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Abstract

Selective attention plays an important role in visual pro-
cessing in reducing the problem scale and in actively
gathering useful information. We propose a modified
saliency map mechanism that uses a simple top-down task-
dependent cue to allow attention to stay mainly on one ob-
ject in the scene each time for the first few shifts. Such a
modification allows the learning of invariant object repre-
sentations across attention shifts in a multiple-object scene.
In this paper, we will first introduce this saliency map mech-
anism and then propose a neural network model to learn
invariant representations for objects across attention shifts
in a temporal sequence.

1. Introduction
Processing massive visual information seems rather frus-
trating. Selective attention could simplify such processing
by permitting the focusing on a small fraction of the total in-
put visual information ( [7], [10]), thus breaking down the
problem into several sequential smaller-scale visual analy-
sis sub-problems. Shifting of attention enables the visual
system to actively, and efficiently, acquire useful informa-
tion from the external environment for further processing.
Hafed’s ( [4]) work shows evidence that saccade target fea-
tures are attended as a result of the preparation to move the
eyes and such shifting of attention is important to aid the
visual system in processing the recently foveated saccade
target after a saccade ends. His work also reveals a possible
temporal association mechanism across attention shifts.

Temporal association is influential in the development of
transformation invariance when we consider the importance
of the continuous properties of an object in both space and
time domain in the world. An object at one place on the
retina might activate feature analyzers at the next stage of
cortical processing. Psychophysical studies by Wallis and
Bülthoff ( [14]) also revealed the importance of temporal
information in object recognition and representation, which
suggests that humans are continuously associating views of
objects to support later recognition, and the recognition is

not only based on the physical similarity but also the corre-
lated appearance in time of the objects.

There are some models where the visual input is filtered
into a focus of attention (therefore an object of interest is
pop out in the center of the attention window) and then
fed into a recognition system for position or scale invari-
ant recognition ( [11], [5]). The dynamic routing circuits
employed in these models efficiently select out the regions
of Focus of Attention (FOA) to perform position and scale
invariant recognition in an associative (or knowledge) net-
work. However, these models focus on the recognition of
features such as a whole object in the FOA, which ignore
the facts that attention goes to not only between objects but
also within object. We will study the more general cases
of attention shifts over objects and the learning of invariant
representations of objects across attention shifts.

In this paper, we will first propose a saliency map that
use both the bottom-up saliency cues and a simple task-
dependent cue that enables attention to stay mainly on an
object of interest for the first few shifts. Then we will apply
this saliency map to generate a sequence of attention shifts,
to guide the process of the temporal learning of invariance.

2. System composition
The overall system is composed of two sub-modules, as
illustrated in Figure 1. One is the attention control mod-
ule, which generates attention-shift signals according to a
saliency map. The module obtains as input local feature im-
ages from the raw retinal images via a dynamically position-
changing attention window. The second sub-module is the
learning module, which performs the learning of invariant
neuronal representations across attention shifts in temporal
sequences.

3. Attention shift control
The traditional saliency map mechanism follows the idea
that human attention is mostly likely to focus on the most
salient features in the scene. It is mainly based on bottom-
up image-based saliency cues ( [6]). There is another im-
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Figure 1: The system is composed of two modules: an at-
tention control module and a learning module. The attention
control module is an attention shift mechanism that gener-
ates attention shift signals to trigger the learning processes
in the learning module. It also selects local features, which
are part of the raw retinal image falling within the attention
window, as input to the learning module.

portant factor to be kept in mind, however, which is that hu-
mans also tend to keep the attention on the attended object
or its proximity within a very short time period ( [1], [7]),
even when the points to be attended following the first at-
tention shift have no more saliency than other points in the
scene. This consideration is very helpful when in a short
time interval we need a sequence of attention shifts remain-
ing mostly fixed on a targeted object when multiple objects
are present in the scene. Such a requirement in the attention
shift control can be implemented by introducing a top-down
task-dependent cue. The following few paragraphs describe
the implementation of the saliency map mechanism with an
extension to force the first few attention shifts to stay on the
same object.

The saliency map is a weighted sum of the intensity fea-
tures and the orientation features. The algorithm to calcu-
late these features is that proposed by Itti et al. ( [6]), which
we will describe briefly in the next paragraph.

Intensity features, I(σ), are obtained from an 8-level
Gaussian pyramid computed from the raw input intensity,
where the scale factor σ ranges from [0..8]. Local orienta-
tion information is obtained by convolution with oriented
Gabor pyramids O(σ, θ), where σ ∈ [0..8] is the scale
and θ ∈ [0 ◦, 45 ◦, 90 ◦, 135 ◦] is the preferred orientation.
Feature maps are calculated by a set of ”centre-surround”
operations, which are implemented as the difference be-
tween fine (at scale c ∈ [2, 3, 4]) and coarse scales (at scale
s = c + δ , with δ ∈ [3, 4]). In total, 30 feature maps, 6
for intensity and 24 for orientation, are calculated and com-
bined into two ”conspicuity maps”, Ī and Ō, at the scale (

θ = 4) of the saliency map, through a cross-scale addition
where all feature maps are down-sampled into scale four
and made an element-by-element addition.

In addition to the intensity and orientation features, we
introduce a center-region priority R which has high values
in the center of the image. This is used because, in practice,
objects in the center of the view are much more likely to
attract attention for humans. Such eccentricity effect is in-
terpreted by Wolfe and his colleges ( [16]) as an attentional
bias that allocates attention preferentially to central items.
R is expressed in the form of a two-dimensional Gaussian
function:

R = e
−[

(x−x0)2

2σ2
x

+
(y−y0)2

2σ2
y

]
(1)

where x0 and y0 are the center coordinates of the retinal
image, and σx and σy is the standard deviation in horizontal
and vertical directions respectively.

The initial saliency map is formed by:

S =
Ī + Ō + R

3
(2)

Once the saliency map is calculated, a competitive
Winner-Take-All (WTA) algorithm ( [13]) is used to deter-
mine the location of the currently most salient feature in the
saliency map. In the WTA algorithm, a unit with the highest
value wins the competition and the rest are suppressed. This
winner then becomes the target of the next attention shift.
An Inhibition-Of-Return (IOR) mechanism is added to pre-
vent immediate attention shifts back to the current feature
of interest, to allow other parts of the object to be explored.
In our implementation, instead of inhibiting the region near
the current fixation point, the IOR function inhibits all these
small regions around the fixation points in a recent history
trace of the fixation points. Therefore in the algorithm, we
will keep a trace of these fixation points in a vector called
tp. When an overt attention shift occurs, the image point
with fixed world reference coordinates will have a coordi-
nate translation accordingly in the retinal image coordinate
reference system. The information of the coordinate off-
set resulting from each attention shift is used to update the
whole trace, reflecting the newest positional change on the
fixation points in the history appearing in the new retinal
image.

In order to solve the problem how the attention stays on
the same object during the learning process, we introduce
into the calculation of the saliency map a spatial constraint
which forces the next attention target to stay close to the
current fixation point. The spatial constraint (SC) is im-
plemented by adding a trace of neighbours of the fixation
points in the history of the observation duration:

SC(t) = α × SC(t − 1) +
∑
p∈tp

NB(p, t) (3)
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where SC(t) is a spatial constraint function of time t, and
NB(p,t) is a function that puts a neighboring region at high
values around the fixation point p at time t from the trace list
tp, which is likely to receive high saliency of attention. In
our method, for simplicity, we choose NB(p,t) to have high
values uniformly distributed in a small rectangular region
centered at the current fixation point and with low values
elsewhere.

Each time after an attention shift, the saliency map is
updated by:

S′(t) = S(t)
⊗

SC(t) (4)

where
⊗

is an element-by-element multiplication between
two matrices.

We include the time index here because we want to em-
phasize that the saliency map is dynamically changed each
time an attention shift occurs to foveate the target. The
attention shifting consequently causes changes in the in-
put retinal image, and in its corresponding saliency map as
well. This is the reason why we need to keep a trace of the
positions of the previous fixation points in the history and
transform their relative positions in the retinal coordinates
to maintain consistency with each shifting. Similarly, we
need to re-calculate the SC function each time, as well as
the IOR function, because they all depend on their positions
on the retinal images.

The spatial constraint helps to focus on the same object
during the first few attention shifts (here we use five shifts)
over an object. This assumption is consistent with the result
of neurophysiological studies of attention shift. In the real
world, objects are typically be viewed for 0.5 - 1 sec or
more, with a saccade occuring every 200 - 300 msec ( [15]).
Therefore, statistically there would be around 2 - 5 shifts of
overt attention over the object during the observation.

4. Temporal learning of attention shift
invariant

A naı̈ve approach to learn invariant representation across a
sequence of attention shifts would be that responses to local
features of the same object be correlated temporally, such as
a Hebbian rule with a trace mechanism proposed by Földiák
( [3]), or a learning rule that applies a temporal stability con-
straint to require the output layer neuronal responses remain
constant over time in the form as follows:

∆W (t) = γ × [C̃(t) − C(t)] × S(t) (5)

where S is the input neural responses, C is the output layer
neural responses, C̃ is the short-term memory trace keep-
ing a history record of C, and W is the updating rule of the
weight matrix.

However, motivated by the temporal learning of position
invariance as proposed by the authors in previous papers

( [8], [9]), we propose that we are able to use a similar
learning rule if we could find a proper candidate for the
canonical representation as the reinforcement reward dur-
ing the observation duration of an object across attention
shift. The time interval between attention shifts is rather
short when compared with time taken during self-motions
of the object or even of the observer. An assumption could
be made that within the duration of the first few attention
shifts on a targeted object, there are no changes in the view-
ing condition of the object, either due to its self-movements
or the observer’s slow head or body motions. The specific
view of the targeted object during the first few attention
shifts therefore remains almost same, except for the slight
positional displacement due to the attention shifting over
the object. The representation of an object from one view
in the scene at the coarse resolution therefore becomes a
good candidate for the canonical representation, especially
when position invariance is already achieved ( [8]).

Based on the consideration above, we are able to give
the weight updating rule to learn invariance across attention
shifts. The learning rule is composed of two terms, one is a
Temporal-Difference (TD) reinforcement learning term as
in ( [2]) , and the other is a temporal perceptual stability
constraint.

∆W (t) = η × [(R(t) + γ × C(t) − C̃(t − 1)) +
κ × (C̃(t − 1) − C(t)] × S̃(t) (6)

which can be simplified into:

∆W (t) = η×[R(t)+(1−κ)×(χ×C(t)−C̃(t−1)]×S̃(t)
(7)

with

χ =
{ γ−κ

1−κ if κ �= 1
1 otherwise

and
∆C̃(t) = α1 × (C(t) − C̃(t − 1))

∆S̃(t) = α2 × (S(t) − (̃S)(t − 1))

Here R(t) is the canonical representation as the reinforce-
ment reward, and the parameters η, α1 and α2 are learning
rates with predefined constant values. The weight update
rule correlates this reinforcement reward R(t) and (an esti-
mate of) the temporal difference of the output layer neu-
ronal responses with the memory trace of the input layer
neuronal responses. The constraint of temporal perceptual
stability also requires that updating is necessary only when
there is a difference between current neuronal response and
previous neuronal responses kept in the short-term memory
trace. The parameter κ is an importance factor and lies in
the range [0, 1]. It is used to emphasize the importance
of the perceptual stability constraint in driving the learn-
ing towards a better performance. When the value of κ is
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near zero, the constraint term has no effect on the learning
rule. The updating of the weight matrix relies totally on the
TD reinforcement-learning term, in which case it is similar
to the approach in ( [2]), except for the longer time scale
of the temporal difference used in this rule. Conversely, a
value near one will give the constraint term the same im-
portance as the TD reinforcement-learning term. We also
use a sparse coding approach ( [12]) to ensure a sparsely
distributed neuronal responses to the input image patches.

To bound the growth of the weight matrix, the matrix can
be either explicitly normalized, as in many competitive net-
works, or by using a local weight bounding operation ( [3],
[15]), the implementation of which is more biologically rel-
evant.

5. Simulation and Results
5.1. Effects of the modified saliency map mech-

anism
The spatial constraint (Equation 3) is aimed at forcing the
attention to stay close to the region previously visited, to
some extent guaranteeing that the attention will shift within
the same object for a certain duration. In this section we will
examine the effect of the spatial constraint on the saliency
map mechanism during the attention shift, which confines
the shifts to stay near the same object in a multi-object
scene. The scene is relatively simple in the sense that the
scene is static, as all objects within the scene have a low
probability of overlapping, and a black background is used
to eliminate any distraction from the background. The im-
ages we used in this experiment are 320x240 pixels in size,
and the attention window is 60x60 pixels in size. The IOR
region is 72x72 pixels in size, and the spatial constraint is
applied to a region of 90x90 pixels in size centered at the
fixation point.

We use a scenario where three toys are displayed before a
black background. We compare the result of attention shifts
based on the saliency map without and with the spatial con-
straint respectively. In Figure 2, A and C show the post-
attention-shift saliency maps with the IOR regions without
and with the spatial constraint respectively. The small black
rectangles in the figure are the regions influenced by the
IOR. The saliency map is shifted accordingly when an at-
tention shift is executed to put the target point in the cen-
ter of the view window. B and D show the local features
falling within a rectangle attention window accordingly. In
the scene, the right-most toy has the most salient feature;
therefore the first attention shift is focused on it. Without
the spatial constraint, attention is likely to be shifted from
the focused object to other objects that have high salient
values during the observation (Figure 2 B). However, the
problem can be fixed when we introduce the spatial con-
straint into the saliency map. As shown in Figure 2 D, the

Figure 2: A sequence of attention shifts on a scene with
three objects. Attention shifting is guided by a saliency
map without (A shows the saliency map and B shows the
local features) and with (C shows the saliency map and D
shows the local features) the spatial constraint.The small
black rectangles in the figure are the regions influenced by
the IOR.

first several attention shifts stay on the same object.

From the above demonstration, we are able to declare
that with the spatial constraint employed in recalculation of
the saliency map during the sequence of attention shifts, it
is possible for attention to stay mostly on the same object
in a relatively simple multiple-object scene. Therefore, an
adequate attention shift sequence can be performed to guide
the learning of position and attention-shift invariance for the
following experiments.

The modified saliency map mechanism is very useful in
gathering valid training data sets as input to our proposed
neural network. A limitation of this method would be that
it requires the distribution of the objects in a scene to be
sparse, i.e., having no overlap between objects. If any two
objects are placed very close, they are likely to be deemed
as one object due to their spatial closeness.

One useful property is revealed from the study on this
saliency map mechanism. That is that the position differ-
ences of an object on the images can be screened out when
we focus on only the local features obtained across attention
shifts, using the modified saliency map mechanism to per-
form the task of position-invariant object representation and
recognition. Each time with attention selecting out the local
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Figure 3: Local features obtained after the first six attention
shifts for the same two objects appearing at five different
positions.

feature associated with current fixation point, the global po-
sition information of the object is of no importance. What
really matters is the content of the local feature and its rel-
ative position to the object. Two objects were placed at five
different positions, and the first six attention shifts were ob-
served following the saliency map mechanism. We notice
in Figure 3 that the first few attention shifts usually select
similar local features of an object appearing at different po-
sitions due to its saliency map distribution. This observation
leads us to think that at a fine detail level of object represen-
tation, via temporally correlating local features of an object
across attention shifts, the global position difference can be
canceled out by focusing on only the attended parts of an
object.

5.2. Invariance over attention shifts

Attention usually goes more easily to some unwanted fea-
tures from the distractions of the background in a real
world environment. To eliminate such distractions and fo-
cus solely on the objects themselves, in this experiment we
will use a simple multiple-object scene where three objects
are sparsely arranged in front of a black background.

The first five attention shifts were performed following
the guide of the saliency map with the spatial constraint.
Local features of an object with the highest saliency in the
saliency map were recorded. In this implementation, after
five attention shifts on an object, the region covering the

Figure 4: Sequences of attention shifts over three objects in
the scene. Following the saliency map calculated as shown
at the top, the attention first stays on obj1, then moves to
obj2, and so on.

object will be inhibited so that the attention goes to another
object in the scene. Figure 4 shows iterations of attention
shifts over the three objects in the scene and their corre-
sponding local features following the shifts. These local
features are fed into the network as the training data.

In this experiment we use the sparse coding strategy for
the output layer neuronal representation, so the neuronal
responses to the local features across attention shifts are
sparsely distributed. To understand the activity of the neu-
rons, their responses to local features are plotted with re-
spect to the first five attention shifts from one object at a
time. The activities of the eight most active neurons are
shown in Figure 5. The activity curves show each neuron
favors one specific object during the attention shifts.

Finally we compare the performance of the proposed
learning rule as in Equation 7 with the Hebbian trace rule
( [3]) and the temporal stability constraint rule (Equation
5). The three learning rules run on the same training data
set and the weight matrices are initialized to the same val-
ues as well. The learning results are illustrated in Figure
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Figure 5: Neuronal activities of the eight most active neu-
rons responding to local features belonging to three objects
in the scene across five attention shifts.

6 in the measurement of mean variance over the learning
iteration. The mean variance of the output neuronal re-
sponses is sampled every 100 iterations, over the network
output with respect to a set of input stimuli resulting from
a sequence of attention shifts. The value of the mean vari-
ance stays low when the neuron tends to maintain a constant
response to the temporal sequence of local features across
attention shifts; while a higher value means less stability
for the neuronal responses across attention shifts. In other
words,if the model is to exhibit attention-shift-invariance,
the output neuron responses should remain nearly constant
and therefore have a low variance. The proposed learning
rule converges faster than the other two learning rules, and
its mean variance is lower than the other two as well. This
simulation demonstrates that the proposed learning rule is
able to learn the invariance with respect to changes result-
ing from attention shifts in a more efficient way.

5.3. The influence of the temporal factor κ on
learning

We examine the learning performance with (when κ = 1)
and without (when κ = 0) the temporal perceptual stability
constraint term in the learning rule. Again the performance
is evaluated by the measurement of the mean variance of
the output neuronal responses in both cases over the learn-
ing iteration. The value is sampled every 25 simulation it-
erations. As seen from Figure 7, the learning both with and
without the perceptual stability constraint term converges to
a certain point with a low standard deviation, demonstrating
the correctness of the learning direction. But from the figure

Figure 6: Comparison of three attention-shift invariance
learning rules in the measurement of the mean variance over
the learning iteration.

we can also observe that, although the two curves descend
over time, the one with κ = 1 descends faster than the other
and reaches a lower value of standard deviation. This result
reinforces the importance of the perceptual stability con-
straint in achieving a better and faster performance in the
learning of invariance in our approach, and it also demon-
strates that this proposed approach surmounts the perfor-
mance of the approach in ( [2]).

6. Conclusions

In this paper, we have presented a modified saliency map
mechanism that uses a simple top-down task-dependent cue
(a neighborhood of the current fixation point is likely to
attract most attention within a short observation period),
which enables attention to stay mainly on an object of in-
terest for the first several shifts in a multiple-object scene.
Then the saliency map mechanism is applied to a neural net-
work model that learns invariant representations of objects
temporally across attention shifts.

Experimental simulations have demonstrated that the
modified saliency map mechanism is able to generate a se-
quence of attention shifts that stay mostly on a single object
during the short period of observation. And the proposed
neural network model performs well in the learning of in-
variant representations for objects in a scene with respect to
position variance and attention shifts. However, invariance
to scale is not considered here, and future work needs to be
done on this aspect.
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Figure 7: Comparison of learning performance using the
perceptual stability constraint (κ = 1) and not using it (κ =
0) by the measurement of mean variance over the simulation
iteration.
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