiming tool [10],

and obtain associated SER vulnerabilities of technology

elements, such as latches and cells, from circuit-level

SPICE simulations [2] as shown in Figure 2(b).

Although we model the raw SER of a system assuming

that all bit flips could be of consequence, we know that

for the typical microarchitecture, the residency of useful

data is well less than 100% across all modeled units within

the system. Hence, to better estimate the derating factor

of a chip structure, we need to gather statistics on the

residency of relevant live data values within the structure.

This is where it becomes necessary to collect such

residency values as accurately as possible on the platform

under study through its available simulator as it executes

a typical representative workload.

In this paper, the Phaser/M1 methodology is described

with a single focus only on silent data corruption (SDC)-

related SER manifested at the program output. We are

interested here in predicting an early stage (necessarily

conservative) bound on the SDC-specific SER or

equivalently the machine derating [5] factor applicable to

SDC-specific error rate estimations.

Raw SER modeling

To model the raw SER of a microprocessor, a component

structure, or the whole chip, we begin with the complete

profile and counts of the different latch, combinational

logic gate, and SRAM register cell composition of the

corresponding entity. In particular, we must have the

types and counts of the latches, the logic gate levels4, and

the SRAM register cells in the structure under study. As

depicted in Figure 2(b), the latch and cell types as well as

the count estimates of the various chip units come from

4For a combinational logic network, the number of logic levels is defined as the
maximum number of logic gates in the path from any primary input to any primary
output. The logic level of G, a particular gate, can then be defined as the minimum
number of gates between the output (receiving) latch and G, as a path from the output
is traced back to the primary input (source pipeline latch) through G. The level of the
gates that write to the receiving pipeline latch is thus 0, a gate that has one level-0 gate
separating it from the receiving latch is at level 1, and so on.

J. A. RIVERS ET AL. IBM J. RES. & DEV. VOL. 52 NO. 3 MAY 2008

296

the design database of the specific chip development

project. Such data is updated as more accurate design

data becomes available with the maturity of the VHDL

logic design. As for the levels and counts of the

combinational logic gates, we collect such data by

applying the Vtiming tool [10] on the evolving RTL

model of the chip or unit. Vtiming allows us to scan the

VHDL description and gather statistics about the number

of logic gates within each level of a given combinational

logic chain. Our interest focuses primarily on the gate

counts within level 0 through level 3 (counting levels

backward from the receiving pipeline latch bank). This is

in light of empirically established knowledge that due to

logic-level masking effects, SEU events on gates in levels 4

and beyond generally do not contribute to manifested

errors in the receiving latch bank in real microprocessor

pipelined logic paths.

The upper table of Figure 3 shows a simple example of

a spreadsheet output for a raw SER model of a

hypothetical instruction fetch unit (IFU) in a

microprocessor. For this illustration, we focus the

modeling on only the latches, the relevant combinational

logic gates, and the register cells in the unit. Columns 2

and 3 list the different types of latches and their

corresponding counts in our IFU example. Columns 4

and 5 give the count of the logic gate levels and

corresponding gates. Column 6 lists the count for the

register cells in this hypothetical IFU. Column 7 shows

the computed raw SER of the unit (reported for

illustration, in arbitrary units), considering only the

latches and the relevant combinational logic gates.

Column 8 shows the computed raw SER of the unit with

respect to the register cells. Column 9 is a sum of the

values from columns 7 and 8 to give the total raw SER for

the unit. The raw SER derived in columns 7 and 8 is

basically the summation of the histograms of the latch,

cell, and combinational logic type and their

corresponding count frequency multiplied by the raw

SER vulnerability of the latch, cell, and logic type. We

emphasize that the SER vulnerability data we use for the

examples in this paper is for illustrative purposes only,

reported in arbitrary units. They do not represent real

Figure 3

Deriving the real (i.e., effective or derated) SER value from the raw SER for a hypothetical IFU running the SPECint** average workload.

The circled data highlights the effect of residency and how the raw SER number is derated to the final SER number. (Fnct Unit: functional

unit; LatTyp: latch type; LatCnt: latch count; LgcLvl: logic level; LgcLvlCnt: logic-level gate count; RegCnt: register bits count.)

Fnct Unit

IFU

LatType LatCnt LgcLvl LgcLvlCnt RegCnt Raw SER (logic) Raw SER (register) Raw SER (logic and register)

IFU Type RES SER

(logic/latch)

SER

(reg)

Net SER

0.729

0.194

2.43E�00 2.60E�00

1.71E�01

Logic

Storage

1 2 3 4 5 6 7 8 9

1 2 3 4 5

aa

bb

cc

a

b

c

d

e

f

g

Total latch

5,100

2,000

160

10

5,300

1,300

700

260

10

10

14,850

Lvl 0

Lvl 1

Lvl 2

Lvl 3

Lvls 0–3

All Lvls

22,100

29,300

30,500

53,500

135,400

683,500

6,100 3.33E�00 8.85E�01 4.22E�00

IBM J. RES. & DEV. VOL. 52 NO. 3 MAY 2008 J. A. RIVERS ET AL.

297

values. In the IFU example, we estimate the raw SER

value to be 4.22 (column 9). To find the actual manifested

SER (depicted in the lower table in Figure 3), we must

ascertain how much derating can be credited to this unit,

for a given workload execution. Phaser/M1 attempts to

capture most of the derating effect that can be ascribed to

the microarchitecture. This is explained in detail below.

Workload residency modeling

Microprocessor chip structures can be broadly classified

into two main groups: logic and storage. We define logic

structures to be the various data and control processing

units on the chip that are made up of combinational logic

gates and latches. Typical examples of on-chip logic

structures, using our definition, include the fixed-point

unit (FXU) pipelined logic datapath (with associated

control logic) and the instruction decode unit (IDU)

logic. We define storage to be the various structures that

hold data values, such as the queues, register files, and

other SRAMmacros. Of course, latches may also serve as

staging and data-hold resources, especially during stalls in

a pipeline flow. In this case, depending on how such stalls

are implemented in relation to the clock-gating

functionality within the pipeline, certain latch banks may

also be categorized within the storage class. However, as

explained later, the residency modeling for such pipeline

latches is simpler than register files and arrays and is

better treated under the logic category.

Workload residency modeling attempts to measure the

opportune proportion of cycles during a workload

execution for which bit-flip events could alter program

correctness. Hence, to accurately capture such residency

data, the focus must include only the true path of

program execution. For example, dataflow-centric SERs

on a misspeculated path during program execution

cannot alter program output. Similarly, rejected or

flushed executions, dead instructions, NOPs (no

operations), and performance-enhancing instructions

(e.g., those related to data prefetch) do not contribute to

SER-induced data corruption. In effect, for logic

structures, the question we must ask is, During what

fraction of the cycles is there an operation that uses a

particular logic structure in such a manner as to lead to

actual completed instructions? For storage structures, the

question is, During what fraction of cycles is the storage

resource holding a value that will subsequently be used in

the true execution path?

Logic structures: Basic usage residency

For pipelined logic structures, instructions, data values,

and control bits stream through the structure in the

absence of stalls. Thus, a typical live data value item

spends only a single cycle per structural pipeline stage.

However, depending on the design of the structure,

instruction stall periods may occur, during which resident

data may be further exposed to SERs. In such cases, latch

banks (registers) that hold the stalled instruction or data

components must be analyzed to compute the added SER

vulnerability. Microarchitectural M1-class simulators

report utilizations for each pipeline stage and these

capture stall-related utilizations of that resource, in

addition to stall-free single-cycle usage. Residency in

pipelined logic structures is, therefore, formally defined as

the percentage of cycles during which the corresponding

logic structure is busy computing or holding stalled data.

In a microarchitecture simulator, we measure the number

of cycles that this structure is busy. At the end of the

simulation run, the usage residency of the structure may

be calculated as the following fraction:

RESusage ¼ ðNumber of busy cyclesÞ
ðNumber of total program cyclesÞ :

This basic usage residency calculation does not reflect

corrections that must be applied to factor out those cycles

that do not have an impact on final program output.

Storage structures: Basic live data residency

For storage structures, a value is written into or read out of

the component cells or arrays. Our interest is to be able to

compute the average live data residency durations of the

component cells of the structure. The live time for given

data is the period between its write and the last useful read.

When data is written into a location and there is no

subsequent read before it is overwritten or the program

completes, the data is dead and its live time is zero.

Naturally, if a soft error hits a location with a live data

value, it will corrupt the data. However, if the error hits a

dead data item, it will not have an effect on the program

output, and the error will be automatically masked.

Hence, for a storage cell, the derating factor depends on

the percentage of time that it is holding live data. In a

simulator, we measure the percentage of the live data

residence time. For a storage structure, we derive the

average residency across all of its component cells.

For example, suppose we have an SRAM queue with N

entries. To measure the average residencies across all the

component entries, we monitor and sum all the live data

residence times (cycles) per each queue entry. At the end

of the program run, the live residency per each entry is

given by the following fraction:

live resðiÞ ¼ ðNumber of live residency cycles for ith entryÞ
ðNumber of total program cyclesÞ :

The average live residency of the structure, therefore, is

the accumulation of all the live res(i) values, divided byN.

As before, this base residency calculation for storage

structures does not take into account adjustments that are

J. A. RIVERS ET AL. IBM J. RES. & DEV. VOL. 52 NO. 3 MAY 2008

298

required to account for apparent live residency periods

that do not actually affect program output.

Correcting factor

The above two effects, the logic and storage residence

times, provide the base residencies of the structures.

However, using this alone is very conservative as the

derating factor. There are many speculative and

performance-enhancing activities that occur in a

processor that do not contribute to the functional

correctness of the program. If a soft error were to hit any

of such instructions or their corresponding values, it

would not lead to processor failure; the effect would at

most be only a degradation of program performance. To

obtain more accurate derating factors, statistics are

required to augment the calculation. Although we discuss

these correcting effects separately, note that such

statistics do not have to be collected through a second

pass of the simulation run. In fact, for the residency

numbers we use for this study, the logic and storage-

correcting effect is taken into account while collecting the

residency statistics from the simulator in a single

simulation run. In effect, all statistics collected from the

simulator are those along the true program execution

path and of instructions and data values that actually

affect the final program outcome.

Branch misprediction rate

Wrong-path speculative instructions are squashed and

thus would not contribute to the SER of the

microprocessor, even if they have errors. The branch

misprediction rate M is defined to be the number of

mispredicts per completed instruction. On the basis of the

misprediction rate and the branch misprediction penalty,

one may formulate a quick estimate of the percentage of

squashed instructions as follows:

Let the processor average branch misprediction penalty

be P cycles, which means that on average, when a

misprediction is detected, there is a pipeline stall of P

cycles. Let the number of completed instructions beN and

the number of busy cycles of the targeted unit be Tbusy.

The total execution time for completing theN instructions

is T. Then the cycles-per-instruction adder resulting from

branch mispredicts is M � P. Therefore, the total number

of cycles lost due to stalls from mispredicts is Twaste¼
M � P �N. The original (conservative) residency value for a

structure would be given by REScons¼ Tbusy/T. If the

subject unit always suffers the full stall penalty on each

branch mispredict, then the corrected residency of the unit

would be

RES
real
¼ ðT

busy
� T

waste
Þ=T

¼ RES
cons
� ð1� T

waste
=T

busy
Þ:

Dead instruction and performance-enhancing instruction
percentage

Just as with wrong-path instructions, dead instructions

and performance-enhancing instructions will not cause

processor failure, even if they are hit by soft errors. It is

difficult to measure these two in an early-stage

performance simulator precisely without detailed

instrumentation of the simulator code. Fortunately, a

good estimate of the correction factor due to the above

two sources can be derived by simple analysis of the

workload trace.

Suppose the fraction of dead and performance-

enhancing instructions is determined to be P dead, then

the RES value may be further refined to

RES ¼ RES � ð1� P deadÞ:

Computing the residency factors accurately:
A generalized view

When it comes to SER modeling, there are often attempts

to use microarchitecture utilization as a proxy for actual

residency. However, a close examination of these two

metrics in a complex microprocessor pipeline shows a

potentially significant difference between the two. Some

examples of where and how such corrective factors may

be applied via use of average stall event or dead

instruction statistics were discussed above. However, in

general, there are many more sources of derating imposed

by the microarchitecture–workload pair. The effective

correction factors to the computed residency (due to all

sources) would be awkward and error-prone to derive

individually via average statistical behavior alone. In this

subsection, we formulate the general problem of

extracting true residency statistics directly through more

careful, adjusted usage monitoring within the M1

simulator.

The diagrams in Figure 4 illustrate an important

difference between the measurement of residency and

utilization during the simulation of a workload. Each of

these diagrams represents a single-cycle snapshot of the

state of a simplified IBM POWER* microprocessor

pipeline model (e.g., loosely based on [11]). In these

diagrams, each box represents a location in the processor

that could contain the information for an executing

instruction, for example, pipeline stage latches or issue

queue entries. The general flow of instructions through

the pipeline is from left to right, where instructions pass

through the fetch logic into the instruction buffer

(IBuffer) and then through the decode stages and mapper

into the issue queue (IQueue). From the IQueue,

instructions are then each issued into one of the different

execution units: one of the fixed-point units (FX0, FX1),

the load-store units (LS0, LS1), or the branch resolution

unit (BRU). This simplified view effectively shows single-

IBM J. RES. & DEV. VOL. 52 NO. 3 MAY 2008 J. A. RIVERS ET AL.

299

Figure 4

Microprocessor pipeline snapshot state scenarios: (a) state reflecting a reject recovery; (b) state reflecting a flush recovery; (c) state reflecting

a mispredict recovery. (AGen: address generation stage; Br Upd: branch update stage; BRU: branch resolution unit; D1, D2: decode stage 1,

decode stage 2; DCA: data cache access stage; EX: execution stage; FXU: fixed point unit; GD: group dispatch stage; GPR WB:

general-purpose register writeback stage; ICA1: I-cache access stage 1; IFAR: instruction fetch address register access; ixfer: instruction

fetch transfer cycle stage; LSU: load/store unit; RF: register file access stage; Ucode: microcode access stage; XER WB: exception register

writeback stage.)

IBuffer

IBuffer

RF
Br

Upd
EX

FX0

IFAR

ICA1 ixfer D1 D2 xfer GD Mapper

RF EX
GPR
WB

XER
WB

GPR
WB

XER
WB

Ucode Ucode Ucode Ucode

RF AGen DCA Dval WB
finish

WB
finish

LS0

RF EX

RF AGen DCA Dval LS1

FX1

IQueue

IQueue

BRU

RF Br
Upd

EX

FX0RF EX GPR
WB

XER
WB

GPR
WB

XER
WB

RF AGen DCA Dval
WB

finish

WB
finish

LS0

RF EX

RF AGen DCA Dval LS1

FX1

BRU

Br
Upd

FX0GPR
WB

XER
WB

GPR
WB

XER
WB

RF AGen DCA Dval WB
finish

WB
finish

LS0

RF EX

RF AGen DCA Dval LS1

FX1

BRU

U � 6/14

RES � 6/14

U � 8/14

RES � 4/14

U � 6/14

RES � 6/14

U � 6/14

RES � 0/14

U � 8/14

RES � 0/14

FX0: U � 3/4 RES � 2/4

FX1: U = 3/4 RES = 2/4

LS0: U = 4/5 RES = 2/5

LS1: U = 3/5 RES = 2/5

FX0: U � 3/4 RES � 0/4

FX1: U � 3/4 RES � 2/4

LS0: U � 4/5 RES � 1/5

LS1: U � 3/5 RES � 1/5

BRU: U � 2/3 RES � 1/3

FX0: U � 3/4 RES � 2/4

FX1: U � 3/4 RES � 0/4

LS0: U � 4/5 RES � 2/5

LS1: U � 2/5 RES � 0/5

U � 8/14

RES � 8/14

(a)

(b)

(c)

Ucode Ucode Ucode Ucode

Ucode Ucode Ucode Ucode

IFAR

ICA1 ixfer D1 D2 xfer GD Mapper

IFAR

ICA1 ixfer D1 D2 xfer GD Mapper

Issue

Issue

IBuffer IQueue

Issue

RF EX

RF EX

Contains no instruction

in this cycle

Instructions invalidated

by the recovery action

Instructions not invalidated

and continue to completion

J. A. RIVERS ET AL. IBM J. RES. & DEV. VOL. 52 NO. 3 MAY 2008

300

instruction decode, and ignores many aspects of a real

microprocessor (model) for purposes of clearer

explanation of the process. The diagrams of Figure 4 are

intended to illustrate the difference between utilization

and residency, which is particularly clear when viewed

instantaneously (i.e., in a snapshot of the pipeline

contents on a given cycle). In these diagrams, each box

illustrates a potential location for executing instruction

information. The colored boxes indicate locations that

are currently holding information related to an executing

instruction; the blue boxes indicate instructions that

continue through normal execution and completion and,

therefore, can affect the final output of the workload,

while the red boxes indicate instructions that will not

continue through to completion in this execution but will

be invalidated (and possibly restarted later).

These three diagrams indicate three different

exceptional execution conditions that require some

internal adjustment (i.e., some pipeline recovery action)

by the microprocessor. Figure 4(a) represents the

situation in which an instruction is determined to be one

that needs to be rejected for some reason, such as a cache

miss. A reject action requires that the rejected instruction

and any others that are dependent on it be invalidated

from their current locations in the pipeline and reissued

from the instruction queue (IQueue). In Figure 4(a) the

instructions that are going to be rejected and reissued are

colored red while those unaffected are blue. Figure 4(b)

represents the situation in which an instruction is being

discovered to require a flush recovery action, that is, the

instruction and all younger (more recently fetched)

instructions must be invalidated in the core pipeline and

restarted from the instruction buffer (IBuffer).

Finally, Figure 4(c) represents the situation in which a

branch misprediction is identified (the blue box

instruction in the BRU), which requires that all

instructions younger than the mispredicted branch be

invalidated in the pipeline, and execution resume after an

instruction fetch from the corrected branch target

address. In the diagrams of Figure 4, the computation of

the cycles contribution to utilization (U) as against

residency (RES) is shown for most of the units by a

fraction formula. The utilization is simply the number of

colored (occupied) boxes, whether red or blue, divided by

the total number of boxes in a given unit; the residency is

the number of blue boxes divided by the total number of

boxes in the unit.

These formulas characterize what would be used if the

utilization or residency calculations were done during

each cycle of simulation and well illustrate the difference

in these metrics. In practice, residency is not computed on

a cycle-by-cycle basis in this manner. Comparing the

utilization of the FX0 in Figure 4(b), one finds the

utilization to be three colored boxes out of four total and

the residency is zero out of four boxes because the three

instructions currently utilizing the FX0 pipeline will all be

flushed and reexecuted later. Because the current

execution of those instructions will not complete, these

executions cannot contribute to the final workload

output, and thus cannot contribute to errors in the

workload output. In practice, the simulator does not try

to determine residency on a cycle-by-cycle basis but

rather records with each instruction its potential

contribution to the unit residencies and adds these

contributions only at the time the instruction reaches

simulated completion. In this way, the simulator can

easily guarantee that residency contributions are taken

only for instructions that execute fully to completion

along the correct execution path.

Going from raw SER to actual SDC-related SER:

An example

Referring to Figure 3, an example can be seen of the basic

steps involved in Phaser modeling from raw to real SER

for a hypothetical IFU of a microprocessor executing the

average Standard Performance Evaluation Corporation

SPECint (SPEC integer) workload. Again, we limit our

attention here to only SDC-related SER at the program

output.

As discussed earlier, we estimate the raw SER due to

latches and combinational logic in the IFU to be 3.33 and

the raw SER due to the register cells as 0.88, giving a

combined total raw SER of 4.22 for the unit. The SER

measures are in arbitrary units because the only goal is to

quantify the relative reduction of SER due to derating, as

explained below.

To obtain the actual (manifested) SER when the

component is executing the SPECint suite average, we

derate the raw SER values by the actual RES of the

component. In our simulations, we derive two RES

numbers for the IFU; for the logic structure part, we

estimate an average RES of 0.729, while for the storage

register structure we derive 0.194. These values are

generated with the correction effect discussed earlier.

The logic structure RES of 0.729 derates the IFU logic

component of SER from 3.33 to 2.43. Likewise, the

register storage structure RES of 0.194 derates the IFU

storage register component SER from 0.885 to 0.171.

Putting the two segments together, we end up with a total

derated SER estimate of 2.60. In terms of derating factor,

this means that at least 39% of the raw SEUs in the IFU

region (caused by soft errors) are not expected to have an

effect in the final program output as far as data integrity

is concerned. The reason we say ‘‘at least’’ is that what we

have captured so far in the Phaser/M1 predictive

modeling is a subset of the full range of sources of

derating in SDC analysis for a given workload.

IBM J. RES. & DEV. VOL. 52 NO. 3 MAY 2008 J. A. RIVERS ET AL.

301

SER projections, analysis, and discussion
In this section we describe the various classifications of

soft errors from the perspective of the microarchitecture

and discuss how the Phaser framework identifies and

projects the amount of derating obtainable at the

microarchitectural level. We also present a summary view

of the Phaser-based SER projection and derating analysis

for a full-function microprocessor.

Error classification and microarchitectural derating

The error classification and derating taxonomy adopted

in the Phaser framework follow the same lines as those

used in Sanda et al. [5]. As a brief review of that

taxonomy, any bit flip occurring in a modern

microprocessor chip (with architected detection and

recovery support for soft-error tolerance) can be placed in

one of four classes. (Note again that we limit our

attention in this particular paper to SDC-related final

program output errors only.)

a. Vanished error class—errors that occur as a result of

bit flips but have no architectural consequence. For

example, if a bit flip occurs in a unit that is not active

or is not holding useful data at the time of the bit-flip

occurrence, and if that SEU does not trigger any

error detector, then that bit flip will be of no

consequence.

b. Corrected class—bit flips that generate an error

condition, but the system is able to detect and correct

the error or can recover through re-execution from a

prior-saved golden checkpoint. A typical example

may be an ECC-protected array or a parity-

protected latch that can trigger a hardware recovery

action.

c. Checkstop class—bit flips that result in errors that are

detected in hardware but cannot be corrected or

recovered via hardware means. In this case, the

detected error is trapped by software and usually

results in a machine check. While a checkstop can

terminate a job on a system, it does not result in an

SDC event.

d. Incorrect architected state class—bit flips that

manifest as a deviation in the architected state from

what would be expected in the absence of an SEU.

(An incorrect architected state may not eventually

result in an SDC, but the possibility does exist,

unlike in the other classes.)

Generally, we refer to the error-masking effects of these

four categories as machine derating [5], but in the context

of Phaser/M1, the scope of derating is primarily the chip

microarchitecture, so we may also refer to it here as

microarchitectural derating (MD). As discussed in

Reference [5], there are additional sources of application

derating even after an architectural state has been

corrupted. Thus, only a subset of the class (d) bit flips

actually result in an SDC. In the current Phaser/M1

methodology, we do not attempt to capture the

application derating effects; our attempt is to predict the

transition probability of bit flips that manifest as class (d)

events, and we translate that into a conservative bound

on the SDC-specific SER during early-stage

microarchitecture definition and analysis. If needed, of

course, separate analysis of application-level derating

may be done using, for example, a full-system functional

simulator (e.g., Mambo, as described in [5]), and the

inferred application derating factor can be used to tighten

the SDC-related SER bound obtained via Phaser/M1.

Phaser error classification and derating

The SER prediction focus of the Phaser framework is on

the MD aspect; the attempt is to predict and allocate

derating among the four classes of bit-flip events. In

effect, the framework attempts to derate the starting raw

SER value of the microarchitecture under study by the

first three categories in the MD taxonomy (a, b, and c),

while reporting the class (d) bit-flip transition probability

as an upper bound for SDC-related SER.

Phaser currently predicts the MD stack in two pairs,

namely MD(b,c) and MD(a). The first pair, MD(b,c),

combines the SER derating attributable to the recovery

and checkstops categories. If the checkers in a chip region

are assumed to be active even if that region is not used,

then arguably MD(b,c) is workload-independent. MD(a),

on the other hand, focuses on the derating contributed by

the vanished error class and in general this could be

workload-dependent. Then the all-important MD(d)

piece used in our SDC SER projection can be computed

by subtracting the effects of MD(b,c) and MD(a) from

the raw SER value. Given that our current MD(a)

fraction of the stack is an underestimate since we are not

able to factor in all of the sources of derating attributable

to the vanished error class, the MD(d) piece is an

overestimate or upper bound of the real value.

Note, by the way, that in our reported methodology,

the timing and clock derating factors are not directly

addressed. They could in general be implicitly included in

the starting raw SER assumptions. Hence Phaser/M1

methodology need not be concerned with these additional

sources of derating.

Sample projection and derating analysis for an

entire processor core

Figure 5 shows the SER estimation for a two-way

multithreaded high-end core running the average SPEC

floating-point (SPECfp**) and SPECint workloads,

respectively, reported in arbitrary units. In each case, two

J. A. RIVERS ET AL. IBM J. RES. & DEV. VOL. 52 NO. 3 MAY 2008

302

versions of the same thread were simulated

simultaneously. Figures 5(a) and 5(c) present raw and

derated SER for each of the major units in the core and

for the full core. Figures 5(b) and 5(d) present a stacked

bar of where the various deratings originate for the units

and finally for the full core. The raw SER is reported in

arbitrary units in such a way that it leads to a net core raw

SER value of 10. As depicted in Figures 5(b) and 5(d), the

MD(b,c) component derates the core raw SER by 46%.

This derating is workload-independent. The MD(a)

component derates the SER a further 51%, which brings

the total derating of the core to 97% for the average

SPECfp or SPECint workload. The real numbers show

that for the SPECfp average workload, the core SER goes

from 10 (raw) to an SDC-specific SER upper bound of

0.37, while for the SPECint average workload, the core

SER goes from 10 (raw) to an SDC-specific SER upper

bound of 0.32. Note that the MD(a) values across

individual units of the processor do exhibit workload-

dependence, but when averaged across the full core, the

dependence seems to become very small or negligible in

this particular case.

The various units of the core make different

contributions to SER. However, the IDU and the LSU

proportionally stand out as the units that are most

vulnerable to soft errors. This is not surprising since both

units exhibit relatively higher data residencies and occupy

larger chip areas in terms of latch count. The LSU has the

largest chip area among the units in terms of latch count.

Although it ranks somewhere in the middle with respect

to residency among the units, its area exposure still

renders it the most vulnerable. The IDU, on the other

hand, is the third largest unit in terms of latch count.

However, it showed the highest residency, thus making it

the second most vulnerable unit in the group.

As is evident from Figure 5, the data and charts

produced by the Phaser framework allow the designer to

carry out various what-if experiments and evaluations.

For example, it can be seen from the Phaser/M1 data that

by replacing the latches and cells used in either the

IDU or the LSU with latches and cells that are more

hardened against bit flips (resulting in an area and power

cost), one can derive a microarchitecture core with a

lower SER.

Figure 5

SER estimation for a high-end processor core running the SPECfp (a, b) and SPECint (c, d) average workloads. (2W: two-way; MD: microar-

chitectural derating.)

0

2

4

6

8

10
S

E
R

(a

rb
it

ra
ry

 u
n
it

s)
S

E
R

(a

rb
it

ra
ry

 u
n
it

s)

Raw

Derated after considering unprotected latches

Microarchitectural derated

Factoring in miscellaneous other derating

Functional units

(c) SER (logic and latches), SPECint–2W
Functional units

(d) Average architectural masking, SPECint—2W

P
er

ce
n
ta

g
e

44
33

45 50
64

40

83

15

46

50 67
53

39

34

55

17

85

51

0

2

4

6

8

10

Raw

Derated after considering unprotected latches

Microarchitectural derated

Factoring in miscellaneous other derating

44
33

45 50
64

40

83

15

46

56
67 49 44

33

54

16

85

51

0

20

40

60

80

100

P
er

ce
n
ta

g
e

MD(b,c) MD(a)

MD(b,c) MD(a)

BFU DFU FXU IDU IFU LSU RU VMX CORE BFU DFU FXU IDU IFU LSU RU VMX CORE

Functional units

(a) SER (logic and latches), SPECFp–2W

Functional units

(b) Average architectural masking, SPECfp—2W

BFU DFU FXU IDU IFU LSU RU VMX CORE BFU DFU FXU IDU IFU LSU RU VMX CORE

0

20

40

60

80

100

IBM J. RES. & DEV. VOL. 52 NO. 3 MAY 2008 J. A. RIVERS ET AL.

303

Statistical fault injection validation of Phaser
Validation of higher-level predictive models is a very

desirable aspect of early estimation systems. In order to

justify the decisions made by higher-level models, it is

necessary to compare the accuracy of such models against

lower-level detailed models as well as actual hardware

measurements. Referring to Figure 1, during the

implementation phase of the project, when the design

RTL model (M3, coded in a hardware description

language such as VHDL or Cadence Verilog**) is

available, one needs to conduct experiments at this

detailed level of abstraction to validate the conclusions

and projections derived during an earlier phase of the

project.

In other work—for example, that of Saggese et al. [12]

and the ongoing IBM work described in References [5]

and [13]—SFI has been widely used with simulation to

understand the functional effects of soft-error-induced bit

flips. Of particular interest is its use to understand the

logic and microarchitectural derating of the chip due to

bit flips on the model. The propagation of errors through

the system as a result of the injected fault is tracked and

classified. Clearly, a benefit of the fault injection work

described in References [5] and [13] is to be able to use the

SFI methodology to calibrate our predictive Phaser

modeling. This calibration process, when completed, will

yield a Phaser methodology that can be used with

confidence in predicting the derating factors and net SER

for future IBM processor designs. Of course, as described

in [5], the final point of calibration is by means of the data

collected from direct neutron and proton bombardment

experiments conducted on the actual chip once it becomes

available. The steps outlined below show the incremental,

phased validation process pursued in the Phaser project.

During the Phaser/M0 or Phaser/M1 stage of

projections, the validation reference is principally the

detailed data available from a previous project. For

example, in the case of the IBM POWER6*

microprocessor, prior measured data from the IBM

POWER5* microprocessor that is suitably adjusted to

factor in design, technology, and operating point (e.g.,

voltage) forms the best available reference to verify the

new predictive model. Also, analytical bounds of

utilization and derating derived from specially designed

loop test cases can serve as useful test and calibration

reference points. This is similar to techniques used in

earlier work for the early-stage validation of M1-level

performance simulators [14]. Limited SFI experiments at

this high level can also be used to obtain bounds on

derating that serve as useful best- and worst-case

calibration points.

During the Phaser/M2 stage, the inter-unit interfaces

are specified through detailed VHDL descriptions

(although the units themselves remain specified through

behavioral C/Cþþ coding). At this stage, the inter-unit

interface latch counts and relevant derating factors can be

directly measured by scanning the model and by using

SFI experiments at this level.

As the RTL M3 VHDL model matures, simulation at

this level captures detailed function and timing at the

logic and latches. To accelerate simulation speed,

hardware emulation [4] methods are used (see the Awan

block in Figure 1, described in detail in References [5]

and [13]). While the Phaser/M3 predictive model is able

to exploit the detailed design information available at this

stage of the design, the SFI experiments done on the

M3/Awan model serve as an accurate reference for

derating factors. This calibrated data can be used to

refine the earlier models used within Phaser/M1, for

example, to analyze the reliability–performance tradeoff

experiments with greater precision and to better help tune

the design parameters. The detailed methodology for

validation and calibration used in the Phaser project is

outside the scope of this paper. References [5] and [13]

describe elements of the methodology in some detail. The

detailed results of the SFI-based validation exercises

(with a focus on the POWER6 microprocessor

experience) will be separately documented in future

publications.

Conclusion
This paper presents an overview of the Phaser toolset and

methodology that is being developed to model the effects

of soft errors on the microarchitectural and architectural

functionality of a system. We have provided a broad

overview of the multiphase framework and have

presented a detailed description of the Phaser/M1 stage

methodology. The Phaser framework will help develop a

fundamental understanding of the system-level effects of

SER in the context of current and future generation IBM

processors and associated systems.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Standard
Performance Evaluation Corporation, Cadence Design Systems,
Inc., or Sony Computer Entertainment, Inc., in the United States,
other countries, or both.

References
1. S. Borkar, ‘‘Designing Reliable Systems from Unreliable

Components: The Challenges of Transistor Variability and
Degradation,’’ IEEE Micro 25, No. 6, 10–16 (2005).

2. A. KleinOsowski, E. H. Cannon, P. Oldiges, and L. Wissel,
‘‘Circuit Design and Modeling for Soft Errors,’’ IBM J. Res. &
Dev. 52, No. 3, 255–263 (2008, this issue).

3. M. E. Wazlowski, N. R. Adiga, D. K. Beece, R. Bellofatto,
M. A. Blumrich, D. Chen, M. B. Dombrowa, et al.,
‘‘Verification Strategy for the Blue Gene/L Chip,’’ IBM J.
Res. & Dev. 49, No. 2/3, 303–318 (2005).

J. A. RIVERS ET AL. IBM J. RES. & DEV. VOL. 52 NO. 3 MAY 2008

304

4. J. M. Ludden, W. Roesner, G. M. Heiling, J. R. Reysa, J. R.
Jackson, B.-L. Chu, M. L. Behm, et al., ‘‘Functional
Verification of the POWER4 Microprocessor and POWER4
Multiprocessor Systems,’’ IBM J. Res. & Dev. 46, No. 1, 53–76
(2002).

5. P. N. Sanda, J. W. Kellington, P. Kudva, R. Kalla, R. B.
McBeth, J. Ackaret, R. Lockwood, J. Schumann, and C. R.
Jones, ‘‘Soft-Error Resilience of the IBM POWER6
Processor,’’ IBM J. Res. & Dev. 52, No. 3, 275–284 (2008, this
issue).

6. X. Li, S. V. Adve, P. Bose, and J. A. Rivers, ‘‘SoftArch: An
Architecture-Level Tool for Modeling and Analyzing Soft
Errors,’’ Proceedings of the International Conference on
Dependable Systems and Networks, Yokohama, Japan, 2005,
pp. 496–505.

7. X Li, S. V. Adve, P. Bose, and J. A. Rivers, ‘‘Architecture-
Level Soft Error Analysis: Examining the Limits of Common
Assumptions,’’ Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks,
Edinburgh, U.K., 2007, pp. 266–275.

8. S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T.
Austin, ‘‘A Systematic Methodology to Compute the
Architectural Vulnerability Factors for a High-Performance
Microprocessor,’’ Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, San Diego,
CA, 2003, pp. 29–40.

9. A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S.
Mukherjee, and R. Rangan, ‘‘Computing Architectural
Vulnerability Factors for Address-Based Structures,’’
Proceedings of the 32nd International Symposium on Computer
Architecture, Madison, WI, 2005, pp. 532–543.

10. P. Kudva, B. Curran, S. K. Karandikar, M. Mayo, S. Carey,
and S. S. Sapatnekar, ‘‘Early Performance Prediction,’’
Proceedings of the Workshop on Complexity—Effective Design:
Held in Conjunction with the 32nd International Symposium on
Computer Architecture, Madison, WI, 2005; see http://
www.csl.cornell.edu/;albonesi/wced05/wced05.pdf.

11. H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q.
Nguyen, B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and
M. T. Vaden, ‘‘IBM POWER6 Microarchitecture,’’ IBM J.
Res. & Dev. 51, No. 6, pp. 639–662 (2007).

12. G. P. Saggese, N. J. Wang, Z. T. Kalbarczyk, S. J. Patel, and
R. K. Iyer, ‘‘An Experimental Study of Soft Errors in
Microprocessors,’’ IEEE Microprocessors 25, No. 6, 30–39
(2005).

13. P. Kudva, J. W. Kellington, P. N. Sanda, R. McBeth, J.
Schumann, and R. Kalla, ‘‘Fault Injection Verification of IBM
POWER6 Soft Error Resilience,’’ Proceedings of the Workshop
on Architectural Support for Gigascale Integration, San Diego,
CA, 2007; see http://www.ece.cmu.edu/;asgi/F4.pdf.

14. P. Bose, ‘‘Testing for Function and Performance: Towards an
Integrated Processor Validation Methodology,’’ J. Electronic
Testing Theory Application 16, No. 1/2, 29–48 (2000).

Received July 17, 2007; accepted for publication

Jude A. Rivers IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (jarivers@us.ibm.com). Dr. Rivers is a Research Staff
Member in the Reliability- and Power-Aware Microarchitectures
department. He received a Ph.D. degree in computer science and
engineering from the University of Michigan at Ann Arbor in
1998. He then joined IBM Research where he has focused on a
wide range of high-performance computer architecture issues and
innovations, including hypercaching, efficient instruction and data
supply for server systems, power-aware microarchitecture design
and analysis, embedded systems, and reliability-aware design and
analysis. He has authored several refereed publications, is the
author or coauthor of six issued patents, and has more than 20
pending patent applications. He has received several IBM
Invention Plateau Awards and a Research Technical Group
Award. Dr. Rivers is a member of the IEEE.

Pradip Bose IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (pbose@us.ibm.com). Dr. Bose received a Ph.D. degree in
electrical and computer engineering from the University of Illinois
at Urbana–Champaign in 1983. Since then he has been with IBM
Research where he currently manages the Reliability- and Power-
Aware Microarchitectures department. He has been involved in the
design and presilicon modeling of virtually all IBM POWER
microprocessor series. His current research interests are in high-
performance computers, power- and reliability-aware
microprocessor architectures, presilicon modeling and validation,
compilers, and design automation. He is the author or coauthor of
more than 70 refereed publications, including several book
chapters. He has received several IBM Invention Plateau Awards, a
Research Accomplishment Award, and an Outstanding Innovation
Award from IBM. He served as Editor-in-Chief of IEEE Micro
from 2003 to 2006. Dr. Bose is an IEEE Fellow.

Prabhakar Kudva IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (kudva@us.ibm.com). Dr. Kudva received a Ph.D. degree in
computer science from the University of Utah in 1995. He has been
a Research Staff Member at the IBM Thomas J. Watson Research
Center since then. He works in the areas of design automation,
processor architecture, high-end microprocessor circuit design and
methodology, and ASICs. He holds several patents, has published
numerous papers, and has served on various conference technical
program committees in these areas. He has received several awards
including the Outstanding Technical Accomplishment and
Research Division Awards from IBM as well as an IEEE/ACM
William J. McCalla ICCAD Best Paper Award. Dr. Kudva is an
Adjunct Professor at Columbia University.

John-David Wellman IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (wellman@us.ibm.com). Dr. Wellman is a
Research Staff Member in the Systems Technology and
Microarchitecture department. He received a Ph.D. degree in
computer science and engineering from the University of Michigan
in 1996, at which time he joined IBM Research. He has focused on
the modeling and analysis of computer performance and the
simulation and verification of digital logic to improve aspects of
processor performance. He has participated in the design and
implementation of the IBM POWER4* microprocessor, and was a
principal member of the IBM Research team that worked with
Sony and Toshiba to develop the concept design for what is now
the Cell Broadband Engine**. Dr. Wellman is an author or
coauthor of more than 20 patents and several papers.

IBM J. RES. & DEV. VOL. 52 NO. 3 MAY 2008 J. A. RIVERS ET AL.

305

August 29, 2007; Internet publication April 3, 2008

Pia N. Sanda IBM Systems and Technology Group, 2455 South
Road, Poughkeepsie, New York 12601 (sanda@us.ibm.com).
Dr. Sanda received a B.S. degree in engineering physics and a
Ph.D. degree in physics, both from Cornell University. She is a
Senior Technical Staff Member for server development, working
on the soft-error reliability of server systems. She is known for her
pioneering work in the development of PICA (picosecond imaging
circuit analysis) to measure and visualize the actual switching
behavior of high-performance microprocessors to verify timing.
She also invented algorithms for phase-shift mask generation
which are used in integrated circuit autogeneration tools.
Dr. Sanda is a member of the IBM Academy of Technology.

Ethan H. Cannon IBM Systems and Technology Group,
1000 River Street, Essex Junction, Vermont 05452
(cannon1@us.ibm.com). Dr. Cannon received a B.S. degree in
engineering physics from the University of California, Berkeley, in
1994, and M.S. and Ph.D. degrees in physics from the University of
Illinois at Urbana–Champaign, in 1995 and 1999, respectively.
After postdoctoral studies at the University of Notre Dame, he
joined IBM. Dr. Cannon is currently a reliability engineer focusing
on soft-error simulations and measurements.

Luiz C. Alves IBM Systems and Technology Group, 2455 South
Road, Poughkeepsie, New York 12601 (alves@us.ibm.com).
Mr. Alves is a Senior Technical Staff Member working in the
System z* Reliability, Availability and Serviceability group. He
graduated from New York University in 1975 with a B.S. degree in
electrical engineering and received an M.S. degree in electrical
engineering in 1977 from the Polytechnic Institute of New York.
He joined IBM in 1977 working in the advanced system
manufacturing engineering organization, where he held various
technical and managerial positions. In 1985 he was named field
quality assurance manager for the IBM 3090* system, and in 1987
he became the RAS manager for the 9021 processor families.
Mr. Alves is currently responsible for defining the RAS
requirements for future System z products.

J. A. RIVERS ET AL. IBM J. RES. & DEV. VOL. 52 NO. 3 MAY 2008

306

